-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
executable file
·223 lines (186 loc) · 8.42 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pandas as pd
import numpy as np
import os
import argparse
from datasets.features import ClassLabel
from transformers import AutoProcessor
from sklearn.model_selection import train_test_split
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D, Dataset
from datasets import Image as Img
from PIL import Image
from datasets import concatenate_datasets
import warnings
warnings.filterwarnings('ignore')
def read_text_file(file_path):
with open(file_path, 'r') as f:
return (f.readlines())
def prepare_examples(examples):
images = examples[image_column_name]
words = examples[text_column_name]
boxes = examples[boxes_column_name]
word_labels = examples[label_column_name]
encoding = processor(images, words, boxes=boxes, word_labels=word_labels,
truncation=True, padding="max_length")
return encoding
def get_zip_dir_name():
try:
os.chdir('/content/data')
dir_list = os.listdir()
any_file_name = dir_list[0]
zip_dir_name = any_file_name[:any_file_name.find('\\')]
if all(list(map(lambda x: x.startswith(zip_dir_name), dir_list))):
return zip_dir_name
return False
finally:
os.chdir('./../')
def filter_out_unannotated(example):
tags = example['ner_tags']
return not all([tag == label2id['O'] for tag in tags])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--valid_size')
parser.add_argument('--output_path')
args = parser.parse_args()
TEST_SIZE = float(args.valid_size)
OUTPUT_PATH = args.output_path
os.makedirs(args.output_path, exist_ok=True)
files = {}
zip_dir_name = get_zip_dir_name()
if zip_dir_name:
files['train_box'] = read_text_file(os.path.join(
os.curdir, 'data', f'{zip_dir_name}\\{zip_dir_name}_box.txt'))
files['train_image'] = read_text_file(os.path.join(
os.curdir, 'data', f'{zip_dir_name}\\{zip_dir_name}_image.txt'))
files['train'] = read_text_file(os.path.join(
os.curdir, 'data', f'{zip_dir_name}\\{zip_dir_name}.txt'))
else:
for f in os.listdir():
if f.endswith('.txt') and f.find('box') != -1:
files['train_box'] = read_text_file(os.path.join(os.curdir, f))
elif f.endswith('.txt') and f.find('image') != -1:
files['train_image'] = read_text_file(
os.path.join(os.curdir, f))
elif f.endswith('.txt') and f.find('labels') == -1:
files['train'] = read_text_file(os.path.join(os.curdir, f))
assert (len(files['train']) == len(files['train_box']))
assert (len(files['train_box']) == len(files['train_image']))
assert (len(files['train_image']) == len(files['train']))
images = {}
for i, row in enumerate(files['train_image']):
if row != '\n':
image_name = row.split('\t')[-1]
images.setdefault(image_name.replace('\n', ''), []).append(i)
words, bboxes, ner_tags, image_path = [], [], [], []
for image, rows in images.items():
words.append([row.split('\t')[0].replace('\n', '')
for row in files['train'][rows[0]:rows[-1] + 1]])
ner_tags.append([row.split('\t')[1].replace('\n', '')
for row in files['train'][rows[0]:rows[-1] + 1]])
bboxes.append([box.split('\t')[1].replace('\n', '')
for box in files['train_box'][rows[0]:rows[-1] + 1]])
if zip_dir_name:
image_path.append(f"/content/data/{zip_dir_name}\\{image}")
else:
image_path.append(f"/content/data/{image}")
labels = list(set([tag for doc_tag in ner_tags for tag in doc_tag]))
id2label = {v: k for v, k in enumerate(labels)}
label2id = {k: v for v, k in enumerate(labels)}
def gen(words, bboxes, ner_tags, image_path):
for i, (w, doc, ner_tag, path) in enumerate(zip(words, bboxes, ner_tags, image_path)):
dataset_dict = {
'id': i,
'tokens': w,
'bboxes': [list(map(int, bbox.split())) for bbox in doc],
'ner_tags': [label2id[tag] for tag in ner_tag],
'image': Image.open(path).convert('RGB')
}
yield dataset_dict
# dataset_dict = {
# 'id': range(len(words)),
# 'tokens': words,
# 'bboxes': [[list(map(int, bbox.split())) for bbox in doc] for doc in bboxes],
# 'ner_tags': [[label2id[tag] for tag in ner_tag] for ner_tag in ner_tags],
# 'image': [path for path in image_path]
# }
# raw features
features = Features({
'id': Value(dtype='string', id=None),
'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
'bboxes': Sequence(feature=Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), length=-1,
id=None),
'ner_tags': Sequence(feature=ClassLabel(num_classes=len(labels), names=labels, names_file=None, id=None),
length=-1, id=None),
'image': Img(decode=True, id=None)
})
def divide_chunks(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
n = 50
words_chunks = list(divide_chunks(words, n))
bboxes_chunks = list(divide_chunks(bboxes, n))
ner_tags_chunks = list(divide_chunks(ner_tags, n))
image_path_chunks = list(divide_chunks(image_path, n))
full_data_set = None
for index in range((int(len(words) / n))+1):
dataset = Dataset.from_generator(gen, gen_kwargs={"words": words_chunks[index], "bboxes": bboxes_chunks[index],
"ner_tags": ner_tags_chunks[index],
"image_path": image_path_chunks[index]}, features=features)
dataset = dataset.filter(filter_out_unannotated)
if full_data_set is None:
full_data_set = dataset
else:
full_data_set = concatenate_datasets([full_data_set, dataset])
dataset = full_data_set.train_test_split(test_size=TEST_SIZE)
processor = AutoProcessor.from_pretrained(
"microsoft/layoutlmv3-large", apply_ocr=False)
features = dataset["train"].features
column_names = dataset["train"].column_names
image_column_name = "image"
text_column_name = "tokens"
boxes_column_name = "bboxes"
label_column_name = "ner_tags"
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
# def get_label_list(labels):
# unique_labels = set()
# for label in labels:
# unique_labels = unique_labels | set(label)
# label_list = list(unique_labels)
# label_list.sort()
# return label_list
# if isinstance(features[label_column_name].feature, ClassLabel):
# label_list = features[label_column_name].feature.names
# # No need to convert the labels since they are already ints.
# id2label = {k: v for k, v in enumerate(label_list)}
# label2id = {v: k for k, v in enumerate(label_list)}
# else:
# label_list = get_label_list(dataset["train"][label_column_name])
# id2label = {k: v for k, v in enumerate(label_list)}
# label2id = {v: k for k, v in enumerate(label_list)}
# num_labels = len(label_list)
# we need to define custom features for `set_format` (used later on) to work properly
features = Features({
'pixel_values': Array3D(dtype="float32", shape=(3, 224, 224)),
'input_ids': Sequence(feature=Value(dtype='int64')),
'attention_mask': Sequence(Value(dtype='int64')),
'bbox': Array2D(dtype="int64", shape=(512, 4)),
'labels': Sequence(ClassLabel(names=labels)),
})
train_dataset = dataset["train"].map(
prepare_examples,
batched=True,
remove_columns=column_names,
features=features,
)
val_dataset = dataset["test"].map(
prepare_examples,
batched=True,
remove_columns=column_names,
features=features,
)
train_dataset.set_format("torch")
if not OUTPUT_PATH.endswith('/'):
OUTPUT_PATH += '/'
train_dataset.save_to_disk(f'{OUTPUT_PATH}train_split')
val_dataset.save_to_disk(f'{OUTPUT_PATH}eval_split')
dataset.save_to_disk(f'{OUTPUT_PATH}raw_data')