-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelling_analysis.Rmd
591 lines (533 loc) · 20.4 KB
/
modelling_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
---
title: 'Data Modelling and Analysis'
subtitle: 'Coursework: 2020/2021'
author: '20299113'
classoption: twoside
output:
pdf_document:
toc: no
fig_caption: yes
number_sections: true
html_notebook:
toc: no
toc_float:
collapsed: no
smooth_scroll: no
html_document:
df_print: paged
toc: yes
toc_depth: '2'
header-includes:
- \usepackage{graphicx}
- \usepackage{float}
- \usepackage{fancyhdr}
- \pagestyle{fancy}
- \fancyhead[CE,CO]{}
- \fancyhead[LE,LO]{\textit{20299113}}
- \fancyhead[RE,RO]{\nouppercase{\textit{\leftmark}}}
- \usepackage{xcolor}
- \usepackage{framed}
- \colorlet{shadecolor}{gray!10}
---
# 1. ANALYSIS AND PRE-PROCESSING
## 1. Explore the data
### 1. Provide a table for all the input features of the dataset including measures of centrality,
dispersion, and how many missing values each attribute has.
```{r}
# Read data
data = read.csv('cw_data.csv')
```
```{r}
# Load required packages
library("dplyr")
library("ggplot2")
library("gridExtra")
library("knitr")
library("cluster.datasets")
library("cluster")
library("e1071")
library("fpc")
library("xlsx")
```
```{r}
# Get feature column
features = select(data, -class)
# Get Mean, Median, Mode, standard deviation, interquartile range ,range, Missing value number
statistics_res = sapply(features, function(x) c(mean(x, na.rm=TRUE),
median(x, na.rm=TRUE),
names(which.max(table(x))),
sd(x, na.rm=TRUE),
IQR(x, na.rm=TRUE),
max(x, na.rm=TRUE)-min(x, na.rm=TRUE),
sum(is.na(x))))
# Transform to r dataframe to store
statistics_res_df = as.data.frame(statistics_res,
row.names = c("Mean", "Median", "Mode", "SD", "IQR", "Range", "Missing"))
statistics_res_df = as.data.frame(t(statistics_res_df))
# Save to Excel for report
#write.xlsx(statistics_res_df, "statistics_res.xls", sheetName = "statistics_res", append = TRUE)
statistics_res_df
```
### 2. Analyse the class variable using appropriate statistics and visualisations
The class variable is Nominal data.
Therefore, I chose bar plot to show the count of each object class.
The appropriate statistics should be mode. The appropriate statistics should be mode.
The most frequently class is GALAXY.
```{r}
names(which.max(table(data$class)))
# Count the number of each class
count_class = group_by(data, class) %>% count
ggplot(data = count_class, aes(x = class, y = n))+
geom_bar(stat = 'identity', width = 0.5)+
theme_light()+
ggtitle("Number of each object class")+
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 16))+
geom_text(aes(label = n, vjust = -0.4, hjust = 0.5))+
labs(x = "object class", y = "Number")
```
### 3. Produce histograms for each input attribute.
Firstly, I used par function to set grid for graphs as 3 rows and 4 columns in a page.
Then, I used sapply with hist function to draw all the graphs once.
```{r}
par(mfrow = c(3, 4))
sapply(names(features), function(columns)
hist(features[[columns]], main = paste("Histogram of" , columns), xlab = columns))
```
## 2. Explore the relationships between the attributes, and between the class and the attributes
### 1. Calculate the correlation and produce a scatterplot for the variables:r and g.
What does this correlation tell you about the relationships between these variables?
High positive correlation
```{r}
# Calculate pearson correlation, then plot
cor_value = cor(features$r, features$g, use="complete.obs")
plot(features$r, features$g, xlab="r", ylab="g",
main="correlation r vs g", sub = paste("correlation:", cor_value))
```
### 2. Calculate the correlation and produce a scatterplot for the variables:mjd and r.
What does thiscorrelation tell you about the relationships between these variables?
No correlation
```{r}
# Calculate pearson correlation, then plot
cor_value = cor(features$mjd, features$r, use="complete.obs")
plot(features$mjd, features$r, xlab="mjd", ylab="r",
main="correlation mjd vs r", sub = paste("correlation:", cor_value))
```
### 3. Produce scatter plots between the class variable and u,z, and redshift.
What do these three scatterplots tell you about the relationships between these variables and the class?
