-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgaussianeleminationplot.py
77 lines (62 loc) · 2.06 KB
/
gaussianeleminationplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from copy import deepcopy
from io import BytesIO
from PIL import Image
import random
# This algorithms is from Rosetta Code.
# I didn't had time to implement my own.
# It's trivial.
SNAP = []
def gauss(A):
n = len(A)
for i in range(0, n):
# Search for maximum in this column
maxEl = abs(A[i][i])
maxRow = i
for k in range(i+1, n):
if abs(A[k][i]) > maxEl:
maxEl = abs(A[k][i])
maxRow = k
# Swap maximum row with current row (column by column)
for k in range(i, n+1):
tmp = A[maxRow][k]
A[maxRow][k] = A[i][k]
A[i][k] = tmp
SNAP.append(deepcopy(A))
# Make all rows below this one 0 in current column
for k in range(i+1, n):
c = -A[k][i]/A[i][i]
for j in range(i, n+1):
if i == j:
A[k][j] = 0
else:
A[k][j] += c * A[i][j]
SNAP.append(deepcopy(A))
# Solve equation Ax=b for an upper triangular matrix A
x = [0 for i in range(n)]
for i in range(n-1, -1, -1):
x[i] = A[i][n]/A[i][i]
for k in range(i-1, -1, -1):
A[k][n] -= A[k][i] * x[i]
SNAP.append(deepcopy(A))
return x
if __name__ == "__main__":
A = [[1.,-1.,1.,-1., 14],
[1.,0.,0.,0., 4],
[1.,1.,1.,1., 2],
[1.,2.,4.,8., 2]]
A = np.random.randint(-100,100, size=(30,31))
A = A.tolist()
print( gauss(A) )
buffer = BytesIO()
imgs = []
for i in range(len(SNAP)):
plt.matshow(SNAP[i])
plt.savefig(buffer)
buffer.seek(0)
imgs.append(deepcopy(buffer))
plt.close()
imgs = [Image.open(i) for i in imgs]
imgs[0].save(str(random.randint(1,100000))+".gif", save_all=True, append_images=imgs, duration=100, loop=0)