diff --git a/.napari/DESCRIPTION.md b/.napari/DESCRIPTION.md
index 9a3143bb..d379ed68 100644
--- a/.napari/DESCRIPTION.md
+++ b/.napari/DESCRIPTION.md
@@ -117,7 +117,7 @@ this information here.
## Getting Help
If you would like to report an issue with the plugin,
-please open an [issue on Github](https://github.com/AdaptiveMotorControlLab/CellSeg3d/issues)
+please open an [issue on Github](https://github.com/AdaptiveMotorControlLab/CellSeg3D/issues)
34\u001b[0m view \u001b[39m=\u001b[39m napari\u001b[39m.\u001b[39;49mview_image(preds, colormap\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mturbo\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[0;32m 35\u001b[0m view\u001b[39m.\u001b[39madd_image(test_image, colormap\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mturbo\u001b[39m\u001b[39m\"\u001b[39m, blending\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39madditive\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 36\u001b[0m view\u001b[39m.\u001b[39madd_image(rejected, colormap\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mturbo\u001b[39m\u001b[39m\"\u001b[39m, blending\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39madditive\u001b[39m\u001b[39m\"\u001b[39m)\n",
+ "\u001b[1;32mc:\\Users\\Cyril\\Desktop\\Code\\CellSeg3D\\napari_cellseg3d\\dev_scripts\\classifier_test.ipynb Cell 12\u001b[0m line \u001b[0;36m| \u001b[1;34m()\u001b[0m\n\u001b[0;32m 31\u001b[0m preds[crop_location_i:crop_location_i\u001b[39m+\u001b[39mcube_size, crop_location_j:crop_location_j\u001b[39m+\u001b[39mcube_size, crop_location_k:crop_location_k\u001b[39m+\u001b[39mcube_size] \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[0;32m 32\u001b[0m rejected[crop_location_i:crop_location_i\u001b[39m+\u001b[39mcube_size, crop_location_j:crop_location_j\u001b[39m+\u001b[39mcube_size, crop_location_k:crop_location_k\u001b[39m+\u001b[39mcube_size] \u001b[39m=\u001b[39m crop\n\u001b[1;32m---> 34\u001b[0m view \u001b[39m=\u001b[39m napari\u001b[39m.\u001b[39;49mview_image(preds, colormap\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mturbo\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[0;32m 35\u001b[0m view\u001b[39m.\u001b[39madd_image(test_image, colormap\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mturbo\u001b[39m\u001b[39m\"\u001b[39m, blending\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39madditive\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 36\u001b[0m view\u001b[39m.\u001b[39madd_image(rejected, colormap\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mturbo\u001b[39m\u001b[39m\"\u001b[39m, blending\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39madditive\u001b[39m\u001b[39m\"\u001b[39m)\n",
"File \u001b[1;32mc:\\Users\\Cyril\\anaconda3\\envs\\cellseg3d\\lib\\site-packages\\napari\\view_layers.py:178\u001b[0m, in \u001b[0;36mview_image\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 176\u001b[0m \u001b[39m@_merge_layer_viewer_sigs_docs\u001b[39m\n\u001b[0;32m 177\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mview_image\u001b[39m(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m--> 178\u001b[0m \u001b[39mreturn\u001b[39;00m _make_viewer_then(\u001b[39m'\u001b[39;49m\u001b[39madd_image\u001b[39;49m\u001b[39m'\u001b[39;49m, args, kwargs)[\u001b[39m0\u001b[39m]\n",
"File \u001b[1;32mc:\\Users\\Cyril\\anaconda3\\envs\\cellseg3d\\lib\\site-packages\\napari\\view_layers.py:156\u001b[0m, in \u001b[0;36m_make_viewer_then\u001b[1;34m(add_method, args, kwargs)\u001b[0m\n\u001b[0;32m 154\u001b[0m viewer \u001b[39m=\u001b[39m kwargs\u001b[39m.\u001b[39mpop(\u001b[39m\"\u001b[39m\u001b[39mviewer\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mNone\u001b[39;00m)\n\u001b[0;32m 155\u001b[0m \u001b[39mif\u001b[39;00m viewer \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m--> 156\u001b[0m viewer \u001b[39m=\u001b[39m Viewer(\u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mvkwargs)\n\u001b[0;32m 157\u001b[0m kwargs\u001b[39m.\u001b[39mupdate(kwargs\u001b[39m.\u001b[39mpop(\u001b[39m\"\u001b[39m\u001b[39mkwargs\u001b[39m\u001b[39m\"\u001b[39m, {}))\n\u001b[0;32m 158\u001b[0m method \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(viewer, add_method)\n",
"File \u001b[1;32mc:\\Users\\Cyril\\anaconda3\\envs\\cellseg3d\\lib\\site-packages\\napari\\viewer.py:67\u001b[0m, in \u001b[0;36mViewer.__init__\u001b[1;34m(self, title, ndisplay, order, axis_labels, show)\u001b[0m\n\u001b[0;32m 63\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mnapari\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mwindow\u001b[39;00m \u001b[39mimport\u001b[39;00m Window\n\u001b[0;32m 65\u001b[0m _initialize_plugins()\n\u001b[1;32m---> 67\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_window \u001b[39m=\u001b[39m Window(\u001b[39mself\u001b[39;49m, show\u001b[39m=\u001b[39;49mshow)\n\u001b[0;32m 68\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_instances\u001b[39m.\u001b[39madd(\u001b[39mself\u001b[39m)\n",
diff --git a/napari_cellseg3d/dev_scripts/colab_training.py b/napari_cellseg3d/dev_scripts/colab_training.py
index ef5245e8..e8ca1f91 100644
--- a/napari_cellseg3d/dev_scripts/colab_training.py
+++ b/napari_cellseg3d/dev_scripts/colab_training.py
@@ -332,7 +332,7 @@ def train(
project="CellSeg3D (Colab)",
name=f"{self.config.model_info.name} training - {utils.get_date_time()}",
mode=self.wandb_config.mode,
- tags=["WNet", "Colab"],
+ tags=["WNet3D", "Colab"],
)
set_determinism(seed=self.config.deterministic_config.seed)
@@ -379,7 +379,7 @@ def train(
if self.config.weights_info.use_custom:
if self.config.weights_info.use_pretrained:
weights_file = "wnet.pth"
