Skip to content

Commit ee6db09

Browse files
committed
update
1 parent 80a3571 commit ee6db09

File tree

4 files changed

+63
-7
lines changed

4 files changed

+63
-7
lines changed

.DS_Store

0 Bytes
Binary file not shown.

ADictML_English.pdf

1.77 MB
Binary file not shown.

ADictML_English.tex

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -33,6 +33,7 @@
3333
\usepackage{microtype} % microtypography
3434
\usepackage{xcolor} % colors
3535
\usepackage{tikz}
36+
\usetikzlibrary{matrix,positioning}
3637
\usepackage{cite}
3738
\usepackage{IEEEtrantools}
3839
\usepackage{pgfkeys,pgfcalendar}

ADictML_Glossary_English.tex

Lines changed: 62 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -143,13 +143,68 @@
143143
}
144144

145145
\newglossaryentry{vfl}
146-
{name={vertical federated learning (VFL)},description=
147-
{VFL\index{vertical federated learning (VFL)} uses \gls{localdataset}s that are constituted
148-
by the same \gls{datapoint}s but characterizing them with different \gls{feature}s \cite{VFLChapter}.
149-
For example, different healthcare providers might all contain information
150-
about the same population of patients. However, different healthcare providers
151-
collect different measurements (e.g., blood values, electrocardiography, lung X-ray)
152-
for the same patients.},
146+
{name={vertical federated learning (VFL)},
147+
description={
148+
VFL\index{vertical federated learning (VFL)} refer to \gls{fl} applications where
149+
\gls{device}s have access to different \gls{feature}s of the same set of \gls{datapoint}s \cite{VFLChapter}.
150+
Formally, the underlying global \gls{dataset} is
151+
\[
152+
\dataset^{(\mathrm{global})} \defeq \left\{ \left(\featurevec^{(1)}, \truelabel^{(1)}\right), \ldots, \left(\featurevec^{(\samplesize)}, \truelabel^{(\samplesize)}\right) \right\}.
153+
\]
154+
We denote by $\featurevec^{(\sampleidx)} = \big( \feature^{(\sampleidx)}_{1}, \ldots, \feature^{(\sampleidx)}_{\nrfeatures'} \big)^{T}$, for $\sampleidx=1,\ldots,\samplesize$,
155+
the complete \gls{featurevec}s for the \gls{datapoint}s. Each \gls{device} $\nodeidx \in \nodes$
156+
observes only a subset $\mathcal{F}^{(\nodeidx)} \subseteq \{1,\ldots,\nrfeatures'\}$ of \gls{feature}s, resulting
157+
in a \gls{localdataset} $\localdataset{\nodeidx}$ with \gls{featurevec}s
158+
\[
159+
\featurevec^{(\nodeidx,\sampleidx)} = \big( \feature^{(\sampleidx)}_{\featureidx_{1}}, \ldots, \feature^{(\sampleidx)}_{\featureidx_{\nrfeatures}} \big)^{T}.
160+
\]
161+
Some of the \gls{device}s might also have access to the \gls{label}s $\truelabel^{(\sampleidx)}$, for $\sampleidx=1,\ldots,\samplesize$,
162+
of the global \gls{dataset}. One potential application of \gls{vfl} is to enable collaboration between
163+
different healthcare providers. Each provider collects distinct types of measurements—such as blood
164+
values, electrocardiography, and lung X-rays—for the same patients. Another application is a
165+
national social insurance system, where health records, financial indicators, consumer behaviour,
166+
and mobility \gls{data} are collected by different institutions. \gls{vfl} enables joint learning across
167+
these parties while allowing well-defined levels of \gls{privprot}.
168+
\begin{figure}[htbp]
169+
\begin{center}
170+
\begin{tikzpicture}[every node/.style={anchor=base}]
171+
% --- Coordinate definitions ---
172+
\def\colX{0}
173+
\def\colY{1.6}
174+
\def\colZ{3.2}
175+
\def\colD{4.8}
176+
\def\colLabel{6.4}
177+
\def\rowOne{0}
178+
\def\rowTwo{-1.2}
179+
\def\rowThree{-2.4}
180+
\def\rowFour{-3.6}
181+
% Manually place matrix entries
182+
\foreach \i/\label in {1/1, 2/2, 4/\samplesize} {
183+
\pgfmathsetmacro{\y}{-1.2*(\i-1)}
184+
\node (x\i1) at (0,\y) {$x^{(\label)}_{1}$};
185+
\node (x\i2) at (1.6,\y) {$x^{(\label)}_{2}$};
186+
\node (dots\i) at (3.2,\y) {$\cdots$};
187+
\node (x\i3) at (4.8,\y) {$x^{(\label)}_{\dimlocalmodel}$};
188+
\node (y\i) at (6.4,\y) {$\truelabel^{(\label)}$};
189+
}
190+
% Outer rectangle for the full dataset
191+
\draw[dashed, rounded corners, thick]
192+
(-0.6,0.6) rectangle (6.9,-4.2);
193+
\node at (3.1,0.9) {$\dataset^{(\mathrm{global})} $};
194+
% Rectangle for local dataset 1 (e.g., first two features)
195+
\draw[dashed, rounded corners, thick]
196+
(-0.9,0.9) rectangle (2.1,-4.0);
197+
\node at (0.25,1.0) {$\localdataset{1}$};
198+
% --- Local dataset k (columns 2–3, rows 1–3) ---
199+
\draw[dashed, rounded corners, thick]
200+
($( \colZ + 1,,0.9 )$) rectangle
201+
($( \colLabel + 0.4, -4.5)$);
202+
\node at ($( \colZ + 0.9,-5 )$) {$\localdataset{\nodeidx}$};
203+
\end{tikzpicture}
204+
\end{center}
205+
\caption{VFL uses \gls{localdataset}s that are derived from the \gls{datapoint}s of a common global \gls{dataset}.
206+
The \gls{localdataset}s differ in the choice of \gls{feature}s used to characterize the \gls{datapoint}s.\label{fig_vertical_FL}}
207+
\end{figure}},
153208
first={vertical federated learning (VFL)},text={VFL}
154209
}
155210

0 commit comments

Comments
 (0)