-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
63 lines (49 loc) · 1.75 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
from tqdm import tqdm
import evaluate_screamClf
def different_data_size():
screamGlobals= evaluate_screamClf.global_For_Clf()
for size in tqdm([150,200,250,300,350,400]):
screamGlobals.try_lower_amount = size
evaluate_screamClf.experiment_data_size(screamGlobals)
def different_model():
# screamGlobals= evaluate_screamClf.global_For_Clf()
for size in tqdm([50,100,150,200,250,300,350,400]):
screamGlobals.try_lower_amount = size
# evaluate_screamClf.experiment_data_size(screamGlobals)
evaluate_screamClf.experiment_data_size()
"""
import json
from pathlib import Path
from keras.models import model_from_json
def pretty(d, indent=0):
for key, value in d.items():
print('\t' * indent + str(key))
if isinstance(value, dict):
pretty(value, indent+1)
else:
print('\t' * (indent+1) + str(value))
if __name__ == '__main__':
# screamGlobals = evaluate_screamClf.global_For_Clf()
# different_data_size()
# different_model()
# model reconstruction from JSON:
path = Path('models')
current_model_path = path / "scream_model.json"
with open(current_model_path) as file:
model_data = json.load(file)
model = model_from_json(model_data)
model.summary()
print(len(model.layers))
# print(model.get_layer(index=1))
config = model.get_config()
print(config['name'])
# pretty(config, indent=0)
"""
for key, val in config.items():
print
key, "=>", val
"""
print("layers: ")
for layer_num in range(0,len(model.layers)):
print(model.get_layer(index=layer_num))