-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_script.py
632 lines (556 loc) · 28 KB
/
run_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# -*- coding:utf-8 -*-
import argparse
import glob
import logging
import os
import random
import copy
import math
import json
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
import sys
import pickle as pkl
from transformers import (
WEIGHTS_NAME,
AdamW,
RobertaConfig,
RobertaForTokenClassification,
RobertaTokenizer,
get_linear_schedule_with_warmup,
)
from models.modeling_roberta import RobertaForTokenClassification_Modified
from utils.data_utils import load_and_cache_examples, get_labels
from utils.model_utils import mask_tokens, soft_frequency, opt_grad, get_hard_label, _update_mean_model_variables
from utils.eval import evaluate
from utils.config import config
from utils.loss_utils import NegEntropy
logger = logging.getLogger(__name__)
MODEL_NAMES = {
"student1":"Roberta",
"student2":"DistilRoberta",
"teacher1":"Roberta",
"teacher2":"DistilRoberta"
}
MODEL_CLASSES = {
"student1": (RobertaConfig, RobertaForTokenClassification_Modified, RobertaTokenizer),
"student2": (RobertaConfig, RobertaForTokenClassification_Modified, RobertaTokenizer),
}
LOSS_WEIGHTS = {
"pseudo": 1.0,
"self": 0.5,
"mutual": 0.3,
"mean": 0.2,
}
torch.set_printoptions(profile="full")
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def initialize(args, t_total, num_labels, epoch):
config_class, model_class, _ = MODEL_CLASSES["student1"]
config_s1 = config_class.from_pretrained(
args.student1_config_name if args.student1_config_name else args.student1_model_name_or_path,
num_labels=num_labels,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_s1 = model_class.from_pretrained(
args.student1_model_name_or_path,
from_tf=bool(".ckpt" in args.student1_model_name_or_path),
config=config_s1,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_s1.to(args.device)
config_class, model_class, _ = MODEL_CLASSES["student2"]
config_s2 = config_class.from_pretrained(
args.student2_config_name if args.student2_config_name else args.student2_model_name_or_path,
num_labels=num_labels,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_s2 = model_class.from_pretrained(
args.student2_model_name_or_path,
from_tf=bool(".ckpt" in args.student2_model_name_or_path),
config=config_s2,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_s2.to(args.device)
config_class, model_class, _ = MODEL_CLASSES["student1"]
config_t1 = config_class.from_pretrained(
args.student1_config_name if args.student1_config_name else args.student1_model_name_or_path,
num_labels=num_labels,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_t1 = model_class.from_pretrained(
args.student1_model_name_or_path,
from_tf=bool(".ckpt" in args.student1_model_name_or_path),
config=config_t1,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_t1.to(args.device)
config_class, model_class, _ = MODEL_CLASSES["student2"]
config_t2 = config_class.from_pretrained(
args.student2_config_name if args.student2_config_name else args.student2_model_name_or_path,
num_labels=num_labels,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_t2 = model_class.from_pretrained(
args.student2_model_name_or_path,
from_tf=bool(".ckpt" in args.student2_model_name_or_path),
config=config_t2,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model_t2.to(args.device)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters_1 = [
{
"params": [p for n, p in model_s1.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model_s1.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer_s1 = AdamW(optimizer_grouped_parameters_1, lr=args.learning_rate, \
eps=args.adam_epsilon, betas=(args.adam_beta1,args.adam_beta2))
scheduler_s1 = get_linear_schedule_with_warmup(
optimizer_s1, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
optimizer_grouped_parameters_2 = [
{
