-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmbedder.py
77 lines (51 loc) · 1.92 KB
/
Embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
'''
Task:
-load Datasets
-create feature vectors
-exportr features in a .csv
'''
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
import pandas as pd
from mordred import Calculator, descriptors
import h5py
#################################################################
Dataset = 'Ames'
if Dataset == 'Ames':
df_data = pd.read_csv("/home/student/j_spie17/Hackathon/AMES_dataset.csv")
elif Dataset == 'halflife':
df_data = pd.read_csv("/home/student/j_spie17/Hackathon/halflife_dataset.csv")
elif Dataset == 'HERG':
df_data = pd.read_csv("HERG_dataset_final.csv")
#################################################################
#################################################################
#create fingerprints
fingerprint = 'ECFP'
def ECFP(mols,radius=2,bits=2048):
ECFPS_vector = [AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048) for mol in mols]
ECFPS_list = [list(map(int, DataStructs.BitVectToText(fp))) for fp in ECFPS_vector]
return ECFPS_list
def Mordred(mols):
calc = Calculator(descriptors, ignore_3D=True)
df_mordred = calc.pandas(mols)
return df_mordred
##############################################################
mols = [Chem.MolFromSmiles(smi) for smi in df_data['Drug'].tolist()]
if fingerprint == 'Mordred':
calc = Calculator(descriptors, ignore_3D=False)
df_mor = calc.pandas(mols)
if fingerprint == 'ECFP':
fp = ECFP(mols)
df_fp = pd.DataFrame({
'Drug_ID': df_data['Drug_ID'].tolist(),
'Smile': df_data['Drug'].tolist(),
f'fingerprint_{fingerprint}': fp,
'Y': df_data['Y'].tolist()
})
#############################################################
#Export Data
df_fp.to_csv(f'/home/student/j_spie17/Hackathon/Fingerprints/{Dataset}_{fingerprint}.csv', index=False)
#export the fingerprints in bit in hdf5 format
df_fp.to_hdf(f'{Dataset}_{fingerprint}.h5', key='df_mordred', mode='w')
print('done')