-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathLongestIncreasingPathInMatrix.java
52 lines (40 loc) · 1.76 KB
/
LongestIncreasingPathInMatrix.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
https://www.geeksforgeeks.org/longest-increasing-path-matrix/
Given a matrix of N rows and M columns. From m[i][j], we can move to m[i+1][j], if m[i+1][j] > m[i][j], or can move to m[i][j+1] if m[i][j+1] > m[i][j]. The task is print longest path length if we start from (0, 0).
Examples:
Input : N = 4, M = 4
m[][] = { { 1, 2, 3, 4 },
{ 2, 2, 3, 4 },
{ 3, 2, 3, 4 },
{ 4, 5, 6, 7 } };
Output : 7
Longest path is 1 2 3 4 5 6 7.
Input : N = 2, M =2
m[][] = { { 1, 2 },
{ 3, 4 } };
Output :3
Longest path is either 1 2 4 or
1 3 4.
*/
//RECURSION USING MEMOIZATION - DYNAMIC PROGRAMMING
public int longestPathLength(int dp[][], int mat[][], int n, int m, int row, int col){
if(dp[row][col]==0){
//if the current call has been made, it means this cell is valid and should be considered in the sequence
//The current cell is valid, but it might not be possible to move right/down so store the minimum result
int result = 1;
//if we can go down in the matrix and if that cell satisfies the property - explore
if(row+1<n && mat[row][col] < mat[row+1][col])
result = 1 + longestPathLength(dp, mat, n, m, row+1, col);
//if we can go right in the matrix and if that cell satisfies the property - explore
if(col+1<n && mat[row][col] < mat[row][col+1])
result = Math.max(result, 1 + longestPathLength(dp, mat, n, m, row, col+1) );
//NOTE - A CALL IS MADE ONLY WHEN THE NEXT CELL(RIGHT/BOTTOM) SATISFIES THE PROPERTY ==>
//EACH CALL INDICATES A VALID CELL
dp[row][col] = result;
}
return dp[row][col];
}
/*
Time Complexity - O(n*m)
Number of subproblems - n*m
*/