Skip to content

Commit 333d6fa

Browse files
committed
determinant polishing
1 parent 0bb718e commit 333d6fa

File tree

3 files changed

+182
-141
lines changed

3 files changed

+182
-141
lines changed

ADictML_English.pdf

1.76 KB
Binary file not shown.

ADictML_Glossary_English.tex

Lines changed: 53 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -2,29 +2,61 @@
22

33
\newglossaryentry{inverse}
44
{name={inverse matrix},
5-
description={The\index{inverse matrix} inverse $\mA^{-1}$ of a square matrix $\mA \in \mathbb{R}^{n \times n}$
6-
(if it exists, then $\mA$ is called invertible) is defined by $\mA \mA^{-1} = \mA^{-1} \mA = \mI$, where $\mI$
7-
is the identity matrix. A matrix is invertible if and only if its \gls{det} is non-zero. Inverse matrices are used in
8-
solving systems of linear equations and in closed-form solutions of \gls{linreg}.
9-
Note that for non-square matrices, one may define one-sided inverses: a left inverse $\mB$ s
10-
atisfies $\mB\mA = \mI$ and a right inverse $\mC$ satisfies $\mA\mC = \mI$.\\
5+
description={Consider a sqaure matrix $\mA \in \mathbb{R}^{n \times n}$ which has full rank, i.e.,
6+
its columns are linearly indepedent. It is then invertible, i.e., there is an\index{inverse matrix} inverse matrix
7+
$\mA^{-1}$ such that $\mA \mA^{-1} = \mA^{-1} \mA = \mI$. A matrix is invertible if and only
8+
if its \gls{det} is non-zero. Inverse matrices are used in solving systems of linear equations
9+
and in closed-form solutions of \gls{linreg}. The concept of an inverse matrix can be generalized
10+
to non-invertible and even non-square matrices. Indeed, one may define a left inverse $\mB$ by
11+
requiring $\mB\mA = \mI$ or a right inverse $\mC$ that satisfies $\mA\mC = \mI$.\\
1112
See also: \gls{det}, \gls{linreg}.},
1213
first={inverse matrix},
1314
text={inverse matrix}
1415
}
1516

