-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
105 lines (82 loc) · 3.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import random
import numpy as np
import torch
import gym
import realant_sim
from td3 import TD3
from sac import SAC
from redq import REDQ
def rollout(agent, env, train=False, random=False):
state = env.reset()
episode_step, episode_return = 0, 0
done = False
while not done:
if random:
action = env.action_space.sample()
else:
action = agent.act(state, train=train)
next_state, reward, done, info = env.step(action)
episode_return += reward
if train:
not_done = 1.0 if (episode_step+1) == env._max_episode_steps else float(not done)
agent.replay_buffer.append([state, action, [reward], next_state, [not_done]])
agent._timestep += 1
state = next_state
episode_step += 1
if train and not random:
for _ in range(episode_step*args.n_updates_mul):
agent.update_parameters()
return episode_return
def evaluate(agent, env, n_episodes=10):
returns = [rollout(agent, env, train=False, random=False) for _ in range(n_episodes)]
return np.mean(returns)
def train(agent, env, n_episodes=1000, n_random_episodes=10):
for episode in range(n_episodes):
train_return = rollout(agent, env, train=True, random=episode<n_random_episodes)
print(f'Episode {episode}. Return {train_return}')
if (episode+1) % 10 == 0:
eval_return = evaluate(agent, env)
print(f'Eval Reward {eval_return}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--agent", default="redq") # td3 or sac or redq
parser.add_argument("--env", default="mujoco") # mujoco or pybullet
parser.add_argument("--task", default="walk") # sleep or turn or walk
parser.add_argument("--seed", default=1, type=int)
parser.add_argument("--latency", default=2, type=int)
parser.add_argument("--xyz_noise_std", default=0.01, type=int)
parser.add_argument("--rpy_noise_std", default=0.01, type=int)
parser.add_argument("--min_obs_stack", default=4, type=int)
parser.add_argument("--n_updates_mul", default=8, type=int)
parser.add_argument("--critic_num_nets", default=4, type=int)
args = parser.parse_args()
if args.env == 'mujoco':
env = gym.make(
'RealAntMujoco-v0',
task=args.task,
latency=args.latency,
xyz_noise_std=args.xyz_noise_std,
rpy_noise_std=args.rpy_noise_std,
min_obs_stack=args.min_obs_stack,
)
elif args.env == 'pybullet':
env = gym.make('RealAntBullet-v0', task=args.task)
else:
raise Exception('Unknown env')
obs_size, act_size = env.observation_space.shape[0], env.action_space.shape[0]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
env.seed(args.seed)
env.action_space.seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.agent == 'td3':
agent = TD3(device, obs_size, act_size)
elif args.agent == 'sac':
agent = SAC(device, obs_size, act_size)
elif args.agent == 'redq':
agent = REDQ(device, obs_size, act_size, critic_num_nets=args.critic_num_nets)
else:
raise Exception('Unknown agent')
train(agent, env, n_episodes=200, n_random_episodes=10)