-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean_output.py
355 lines (287 loc) · 11.4 KB
/
clean_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import numpy as np
import cv2
out = cv2.VideoWriter('Dijsktra_output.mp4',cv2.VideoWriter_fourcc(*'mp4v'), 60, (400,300))
#defining the queue class to use as a data structure
class queue():
def __init__(self):
self.pending = list()
def add(self, child, ind):
self.pending.insert(ind, child)
def remove(self):
if self.pending:
return self.pending.pop()
return None
def peek(self):
if self.pending:
return self.pending[-1]
def size1(self):
return len(self.pending)
def isempty(self):
if self.pending == []:
return True
return False
#created node class in order to save current node and it's parent
class node():
def __init__(self, current, parent): #, cost):
self.current = current
self.parent = parent
#defining obstacles as well as the boundaries of the map
#st[0] = y coordinate in cartesian space st[1] = x coordinate in cartesian space
def obstacles(st):
radius = 10
clearance = 5
cl = radius + clearance
s1 = 0.7
s2 = -1.42814
x1 = np.arctan(s1)
x2 = np.arctan(s2)
d1 = np.cos(np.pi - x1)
d2 = np.cos(np.pi - x2)
a = -(cl / d1)
b = -(cl / d2)
if (((st[1]) - (90+1)) ** 2) + ((st[0] - (70+1)) ** 2) <= ((35+cl)**2):
canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in circle")
return None
elif (((st[1] - (246+1)) / (60+cl)) ** 2) + (((st[0] - (145+1)) / (30+cl)) ** 2) <= 1:
canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in ellipse")
return None
elif (st[0] <= ((280+1) + cl) and st[1]>=((200+1)-cl) and st[0]>=((230+1)-cl) and st[1]<=((230+1)+cl)) and not (st[0]<=((270+1)-cl) and st[1]>=((210+1)+cl) and st[0]>=((240+1)+cl) and st[1]<=((230+1)+cl)):
canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in C shape")
return None
elif (-0.7*st[1]+1*st[0])>=(73.4-a) and (st[0]+1.42814*st[1])>=(172.55-b) and (-0.7*st[1]+1*st[0])<=(99.81+a) and (st[0]+1.42814*st[1])<=(429.07+b):
canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in rectangle")
return None
elif (st[1] >= ((canvas_size[1]-1) - cl)) or (st[1] <= cl+1):
canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is out of the map boundary")
return None
elif (st[0] <= cl+1) or (st[0] >= ((canvas_size[0] -1) - cl)):
canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is out of the map boundary")
return None
else :
return st
def display_obstacles(st):
radius = 0
clearance = 0
cl = radius + clearance
s1 = 0.7
s2 = -1.42814
x1 = np.arctan(s1)
x2 = np.arctan(s2)
d1 = np.cos(np.pi - x1)
d2 = np.cos(np.pi - x2)
a = -(cl / d1)
b = -(cl / d2)
if (((st[1]) - (90+1)) ** 2) + ((st[0] - (70+1)) ** 2) <= ((35+cl)**2):
display_canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in circle")
return None
elif (((st[1] - (246+1)) / (60+cl)) ** 2) + (((st[0] - (145+1)) / (30+cl)) ** 2) <= 1:
display_canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in ellipse")
return None
elif (st[0] <= ((280+1) + cl) and st[1]>=((200+1)-cl) and st[0]>=((230+1)-cl) and st[1]<=((230+1)+cl)) and not (st[0]<=((270+1)-cl) and st[1]>=((210+1)+cl) and st[0]>=((240+1)+cl) and st[1]<=((230+1)+cl)):
display_canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in C shape")
return None
elif (-0.7*st[1]+1*st[0])>=(73.4-a) and (st[0]+1.42814*st[1])>=(172.55-b) and (-0.7*st[1]+1*st[0])<=(99.81+a) and (st[0]+1.42814*st[1])<=(429.07+b):
display_canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is in rectangle")
return None
elif (st[1] >= ((canvas_size[1]-1) - cl)) or (st[1] < cl+1):
display_canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is out of the map boundary")
return None
elif (st[0] <= cl+1) or (st[0] >= ((canvas_size[0] -1) - cl)):
display_canvas[canvas_size[0]-1-st[0]][st[1]][0] = 255
#print("coordinate is out of the map boundary")
return None
else :
return st
#removes from the queue
def removing_from_queue():
check = queue1.remove()
cs = duplicate_costqueue.pop()
return check, cs
#checking if the node is in the queue or has been visited previously and then appending the parent to the visited_list
def check_if_visited(check, cs):
nod = check.current #checking with the red value of canvas
if canvas[(canvas_size[0] - 1) - nod[0],nod[1],2] == 255:
if duplicate_costcanvas[(canvas_size[0] - 1) - nod[0],nod[1]] > cs:
ind = visited_child_list.index(check.current)
visited_parent_list[ind] = check.parent
visited_child_cost[ind] = cs
return None
canvas[(canvas_size[0] - 1) - nod[0], nod[1], 2] = 255 #marking visited by changing the color of red band
display_canvas[(canvas_size[0] - 1) - nod[0], nod[1], 2] = 255
duplicate_costcanvas[(canvas_size[0] - 1) - nod[0], nod[1],0] = cs
visited_child_list.append(check.current)
visited_parent_list.append(check.parent)
visited_child_cost.append(cs)
#out.write(canvas[1:301, 1:401])
out.write(display_canvas[1:301, 1:401])
return check, cs
#this function performs actions and gets children
def super_move_function(currentnode, cs):
def moveleft(node1, effort1):
child = node1.copy()
child[1] = child[1] - 1
effort1 = effort1 + 1
return [child, effort1]