1617
\newglossaryentry{det}
1718
{name={determinant},
18-
description={The\index{determinant} \emph{determinant} $\det(\mA)$ of a square matrix
19+
description={The\index{determinant} determinant $\det(\mA)$ of a square matrix
1920
$\mA \in \mathbb{R}^{n \times n}$ is a scalar that characterizes how (the orientation of)
20-
volumes in $\mathbb{R}^n$ are altered by applying $\mA$. [Note that a matrix $\mA$ represents
21-
a linear transformation on $\mathbb{R}^{n}$.] In particular, $\det(\mA) > 0$ preserves
22-
orientation, $\det(\mA) < 0$ reverses orientation, and $\det(\mA) = 0$ collapses volume entirely,
23-
indicating that $\mA$ is non-invertible. Formally, $\det(\mA) = 0$ if and only if $\mA$ is non-invertible.
21+
volumes in $\mathbb{R}^n$ are altered by applying $\mA$ \cite{GolubVanLoanBook,Strang2007}.
22+
[Note that a matrix $\mA$ represents a linear transformation on $\mathbb{R}^{n}$.]
23+
In particular, $\det(\mA) > 0$ preserves orientation, $\det(\mA) < 0$ reverses orientation,
24+
and $\det(\mA) = 0$ collapses volume entirely, indicating that $\mA$ is non-invertible.
2425
The determinant also satisfies $\det(\mA \mB) = \det(\mA) \cdot \det(\mB)$, and if $\mA$ is
25-
diagonalizable with eigenvalues $\eigval{1}, \ldots, \eigval{n}$, then $\det(\mA) = \prod_{i=1}^{n} \eigval{i}$ \cite{HornMatAnalysis}.
26-
Geometrically, for the special cases $n=2$ (2D) and $n=3$ (3D), the determinant corresponds
27-
to the signed area or volume spanned by the column vectors of $\mA$.
26+
diagonalizable with \glspl{eigenvalue} $\eigval{1}, \ldots, \eigval{n}$, then $\det(\mA) = \prod_{i=1}^{n} \eigval{i}$ \cite{HornMatAnalysis}.
27+
For the special cases $n=2$ (2D) and $n=3$ (3D), the determinant can be interpreted as an oriented
28+
area or volume spanned by the column vectors of $\mA$.
29+
\begin{figure}
30+
\begin{center}
31+
\begin{tikzpicture}[x=2cm]
32+
% LEFT: Standard basis vectors and unit square
33+
\begin{scope}
34+
\draw[->, thick] (0,0) -- (1,0) node[below right] {$\vx$};
35+
\draw[->, thick] (0,0) -- (0,1) node[above left] {$\vy$};
36+
% \draw[fill=gray!15] (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
37+
%\node at (0.5,0.5) {\small unit square};
38+
%\node at (0.5,-0.6) {standard basis};
39+
\end{scope}
40+
% RIGHT: Transformed basis vectors and parallelogram
41+
\begin{scope}[shift={(2.8,0)}]
42+
\coordinate (A) at (1.5,0.5);
43+
\coordinate (B) at (-0.2,1.2);
44+
\draw[->, very thick, red] (0,0) -- (A) node[below right] {$\mA \vx$};
45+
\draw[->, very thick, red] (0,0) -- (B) node[above left] {$\mA \vy$};
46+
\draw[fill=red!20, opacity=0.6] (0,0) -- (A) -- ($(A)+(B)$) -- (B) -- cycle;
47+
\draw[dashed] (A) -- ($(A)+(B)$);
48+
\draw[dashed] (B) -- ($(A)+(B)$);
49+
\node at (0.8,0.6) {\small $\det(\mA)$};
50+
% Orientation arc
51+
\draw[->, thick, blue] (0.4,0.0) arc[start angle=0, end angle=35, radius=0.6];
52+
% \node[blue] at (0.25,1.25) {};
53+
% \node at (0.8,-0.6) {transformed basis};
54+
\end{scope}
55+
% Arrow between plots
56+
\draw[->, thick] (1.3,0.5) -- (2.4,0.5) node[midway, above] {$\mA$};
57+
\end{tikzpicture}
58+
\end{center}
59+
\end{figure}
2860
\\
2961
See also: \gls{eigenvalue}, \gls{inverse}.
3062
},
@@ -34,9 +66,14 @@
3466

3567
\newglossaryentry{linearmap}{
3668
name={linear map},
37-
description={A\index{linear map} linear map $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a function that satisfies additivity :
69+
description={A\index{linear map} linear map $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a \gls{function}
70+
that satisfies additivity :
3871
$f(\vx + \vy) = f(\vx) + f(\vy)$, and homogeneity :
39-
$f(c\vx) = c f(\vx)$ for all vectors $\vx, \vy \in \mathbb{R}^n$ and scalars $c \in \mathbb{R}$. In particular, $f(\mathbf{0}) = \mathbf{0}$. Any linear map can be represented as a matrix multiplication $f(\vx) = \mA \vx$ for some matrix $\mA \in \mathbb{R}^{m \times n}$. Linear maps are fundamental in \gls{linmodel}, \gls{linreg}, and \gls{pca}.\\
72+
$f(c\vx) = c f(\vx)$ for all vectors $\vx, \vy \in \mathbb{R}^n$ and scalars $c \in \mathbb{R}$.
73+
In particular, $f(\mathbf{0}) = \mathbf{0}$. Any linear map can be represented as a matrix
74+
multiplication $f(\vx) = \mA \vx$ for some matrix $\mA \in \mathbb{R}^{m \times n}$.
75+
The collection of real-valued linear maps for a given dimension $n$ constitute a \gls{linmodel}
76+
which is used in many \gls{ml} methods. \\
4077
See also: \gls{linmodel}, \gls{linreg}, \gls{pca}, \gls{featurevec}.},
4178
first={linear map},
4279
text={linear map}

0 commit comments

Comments
 (0)