-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmooth_periodic_wave.py
42 lines (33 loc) · 1.25 KB
/
smooth_periodic_wave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#! /usr/bin/env python3
# -*- encoding: utf-8 -*-
# SPDX-License-Identifier: MIT
# Copyright (c) 2021 ETH Zurich, Luc Grosheintz-Laval
import numpy as np
from gaussian_bump import EquilibriumExperiment
from gaussian_bump import EquilibriumConvergenceRates
from boundary_conditions import Periodic
from euler import LinearGravity
from time_keeper import PlotLast, PlotNever, PlotEveryNthStep
from runge_kutta import *
from quadrature import GaussLegendre
class SmoothWaveIC():
def __init__(self, model, equilibrium=None):
self.model = model
self.x_ref = 0.0
self.rho_ref = 1.0
self.p_ref = 1.0
self.T_ref = self.model.temperature(p=self.p_ref, rho=self.rho_ref)
E_int_ref = model.internal_energy(p=self.p_ref)
self.u_ref = np.array([self.rho_ref, 0.0, 0.0, E_int_ref])
def __call__(self, grid):
cell_averages = GaussLegendre(10)
return self.back_ground(grid) + cell_averages(self.delta, grid)
def back_ground(self, grid):
x = grid.cell_centers[:,0]
u = np.empty_like((4,) + x.shape)
u[:,:] = self.u_ref[:,np.newaxis]
return u
def delta(self, x):
du = np.zeros_like((4,) + x)
du[3,...] = amplitude*np.sin(2.0*np.pi*x)
return du