No correlation. The range of redshift on object class are quite different(skewed)
```{r}
p_u = ggplot(data, aes(x = class, y=u)) +
geom_point() +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
ggtitle("object class Vs u") +
labs(x = "object class", y = "u")
p_z = ggplot(data, aes(x = class, y=z)) +
geom_point() +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
ggtitle("object class Vs z") +
labs(x = "object class", y = "z")
p_redshift = ggplot(data, aes(x = class, y=redshift)) +
geom_point() +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
ggtitle("object class Vs redshift") +
labs(x = "object class", y = "redshift")
grid.arrange(p_u, p_z, p_redshift, nrow=1, ncol=3)
```
### 4. Produce boxplots for all of the appropriate attributes.
I chose appropriate attributes for boxplots based on
whether the standard deviation of that feature is meaningful.
If the standard deviation is 0 or N/A, there is no need to draw a boxplot.
```{r}
appropriate_attr = c("dia", "ra", "dec", "u", "g", "r", "i",
"z", "run", "m_unt", "flux", "redshift", "plate", "mjd")
p_lst = list()
i = 1
for(attri in appropriate_attr){
p_lst[[i]] = ggplot(data, aes_string(y = attri, fill = "class")) +
geom_boxplot() +
ggtitle(paste(attri, "boxplot"))+
labs(x = attri, y = "Value")
i = i + 1
}
grid.arrange(grobs = p_lst[1:9], ncol = 3)
```
```{r}
# The remaining box plot
grid.arrange(grobs = p_lst[10:14], ncol = 2)
```
## 3. General Conclusions
```{r}
# Missing value by class of dia
aggregate(dia ~ class, data=data, function(x) {sum(is.na(x))}, na.action = NULL)
```
## 4. Dealing with missing values in R
```{r}
# Description: Missing data imputation
# Args:
# df: R dataframe
# criteria: Imputation criteria. group mean/ group media/ 0
# Return:
# new_df: New R dataframe after data imputation
imputeData = function(df, criteria){
if (criteria == "mean"){
new_df = as.data.frame(mutate_at(group_by(df, class),
vars(-group_cols()),
funs(ifelse(is.na(.),
mean(., na.rm = TRUE),.))))
}else if (criteria == "median"){
new_df = as.data.frame(mutate_at(group_by(df, class),
vars(-group_cols()),
funs(ifelse(is.na(.),
median(., na.rm = TRUE),.))))
}else if (criteria == 0){
imputation = function(attri) replace(attri, is.na(attri), 0)
new_df = replace(df, TRUE, lapply(df, imputation))
}
return(new_df)
}
```
```{r}
# Replacement with 0, group mean and group median
data_0 = imputeData(data, 0)
data_mean = imputeData(data, "mean")
data_median = imputeData(data, "median")
```
```{r}
# Descriptive statistics to show the influence of different Imputation method.
dia_origin =data$dia
dia0 =data_0$dia
dia_mean =data_mean$dia
dia_median =data_median$dia
dia_data = data.frame(dia_origin, dia0, dia_mean, dia_median)
dia_data_metric = sapply(dia_data, function(x) c(mean(x, na.rm=TRUE),
median(x, na.rm=TRUE),
names(which.max(table(x))),
sd(x, na.rm=TRUE),
IQR(x, na.rm=TRUE),
max(x, na.rm=TRUE)-min(x, na.rm=TRUE),
sum(is.na(x))))
dia_data_df = as.data.frame(dia_data_metric,
row.names = c("Mean", "Median", "SD", "IQR", "Range", "Missing"))
dia_data_df = as.data.frame(t(dia_data_df))
dia_data_df
```
## 5. Attribute transformation
Using the three datasets generated in 1.4, explore the use of three transformation techniques (mean centering, normalisation and standardisation) to scale the attributes. Define, compare and contrast these approaches, and explain their effects on the data.
