-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprediction.py
185 lines (158 loc) · 6.66 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#Import Packages
import onnxruntime
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import fire
import streamlit as st
import cvzone
# Global Variables
confidence = 80
conf_thresold = 0.8
iou_thresold = 0.3
Display_Confidence = True
Display_Class = True
# load image
def load_image(image_path, input_shape):
image = cv2.imread(image_path)
# Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_height, input_width = input_shape[2:]
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
resized = cv2.resize(image_rgb, (input_width, input_height))
# Scale input pixel value to 0 to 1
input_image = resized / 255.0
input_image = input_image.transpose(2,0,1)
input_tensor = input_image[np.newaxis, :, :, :].astype(np.float32)
input_tensor.shape
return [image, input_tensor, rgb_image]
# load model
def load_model(model_path):
opt_session = onnxruntime.SessionOptions()
opt_session.enable_mem_pattern = False
opt_session.enable_cpu_mem_arena = False
opt_session.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
model_path = model_path
EP_list = ['CUDAExecutionProvider', 'CPUExecutionProvider']
ort_session = onnxruntime.InferenceSession(model_path, providers=EP_list)
model_inputs = ort_session.get_inputs()
input_names = [model_inputs[i].name for i in range(len(model_inputs))]
input_shape = model_inputs[0].shape
return [ort_session, input_shape]
# run inference using the onnx model
def predict(image, ort_session, input_tensor):
global conf_thresold
model_inputs = ort_session.get_inputs()
input_names = [model_inputs[i].name for i in range(len(model_inputs))]
input_shape = model_inputs[0].shape
input_height, input_width = input_shape[2:]
image_height, image_width = image.shape[:2]
model_output = ort_session.get_outputs()
output_names = [model_output[i].name for i in range(len(model_output))]
outputs = ort_session.run(output_names, {input_names[0]: input_tensor})[0]
predictions = np.squeeze(outputs).T
# conf_thresold = 0.8
# conf_thresold = confidence/100
# Filter out object confidence scores below threshold
scores = np.max(predictions[:, 4:], axis=1)
predictions = predictions[scores > conf_thresold, :]
scores = scores[scores > conf_thresold]
# Get the class with the highest confidence
class_ids = np.argmax(predictions[:, 4:], axis=1)
# Get bounding boxes for each object
boxes = predictions[:, :4]
#rescale box
input_shape = np.array([input_width, input_height, input_width, input_height])
boxes = np.divide(boxes, input_shape, dtype=np.float32)
boxes *= np.array([image_width, image_height, image_width, image_height])
boxes = boxes.astype(np.int32)
return [boxes, scores, class_ids]
# annotate the image by drawing the bounding boxes
def annotate(image, boxes, scores, class_ids):
# Apply non-maxima suppression to suppress weak, overlapping bounding boxes
global iou_thresold
global Display_Confidence
global Display_Class
indices = nms(boxes, scores, iou_thresold)
# Define classes
CLASSES = ['head']
image_draw = image.copy()
for (bbox, score, label) in zip(xywh2xyxy(boxes[indices]), scores[indices], class_ids[indices]):
bbox = bbox.round().astype(np.int32).tolist()
cls_id = int(label)
cls = CLASSES[cls_id]
# color = (0,255,0)
x1,y1,w,h = bbox[0], bbox[1], bbox[2]-bbox[0], bbox[3]-bbox[1]
display_message = ""
if (Display_Class):
display_message = display_message + cls
if(Display_Confidence):
display_message = f"{display_message} {score:.2f}"
# cvzone.cornerRect(image_draw, (x1,y1,w,h), colorR=(0, 255, 0),t=1)
cv2.rectangle(image_draw, (x1,y1,w,h), (0, 255, 0), 1)
if (Display_Confidence or Display_Class):
cvzone.putTextRect(image_draw,
display_message, (max(0,x1), max(35,y1)),
thickness=1,scale=0.4, font=cv2.FONT_HERSHEY_DUPLEX ,
offset = 5,colorR=(0, 0, 0))
# Image.fromarray(cv2.cvtColor(image_draw, cv2.COLOR_BGR2RGB))
rgb_image_draw = cv2.cvtColor(image_draw, cv2.COLOR_BGR2RGB)
return rgb_image_draw
def nms(boxes, scores, iou_threshold):
# Sort by score
sorted_indices = np.argsort(scores)[::-1]
keep_boxes = []
while sorted_indices.size > 0:
# Pick the last box
box_id = sorted_indices[0]
keep_boxes.append(box_id)
# Compute IoU of the picked box with the rest
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
# Remove boxes with IoU over the threshold
keep_indices = np.where(ious < iou_threshold)[0]
sorted_indices = sorted_indices[keep_indices + 1]
return keep_boxes
def compute_iou(box, boxes):
# Compute xmin, ymin, xmax, ymax for both boxes
xmin = np.maximum(box[0], boxes[:, 0])
ymin = np.maximum(box[1], boxes[:, 1])
xmax = np.minimum(box[2], boxes[:, 2])
ymax = np.minimum(box[3], boxes[:, 3])
# Compute intersection area
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
# Compute union area
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union_area = box_area + boxes_area - intersection_area
# Compute IoU
iou = intersection_area / union_area
return iou
def xywh2xyxy(x):
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2
y[..., 1] = x[..., 1] - x[..., 3] / 2
y[..., 2] = x[..., 0] + x[..., 2] / 2
y[..., 3] = x[..., 1] + x[..., 3] / 2
return y
def prediction(image_path, conf=80, disp_Class=True, disp_Confidence=True,
iou_thresh_ = 30, model_path="models/best_re_final.onnx"):
global confidence
global conf_thresold
global iou_thresold
global Display_Confidence
global Display_Class
Display_Confidence = disp_Confidence
Display_Class = disp_Class
confidence = conf
conf_thresold = confidence/100
iou_thresold = iou_thresh_
# *Calling Functions*
model = load_model(model_path)
input_I = load_image(image_path, model[1]) #path and input shape is passed
predictions = predict(input_I[0], model[0], input_I[1]) #image, ort_session, and input tensor is passed
annotated_image = annotate(input_I [0], predictions[0], predictions[1], predictions[2]) #boxes, and scores are passed
return annotated_image
if __name__=='__main__':
fire.Fire(prediction)