"params": [p for n, p in model_s2.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model_s2.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer_s2 = AdamW(optimizer_grouped_parameters_2, lr=args.learning_rate, \
eps=args.adam_epsilon, betas=(args.adam_beta1,args.adam_beta2))
scheduler_s2 = get_linear_schedule_with_warmup(
optimizer_s2, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
[model_s1, model_s2, model_t1, model_t2], [optimizer_s1, optimizer_s2] = amp.initialize(
[model_s1, model_s2, model_t1, model_t2], [optimizer_s1, optimizer_s2], opt_level=args.fp16_opt_level)
# Multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
# model_t = torch.nn.DataParallel(model_t)
model_s1 = torch.nn.DataParallel(model_s1)
model_s2 = torch.nn.DataParallel(model_s2)
model_t1 = torch.nn.DataParallel(model_t1)
model_t2 = torch.nn.DataParallel(model_t2)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model_s1 = torch.nn.parallel.DistributedDataParallel(
model_s1, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
model_s2 = torch.nn.parallel.DistributedDataParallel(
model_s2, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
model_t1 = torch.nn.parallel.DistributedDataParallel(
model_t1, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
model_t2 = torch.nn.parallel.DistributedDataParallel(
model_t2, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
model_s1.zero_grad()
model_s2.zero_grad()
model_t1.zero_grad()
model_t2.zero_grad()
for param in model_t1.parameters():
param.detach_()
for param in model_t2.parameters():
param.detach_()
return model_s1, model_s2, model_t1, model_t2, optimizer_s1, scheduler_s1, optimizer_s2, scheduler_s2
def validation(args, model, tokenizer, labels, pad_token_label_id, best_dev, best_test,
global_step, t_total, epoch, tors):
model_type = MODEL_NAMES[tors].lower()
results, _, best_dev, is_updated1 = evaluate(args, model, tokenizer, labels, pad_token_label_id, best_dev, mode="dev", \
logger=logger, prefix='dev [Step {}/{} | Epoch {}/{}]'.format(global_step, t_total, epoch, args.num_train_epochs), verbose=False)
results, _, best_test, is_updated2 = evaluate(args, model, tokenizer, labels, pad_token_label_id, best_test, mode="test", \
logger=logger, prefix='test [Step {}/{} | Epoch {}/{}]'.format(global_step, t_total, epoch, args.num_train_epochs), verbose=False)
# output_dirs = []
if args.local_rank in [-1, 0] and is_updated1:
# updated_self_training_teacher = True
path = os.path.join(args.output_dir+tors, "checkpoint-best-1")
logger.info("Saving model checkpoint to %s", path)
if not os.path.exists(path):
os.makedirs(path)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(path)
tokenizer.save_pretrained(path)
# output_dirs = []
if args.local_rank in [-1, 0] and is_updated2:
# updated_self_training_teacher = True
path = os.path.join(args.output_dir+tors, "checkpoint-best-2")
logger.info("Saving model checkpoint to %s", path)
if not os.path.exists(path):
os.makedirs(path)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(path)
tokenizer.save_pretrained(path)
return best_dev, best_test, is_updated1
def random_sampler(args, label_, prob=None):
# label: batch, seq_len
label = copy.deepcopy(label_)
mask = (label==0)
non_entity = label[mask]
size = non_entity.size(0)
if prob is not None:
prob_ = copy.deepcopy(prob)
softmax = torch.nn.Softmax(dim=-1)
prob_ = softmax(prob_)
prob_ = prob_[mask].max(dim=-1)[0]
prob_ = 1-prob_
else:
prob_ = torch.rand(size).to(args.device)
num_samples = int(0.2*size)
if num_samples <= 0:
return label!=-100
# print(prob_)
select_ids = torch.multinomial(prob_, num_samples)
non_entity[select_ids] = -100
label[label==0] = non_entity
label_mask = (label!=-100)
return label_mask
def initial_mask(args, batch):
if args.dataset in []:
return None, None
else:
label_mask1 = random_sampler(args, batch, prob=None)
label_mask2 = random_sampler(args, batch, prob=None)