mean centering, normalisation and standardisation
```{r}
# mean centering
data_0_mc = mutate_if(data_0, is.numeric, function(x) scale(x, scale = FALSE))
data_mean_mc = mutate_if(data_mean, is.numeric, function(x) scale(x, scale = FALSE))
data_median_mc = mutate_if(data_median, is.numeric, function(x) scale(x, scale = FALSE))
```
```{r}
# normalisation (x - min(x)) / (max(x) - min(x))
features_0_nor = as.data.frame(lapply(select(data_0, -class),
function(attri) (attri - min(attri, na.rm = TRUE)) / (max(attri, na.rm = TRUE) - min(attri, na.rm = TRUE))))
data_0_nor = cbind(features_0_nor, select(data_0, class))
features_mean_nor = as.data.frame(lapply(select(data_mean, -class),
function(attri) (attri - min(attri, na.rm = TRUE)) / (max(attri, na.rm = TRUE) - min(attri, na.rm = TRUE))))
data_mean_nor = cbind(features_mean_nor, select(data_mean, class))
features_median_nor = as.data.frame(lapply(select(data_median, -class),
function(attri) (attri - min(attri, na.rm = TRUE)) / (max(attri, na.rm = TRUE) - min(attri, na.rm = TRUE))))
data_median_nor = cbind(features_median_nor, select(data_median, class))
```
```{r}
# standardisation (x - mean(x)) / sd(x)
data_0_sd = mutate_if(data_0, is.numeric, scale)
data_mean_sd = mutate_if(data_mean, is.numeric, scale)
data_median_sd = mutate_if(data_median, is.numeric, scale)
```
```{r}
# Descriptive statistics to show the influence of different scaling method.
ra_origin =data_mean$ra
ra_mc =data_mean_mc$ra
ra_nor =data_mean_nor$ra
ra_sd =data_mean_sd$ra
ra_data = data.frame(ra_origin, ra_mc, ra_nor, ra_sd)
ra_data_metric = sapply(ra_data, function(x) c(mean(x, na.rm=TRUE),
median(x, na.rm=TRUE),
sd(x, na.rm=TRUE),
IQR(x, na.rm=TRUE),
max(x, na.rm=TRUE)-min(x, na.rm=TRUE)))
ra_data_df = as.data.frame(ra_data_metric,
row.names = c("Mean", "Median", "SD", "IQR", "Range"))
ra_data_df = as.data.frame(t(ra_data_df))
ra_data_df
```
## 6. Attribute / instance selection
### 1. consider attribute and instance deletion strategies to deal with missing and duplicated values.
```{r}
## Attribute deletion
# drop the attribute with over 50% NaN
missing_prop = colMeans(is.na(data))
missing_attri = missing_prop[missing_prop > 0.5]
missing_attri_name = names(missing_attri)
data_del = select(data, -missing_attri_name)
## instance deletion
# drop all missing value
data_del = na.omit(data_del)
# drop all duplicated instances
data_del = unique(data_del)
# drop all duplicated columns
col_duplicated = sapply(data_del, function(x) length(unique(x)))
col_duplicated_name = names(col_duplicated[col_duplicated == 1])
data_del = select(data_del, -all_of(col_duplicated_name))
```
### 2. Use correlations between attributes to reduce the number of attributes.
```{r}
# Drop the attribute with >50% Missing value
data_cor = select(data, -c("dia"))
# drop all missing value
data_cor = na.omit(data_cor)
```
```{r}
# Pearson correlation
# Ignore the ordinal, nominal and class attributes
cor_abs = abs(cor(select(data_cor, -c("camcol", "objid", "rerun",
"native", "field", "specobjid",
"fiberid", "class")))) > 0.95
cor_abs_df = as.data.frame(cor_abs)
cor_abs_df = replace(cor_abs_df, cor_abs_df == FALSE, 0)
cor_abs_df
high_cor = c("r","z","flux","plate")
data_cor = select(data_cor, -all_of(high_cor))
# 17 features left
```
## 7. Attribute transformation / reduction
Use Principal Component Analysis. Explain your process, along with the results obtained.
Appropriate pre-processing steps: no missing values, no objid/rerun- duplicated value.
```{r}
# drop the attribute with over 50% NaN and all same value
data_pca = select(data, -c("objid", "dia", "rerun"))
# drop all missing value
data_pca = na.omit(data_pca)
# drop all duplicated value
data_pca = unique(data_pca)
```
### 1.Reduced to 12 dimensions (i.e: PC1-PC12).
```{r}
data_stand = as.data.frame(scale(select(data_pca, -class)))
pca = prcomp(data_stand, scale=T)
pca_info = summary(pca)
data_pca12 = pca$x[,1:12]
data_pca12 = cbind(data_pca12, select(data_pca, class))
data_pca_all = cbind(pca$x, select(data_pca, class))
```
```{r}
pca_info
```
```{r}
# Show the pearson of the data after PCA
pca_cor = abs(cor(pca_info$x)) > 0.1
pca_cor_df = as.data.frame(pca_cor)
pca_cor_df = replace(pca_cor_df, pca_cor_df == FALSE, 0)