def moveright(node1, effort1):
child = node1.copy()
child[1] = child[1] + 1
effort1 = effort1 + 1
return [child, effort1]
def moveup(node1, effort1):
child = node1.copy()
child[0] = child[0] + 1
effort1 = effort1 + 1
return [child, effort1]
def movedown(node1, effort1):
child = node1.copy()
child[0] = child[0] - 1
effort1 = effort1 + 1
return [child, effort1]
def up_left(node1, effort1):
child = node1.copy()
child[0] = child[0] + 1
child[1] = child[1] - 1
effort1 = effort1 + (2)**(1/2)
return [child, effort1]
def down_left(node1, effort1):
child = node1.copy()
child[0] = child[0] - 1
child[1] = child[1] - 1
effort1 = effort1 + (2)**(1/2)
return [child, effort1]
def up_right(node1, effort1):
child = node1.copy()
child[0] = child[0] + 1
child[1] = child[1] + 1
effort1 = effort1 + (2)**(1/2)
return [child, effort1]
def down_right(node1, effort1):
child = node1.copy()
child[0] = child[0] - 1
child[1] = child[1] + 1
effort1 = effort1 + (2)**(1/2)
return [child, effort1]
new_child = list()
node = currentnode.current
effort = cs
new_child.append(moveleft(node, effort))
new_child.append(moveright(node, effort))
new_child.append(moveup(node, effort))
new_child.append(movedown(node, effort))
new_child.append(up_left(node, effort))
new_child.append(down_left(node, effort))
new_child.append(up_right(node, effort))
new_child.append(down_right(node, effort))
return new_child, node
#checking if the node is in obstacle space and returns ones which are not in the obstacle space in a list and the parent node
def check_if_in_obstacle_space(children, parent1):
valid_children = list()
for i in children:
if canvas[(canvas_size[0] - 1) - i[0][0], i[0][1], 0] == 255:
continue
valid_children.append(i)
return valid_children, parent1
#compares new children with goal state and adds them to the queue if the child is not the goal state
def compare_with_goal(ultimate_children, parent1):
for child in ultimate_children:
if child[0] == goal:
print("\n Goal has been reached \n")
return child[0], parent1, child[1]
else:
duplicate_costqueue.append(child[1])
duplicate_costqueue.sort(reverse = True)
index_to_append_in_queue = duplicate_costqueue.index(child[1])
queue1.add(node(child[0], parent1), index_to_append_in_queue)
return None
#main body of the code from this line and below
canvas_size = [302,402, 3]
canvas = np.zeros((canvas_size[0],canvas_size[1], canvas_size[2]))
visited_child_list = list()
visited_parent_list = list()
visited_child_cost = list()
duplicate_costqueue = list()
display_canvas = np.zeros((canvas_size[0],canvas_size[1], canvas_size[2]))
duplicate_costcanvas = np.zeros((canvas_size[0],canvas_size[1], 1))
canvas = canvas.astype(np.uint8)
display_canvas = display_canvas.astype(np.uint8)
for_frames = list()
#marking obstacles
for i in range(canvas_size[0]):
for j in range(canvas_size[1]):
obstacles([i,j])
display_obstacles([i,j])
#taking the start and goal node from the user and checking if in obstacle space
n = 1
while n > 0:
start = list()
goal = list()
x1 = input("Enter the x co-ordinate of the start point: ")
y1 = input("Enter the y co-ordinate of the start point: ")
x2 = input("Enter the x co-ordinate of the goal point: ")
y2 = input("Enter the y co-ordinate of the goal point: ")
start.append(int(y1)+1)
start.append(int(x1)+1)
goal.append(int(y2)+1)
goal.append(int(x2)+1)
lis = [start, goal]
strt = list()
count = 0
for i in lis:
strt.append(obstacles(i))
if strt[0] == None or strt[1] == None:
print("Error: One of the entered point is either in obstacle space or out of map boundary")
continue
else:
n = 0
print(start, goal)
first_node = node(start, None)
queue1 = queue()
queue1.add(first_node,0)
duplicate_costqueue.append(0)
canvas[canvas_size[0] - goal[0], goal[1],:] = 128
display_canvas[canvas_size[0] - goal[0], goal[1],:] = 128
#calling the main functions of the Dijkstra
while True:
new_parent = None
while new_parent is None:
new_node, cos = removing_from_queue()
new_parent= check_if_visited(new_node, cos)
children_list, parent = super_move_function(new_parent[0], new_parent[1])
filtered_children, same_parent = check_if_in_obstacle_space(children_list, parent)
child_parent = compare_with_goal(filtered_children, same_parent)
if child_parent is not None:
break
visited_child_list.append(child_parent[0])
visited_parent_list.append(child_parent[1])
visited_child_cost.append(child_parent[2])
parent_info = child_parent[1]
#searching for the route to the goal node or backtracking
route = list()
while parent_info is not None:
for i in visited_child_list:
if parent_info == i:
parent_info = visited_parent_list[visited_child_list.index(i)]
canvas[(canvas_size[0] - 1) - i[0],i[1],:] = 255
# display_canvas[(canvas_size[0] - 1) - i[0],i[1],:] = 255
cv2.circle(display_canvas, (i[1], (canvas_size[0] - 1) - i[0]), 1, (255,255,255), -1)
#out.write(canvas[1:301, 1:401])
out.write(display_canvas[1:301, 1:401])
route.append(i)
break
canvas[canvas_size[0] - goal[0], goal[1],:] = 128
cv2.imshow("Window",canvas[1:301, 1:401])
out.release()
print("\nVideo file of visualization has been saved")
cv2.waitKey(0)
cv2.destroyAllWindows()