return label_mask1, label_mask2
def get_teacher(args, model_t1, model_t2, t_model1, t_model2, dev_is_updated1, dev_is_updated2, batch=True):
if args.dataset in ["conll03", "wikigold"] and batch:
if dev_is_updated1:
t_model1 = copy.deepcopy(model_t1)
if dev_is_updated2:
t_model2 = copy.deepcopy(model_t2)
else:
t_model1 = copy.deepcopy(model_t1)
t_model2 = copy.deepcopy(model_t2)
return t_model1, t_model2
def train(args, train_dataset, tokenizer, labels, pad_token_label_id):
""" Train the model """
num_labels = len(labels)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank==-1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
# train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps//(len(train_dataloader)//args.gradient_accumulation_steps)+1
else:
t_total = len(train_dataloader)//args.gradient_accumulation_steps*args.num_train_epochs
model_s1, model_s2, model_t1, model_t2, optimizer_s1, scheduler_s1, optimizer_s2, scheduler_s2 = initialize(args, t_total, num_labels, 0)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
tr_loss, logging_loss = 0.0, 0.0
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
set_seed(args) # Added here for reproductibility
s1_best_dev, s1_best_test = [0, 0, 0], [0, 0, 0]
s2_best_dev, s2_best_test = [0, 0, 0], [0, 0, 0]
t1_best_dev, t1_best_test = [0, 0, 0], [0, 0, 0]
t2_best_dev, t2_best_test = [0, 0, 0], [0, 0, 0]
self_learning_teacher_model1 = model_s1
self_learning_teacher_model2 = model_s2
softmax = torch.nn.Softmax(dim=1)
t_model1 = copy.deepcopy(model_s1)
t_model2 = copy.deepcopy(model_s2)
loss_regular = NegEntropy()
begin_global_step = len(train_dataloader)*args.begin_epoch//args.gradient_accumulation_steps
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model_s1.train()
model_s2.train()
model_t1.train()
model_t2.train()
batch = tuple(t.to(args.device) for t in batch)
if epoch >= args.begin_epoch:
delta = global_step-begin_global_step
if delta//args.self_learning_period > 0:
if delta%args.self_learning_period == 0:
self_learning_teacher_model1 = copy.deepcopy(t_model1)
self_learning_teacher_model1.eval()
self_learning_teacher_model2 = copy.deepcopy(t_model2)
self_learning_teacher_model2.eval()
inputs = {"input_ids": batch[0], "attention_mask": batch[1]}
with torch.no_grad():
outputs1 = self_learning_teacher_model1(**inputs)
outputs2 = self_learning_teacher_model2(**inputs)
pseudo_labels1 = torch.argmax(outputs2[0], axis=2)
pseudo_labels2 = torch.argmax(outputs1[0], axis=2)
else:
pseudo_labels1 = batch[3]
pseudo_labels2 = batch[3]
# model1 = copy.deepcopy(model_s1)
# model1.eval()
# model2 = copy.deepcopy(model_s2)
# model2.eval()
# inputs = {"input_ids": batch[0], "attention_mask": batch[1]}
# with torch.no_grad():
# outputs1 = model1(**inputs)
# outputs2 = model2(**inputs)
# pseudo_labels1 = torch.argmax(outputs1[0], axis=2)
# pseudo_labels2 = torch.argmax(outputs2[0], axis=2)
inputs = {"input_ids": batch[0], "attention_mask": batch[1]}
with torch.no_grad():
outputs1 = t_model1(**inputs)
outputs2 = t_model2(**inputs)
logits1 = outputs1[0]
logits2 = outputs2[0]
pred_labels1 = torch.argmax(logits1, dim=-1)
pred_labels2 = torch.argmax(logits2, dim=-1)
label_mask1 = (pred_labels1==pseudo_labels1)
label_mask2 = (pred_labels2==pseudo_labels2)
logits1 = soft_frequency(logits=logits1, power=2)
logits2 = soft_frequency(logits=logits2, power=2)
if args.self_learning_label_mode == "hard":
pred_labels1, label_mask1_ = mask_tokens(args, batch[3], pred_labels1, pad_token_label_id, pred_logits=logits1)
pred_labels2, label_mask2_ = mask_tokens(args, batch[3], pred_labels2, pad_token_label_id, pred_logits=logits2)
elif args.self_learning_label_mode == "soft":
# pred_labels1 = soft_frequency(logits=logits1, power=2)
# pred_labels2 = soft_frequency(logits=logits2, power=2)
# print("pred_labels1")
# print(pred_labels1)
pred_labels1, label_mask1_ = mask_tokens(args, batch[3], logits1, pad_token_label_id)