pca_cor_df
```
### 2. How many PCs should be used to obtain a cumulative variance of at least 90%?
```{r}
# Description: Automatically chose dimensions by variance threshold
# Args:
# data: The data without labels
# thres: The setting variance threshold
# Return:
# chosen_pca: The chosen dimensions pca
auto_pca = function(data, thres){
data_stand = as.data.frame(scale(data))
data_pca = prcomp(data_stand, scale=T)
pca_info = summary(data_pca)
cumulative_proportion = tail(pca_info$importance,1)
whole_len = length(cumulative_proportion)
len = sum(cumulative_proportion < thres) + 1
len = ifelse(len > whole_len, whole_len, len)
chosen_pca = data_pca$x[,1:len]
return (chosen_pca)
}
```
```{r}
# 90% cumulative variance
data_pca90p = auto_pca(select(data_pca, -class), 0.9)
data_pca90p = cbind(data_pca90p, select(data_pca, class))
```
###17 Dataset from Part 1
```{r}
# imputation with 0/mean/Median
dim(data_0)
dim(data_mean)
dim(data_median)
# mean center scale
dim(data_0_mc)
dim(data_mean_mc)
dim(data_median_mc)
# normalisation
dim(data_0_nor)
dim(data_mean_nor)
dim(data_median_nor)
# standardisation
dim(data_0_sd)
dim(data_mean_sd)
dim(data_median_sd)
# deletion Missing and duplicated attributes
dim(data_del)
# Drop high correlation attributes and Missing value
dim(data_cor)
# PCA
dim(data_pca_all)
dim(data_pca12)
dim(data_pca90p)
```
```{r}
## Write all the datasets to csv
# imputation with 0/mean/Median
write.csv(data_0, "data_0.csv", row.names = FALSE)
write.csv(data_mean, "data_mean.csv", row.names = FALSE)
write.csv(data_median, "data_median.csv", row.names = FALSE)
# mean center scale
write.csv(data_0_mc, "data_0_mc.csv", row.names = FALSE)
write.csv(data_mean_mc, "data_mean_mc.csv", row.names = FALSE)
write.csv(data_median_mc, "data_median_mc.csv", row.names = FALSE)
# normalisation
write.csv(data_0_nor, "data_0_nor.csv", row.names = FALSE)
write.csv(data_mean_nor, "data_mean_nor.csv", row.names = FALSE)
write.csv(data_median_nor, "data_median_nor.csv", row.names = FALSE)
# standardisation
write.csv(data_0_sd, "data_0_sd.csv", row.names = FALSE)
write.csv(data_mean_sd, "data_mean_sd.csv", row.names = FALSE)
write.csv(data_median_sd, "data_median_sd.csv", row.names = FALSE)
# deletion Missing and duplicated attributes
write.csv(data_del, "data_del.csv", row.names = FALSE)
# Drop high correlation attributes and Missing value
write.csv(data_cor, "data_cor.csv", row.names = FALSE)
# PCA
write.csv(data_pca_all, "data_pca_all.csv", row.names = FALSE)
write.csv(data_pca12, "data_pca12.csv", row.names = FALSE)
write.csv(data_pca90p, "data_pca90p.csv", row.names = FALSE)
```
# 2. CLUSTERING
```{r}
# Description: calculate the results of different clustering algorithm
# Args:
# data_all: R dataframe read from the dataset
# distance_method: different different method.("euclidean" and "manhattan"). For hca and pam algorithm.
# cut_tree: The heights where the tree should be cut. For hca algorithm.
# random_sets: The number of chosen random sets. For kmeans and pam algorithm.
# iterations: the maximum number of iterations allowed. For kmeans algorithm.
# Return:
# results: The aggregate results after clustering
clusterCalculator = function(data_all, distance_method, cut_tree, random_sets, iterations){
# Only use features
data_clus = select(data_all, -class)
results = data.frame(class = select(data_all, class), hca=0, kmeans = 0, pam = 0)
## 3 groups
k = 3
## HCA
hca_res = hclust(dist(data_clus, method = distance_method))
results$hca = cutree(hca_res, k, h = cut_tree)
## K-means
km_res = kmeans(data_clus, k, iter.max = iterations, nstart = random_sets)
results$kmeans = km_res$cluster
## PAM
pam_res = pam(data_clus, k, metric = distance_method, nstart = random_sets)
results$pam = pam_res$clustering
return(results)
}
```
```{r}
# Description: Return max diag matrix
# Args:
# matr: confusion matrix
# Return:
# max_matr: aligned matrix
maxDiag = function(matr){
diagMax = -Inf
col_num = dim(matr)[2]
# Try all the combinations
for(i in 1: nrow(permutations(col_num))){
new_matr = matr[,c(permutations(col_num)[i,])]
dig_sum = sum(diag(new_matr))
if(dig_sum > diagMax){
diagMax = dig_sum
max_matr = new_matr
}
}
return(max_matr)
}
```
```{r}
## External Metrics
# Description: calculate External metrics from aligned matrix
# Args:
# matr: confusion matrix
# model_name: the name of models. str type
# Return:
# results: External metrics from aligned matrix
metricCal = function(matr){
diag_value = diag(matr)
len = length(diag_value)
accuracy = sum(diag_value) / sum(matr)
recall = sapply(c(1:len), function(x) diag_value[x] / sum(matr[x,]))
precision = sapply(c(1:len), function(x) diag_value[x] / sum(matr[,x]))
f1_score = sapply(c(1:len), function(x) 2 * recall[x] * precision[x] / (recall[x] + precision[x]))
results = cbind(matr, recall, precision, f1_score)
results = rbind(results, Average = c(NA, NA, NA, mean(recall), mean(precision), mean(f1_score)))
results = cbind(results, accuracy= c(NA, NA, NA, accuracy))
return(results)
}
```
### 2. parameters tuning
```{r}
### Dataset
## Self-chosen
#dataset = "data_median_nor.csv"
## PCA - i&ii
#dataset = "data_pca_all.csv"
#dataset = "data_pca12.csv"
## Deletion Missing and duplicated attributes - iii
#dataset = "data_del.csv"
## Drop high correlation attributes and Missing value -iii
#dataset = "data_cor.csv"
## Mean center scale - iV
#dataset = "data_0_mc.csv"
#dataset = "data_mean_mc.csv"
dataset = "data_median_mc.csv"
# Parameters
distance_method = "euclidean" # "euclidean" and "manhattan". For hca and pam algorithm.
cut_tree = 10 # 10,50,100. For hca algorithm.
random_sets = 3 # 1,3,5. For kmeans and pam algorithm.
iterations = 50 # 10,50,100. For kmeans algorithm.
# Export Excel name
inter_excel_name = "internal_metrics_df16.xls"
ext_excel_name = "all_ext_metric_df16.xls"
data_all = read.csv(dataset)
# Get column with all Nan
nan_col = sapply(data_all, function(x) all(is.na(x)))
cluster_results = clusterCalculator(data_all[,!nan_col],
distance_method,
cut_tree,
random_sets,
iterations)
## Internal Metrics
distance = dist(select(data_all, -class))
cluster_res = select(cluster_results, c("hca", "kmeans", "pam"))
internal_metrics = sapply(cluster_res, function(x) cluster.stats(distance,
clustering = x,
silhouette = TRUE))
all_internal_metrics_df = as.data.frame(internal_metrics)
internal_metrics_df = all_internal_metrics_df[c("dunn","average.between","average.within"),]
## External Metrics
t_hca = table(cluster_results$class, cluster_results$hca)
t_kmeans = table(cluster_results$class, cluster_results$kmeans)
t_pam = table(cluster_results$class, cluster_results$pam)
aligned_matr_hca = maxDiag(t_hca)
aligned_matr_kmeans = maxDiag(t_kmeans)
aligned_matr_pam = maxDiag(t_pam)
hca_ext_metric = metricCal(aligned_matr_hca)
kmeans_ext_metric = metricCal(aligned_matr_kmeans)
pam_ext_metric = metricCal(aligned_matr_pam)
all_ext_metric = rbind(hca_ext_metric, kmeans_ext_metric, pam_ext_metric)
# results order: "hca", "kmeans", "pam"
all_ext_metric_df = as.data.frame(all_ext_metric)
# Write to csv for report
#write.xlsx(internal_metrics_df, file = inter_excel_name, sheetName = "internal_metrics_df", append = TRUE)
#write.xlsx(all_ext_metric_df, file = ext_excel_name, sheetName = "all_ext_metric_df", append = TRUE)
```