pred_labels2, label_mask2_ = mask_tokens(args, batch[3], logits2, pad_token_label_id)
# print("label_mask1_")
# print(label_mask1_)
if label_mask1_ is not None:
label_mask1 = label_mask1&label_mask1_
# label_mask1_ = random_sampler(args, pseudo_labels1, prob=logits1)
# label_mask1 = label_mask1&label_mask1_
# print("label_mask1")
# print(label_mask1)
if label_mask2_ is not None:
label_mask2 = label_mask2&label_mask2_
# label_mask2_ = random_sampler(args, pseudo_labels2, prob=logits2)
# label_mask2 = label_mask2&label_mask2_
else:
# label_mask1 = random_sampler(args, batch[3], prob=None)
# print(batch[3])
# print("label_mask1")
# print(label_mask1)
# label_mask1 = None
pred_labels1 = batch[3]
# label_mask2 = random_sampler(args, batch[3], prob=None)
# print("label_mask2")
# print(label_mask2)
# exit()
# label_mask2 = None
pred_labels2 = batch[3]
pseudo_labels1 = batch[3]
pseudo_labels2 = batch[3]
label_mask1, label_mask2 = initial_mask(args, batch[3])
inputs1 = {"input_ids": batch[0], "attention_mask": batch[1], "labels": {"pseudo": pred_labels1}, "label_mask": label_mask1}
outputs1 = model_s1(**inputs1)
inputs2 = {"input_ids": batch[0], "attention_mask": batch[1], "labels": {"pseudo": pred_labels2}, "label_mask": label_mask2}
outputs2 = model_s2(**inputs2)
loss1 = 0.0
loss_dict1 = outputs1[0]
keys = loss_dict1.keys()
for key in keys:
loss1 += LOSS_WEIGHTS[key]*loss_dict1[key]
# if epoch < args.begin_epoch:
# loss1 += loss_regular(outputs1[1].view(-1, num_labels))
loss2 = 0.0
loss_dict2 = outputs2[0]
keys = loss_dict2.keys()
for key in keys:
loss2 += LOSS_WEIGHTS[key]*loss_dict2[key]
# if epoch < args.begin_epoch:
# loss2 += loss_regular(outputs2[1].view(-1, num_labels))
if args.n_gpu > 1:
loss1 = loss1.mean() # mean() to average on multi-gpu parallel training
loss2 = loss2.mean()
if args.gradient_accumulation_steps > 1:
loss1 = loss1/args.gradient_accumulation_steps
loss2 = loss2/args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss1, optimizer_s1) as scaled_loss1:
scaled_loss1.backward()
with amp.scale_loss(loss2, optimizer_s2) as scaled_loss2:
scaled_loss2.backward()
else:
loss1.backward()
loss2.backward()
tr_loss += loss1.item()+loss2.item()
if (step+1)%args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer_s1), args.max_grad_norm)
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer_s2), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model_s1.parameters(), args.max_grad_norm)
torch.nn.utils.clip_grad_norm_(model_s2.parameters(), args.max_grad_norm)
optimizer_s1.step()
scheduler_s1.step() # Update learning rate schedule
optimizer_s2.step()
scheduler_s2.step() # Update learning rate schedule
model_s1.zero_grad()
model_s2.zero_grad()
global_step += 1
_update_mean_model_variables(model_s1, model_t1, args.mean_alpha, global_step)
_update_mean_model_variables(model_s2, model_t2, args.mean_alpha, global_step)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step%args.logging_steps == 0:
# Log metrics
if args.evaluate_during_training:
logger.info("***** Student1 combined Entropy loss : %.4f *****", loss1.item())
logger.info("##### Student1 #####")
s1_best_dev, s1_best_test, _ = validation(args, model_s1, tokenizer, labels, pad_token_label_id, \
s1_best_dev, s1_best_test, global_step, t_total, epoch, "student1")
logger.info("##### Teacher1 #####")
t1_best_dev, t1_best_test, dev_is_updated1 = validation(args, model_t1, tokenizer, labels, pad_token_label_id, \
t1_best_dev, t1_best_test, global_step, t_total, epoch, "teacher1")
logger.info("***** Student2 combined Entropy loss : %.4f *****", loss2.item())
logger.info("##### Student2 #####")
s2_best_dev, s2_best_test, _ = validation(args, model_s2, tokenizer, labels, pad_token_label_id, \
s2_best_dev, s2_best_test, global_step, t_total, epoch, "student2")
logger.info("##### Teacher2 #####")
t2_best_dev, t2_best_test, dev_is_updated2 = validation(args, model_t2, tokenizer, labels, pad_token_label_id, \
t2_best_dev, t2_best_test, global_step, t_total, epoch, "teacher2")
t_model1, t_model2 = get_teacher(args, model_t1, model_t2, t_model1, t_model2, dev_is_updated1, dev_is_updated2)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
logger.info("***** Epoch : %d *****", epoch)
logger.info("##### Student1 #####")
s1_best_dev, s1_best_test, _ = validation(args, model_s1, tokenizer, labels, pad_token_label_id, \
s1_best_dev, s1_best_test, global_step, t_total, epoch, "student1")
logger.info("##### Teacher1 #####")
t1_best_dev, t1_best_test, dev_is_updated1 = validation(args, model_t1, tokenizer, labels, pad_token_label_id, \
t1_best_dev, t1_best_test, global_step, t_total, epoch, "teacher1")
logger.info("##### Student2 #####")
s2_best_dev, s2_best_test, _ = validation(args, model_s2, tokenizer, labels, pad_token_label_id, \
s2_best_dev, s2_best_test, global_step, t_total, epoch, "student2")
logger.info("##### Teacher2 #####")
t2_best_dev, t2_best_test, dev_is_updated2 = validation(args, model_t2, tokenizer, labels, pad_token_label_id, \
t2_best_dev, t2_best_test, global_step, t_total, epoch, "teacher2")
t_model1, t_model2 = get_teacher(args, model_t1, model_t2, t_model1, t_model2, dev_is_updated1, dev_is_updated2, True)
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
results = (t1_best_dev, t1_best_test, t2_best_dev, t2_best_test)
return global_step, tr_loss/global_step, results
def main():
args = config()
# args.do_train = args.do_train.lower()
# args.do_test = args.do_test.lower()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(name)s - %(message)s", "%m/%d/%Y %H:%M:%S")
logging_fh = logging.FileHandler(os.path.join(args.output_dir, 'log.txt'))
logging_fh.setLevel(logging.DEBUG)
logging_fh.setFormatter(formatter)
logger.addHandler(logging_fh)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
labels = get_labels(args.data_dir, args.dataset)
num_labels = len(labels)
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
pad_token_label_id = CrossEntropyLoss().ignore_index
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
tokenizer = RobertaTokenizer.from_pretrained(
args.tokenizer_name,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train")
global_step, tr_loss, best_results = train(args, train_dataset, tokenizer, labels, pad_token_label_id)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# def predict(args, tors, labels, pad_token_label_id, best_test):
# path = os.path.join(args.output_dir+tors, "checkpoint-best-2")
# tokenizer = RobertaTokenizer.from_pretrained(path, do_lower_case=args.do_lower_case)
# model = RobertaForTokenClassification_Modified.from_pretrained(path)
# model.to(args.device)
# # if not best_test:
# # result, predictions, _, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, best=best_test, mode="test")
# result, _, best_test, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, best_test, mode="test", \
# logger=logger, verbose=False)
# # Save results
# output_test_results_file = os.path.join(args.output_dir, "test_results.txt")
# with open(output_test_results_file, "w") as writer:
# for key in sorted(result.keys()):
# writer.write("{} = {}\n".format(key, str(result[key])))
# return best_test
# # Save predictions
# # output_test_predictions_file = os.path.join(args.output_dir, "test_predictions.txt")
# # with open(output_test_predictions_file, "w") as writer:
# # with open(os.path.join(args.data_dir, args.dataset+"_test.json"), "r") as f:
# # example_id = 0
# # data = json.load(f)
# # for item in data: # original tag_ro_id must be {XXX:0, xxx:1, ...}
# # tags = item["tags"]
# # golden_labels = [labels[tag] for tag in tags]
# # output_line = str(item["str_words"]) + "\n" + str(golden_labels)+"\n"+str(predictions[example_id]) + "\n"
# # writer.write(output_line)
# # example_id += 1
if __name__ == "__main__":
main()