- self.downloader.download_weights("WNet", weights_file)
+ self.downloader.download_weights("WNet3D", weights_file)
weights = PRETRAINED_WEIGHTS_DIR / Path(weights_file)
self.config.weights_info.path = weights
else:
@@ -596,7 +596,7 @@ def train(
if WANDB_INSTALLED and self.wandb_config.save_model_artifact:
model_artifact = wandb.Artifact(
- "WNet",
+ "WNet3D",
type="model",
description="CellSeg3D WNet",
metadata=self.config.__dict__,
diff --git a/napari_cellseg3d/dev_scripts/test_new_evaluation.ipynb b/napari_cellseg3d/dev_scripts/test_new_evaluation.ipynb
index 12707e9b..dcb7ace9 100644
--- a/napari_cellseg3d/dev_scripts/test_new_evaluation.ipynb
+++ b/napari_cellseg3d/dev_scripts/test_new_evaluation.ipynb
@@ -24,7 +24,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 2,
@@ -62,8 +62,8 @@
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mIndexError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[16], line 4\u001b[0m\n\u001b[0;32m 2\u001b[0m labels \u001b[38;5;241m=\u001b[39m imread(path_model_label)\n\u001b[0;32m 3\u001b[0m \u001b[38;5;66;03m# labels.shape\u001b[39;00m\n\u001b[1;32m----> 4\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mevl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mevaluate_model_performance\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath_true_labels\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\u001b[43mvisualize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_graphical_summary\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43mplot_according_to_gt_label\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
- "File \u001b[1;32m~\\Desktop\\Code\\CellSeg3d\\napari_cellseg3d\\dev_scripts\\evaluate_labels.py:58\u001b[0m, in \u001b[0;36mevaluate_model_performance\u001b[1;34m(labels, model_labels, threshold_correct, print_details, visualize, return_graphical_summary, plot_according_to_gt_label)\u001b[0m\n\u001b[0;32m 20\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Evaluate the model performance.\u001b[39;00m\n\u001b[0;32m 21\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[0;32m 22\u001b[0m \u001b[38;5;124;03m----------\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;124;03mgraph_true_positive_ratio_model: ndarray\u001b[39;00m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 57\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMapping labels...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m---> 58\u001b[0m tmp \u001b[38;5;241m=\u001b[39m \u001b[43mmap_labels\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m \u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 60\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 61\u001b[0m \u001b[43m \u001b[49m\u001b[43mthreshold_correct\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_total_number_gt_labels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 63\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_dict_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 64\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_graphical_summary\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_graphical_summary\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 65\u001b[0m \u001b[43m \u001b[49m\u001b[43mplot_according_to_gt_labels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mplot_according_to_gt_label\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 66\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m return_graphical_summary:\n\u001b[0;32m 68\u001b[0m (\n\u001b[0;32m 69\u001b[0m map_labels_existing,\n\u001b[0;32m 70\u001b[0m map_fused_neurons,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 75\u001b[0m graph_true_positive_ratio_model,\n\u001b[0;32m 76\u001b[0m ) \u001b[38;5;241m=\u001b[39m tmp\n",
- "File \u001b[1;32m~\\Desktop\\Code\\CellSeg3d\\napari_cellseg3d\\dev_scripts\\evaluate_labels.py:422\u001b[0m, in \u001b[0;36mmap_labels\u001b[1;34m(gt_labels, model_labels, threshold_correct, return_total_number_gt_labels, return_dict_map, accuracy_function, return_graphical_summary, plot_according_to_gt_labels)\u001b[0m\n\u001b[0;32m 419\u001b[0m \u001b[38;5;66;03m# remove from new_labels the labels that are in map_labels_existing\u001b[39;00m\n\u001b[0;32m 420\u001b[0m new_labels \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marray(new_labels)\n\u001b[0;32m 421\u001b[0m i_new_labels \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39misin(\n\u001b[1;32m--> 422\u001b[0m \u001b[43mnew_labels\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdict_map\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel_label\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m,\n\u001b[0;32m 423\u001b[0m map_labels_existing[:, dict_map[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel_label\u001b[39m\u001b[38;5;124m\"\u001b[39m]],\n\u001b[0;32m 424\u001b[0m invert\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[0;32m 425\u001b[0m )\n\u001b[0;32m 426\u001b[0m new_labels \u001b[38;5;241m=\u001b[39m new_labels[i_new_labels, :]\n\u001b[0;32m 427\u001b[0m \u001b[38;5;66;03m# find the fused neurons: multiple gt labels are mapped to the same model label\u001b[39;00m\n",
+ "File \u001b[1;32m~\\Desktop\\Code\\CellSeg3D\\napari_cellseg3d\\dev_scripts\\evaluate_labels.py:58\u001b[0m, in \u001b[0;36mevaluate_model_performance\u001b[1;34m(labels, model_labels, threshold_correct, print_details, visualize, return_graphical_summary, plot_according_to_gt_label)\u001b[0m\n\u001b[0;32m 20\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Evaluate the model performance.\u001b[39;00m\n\u001b[0;32m 21\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[0;32m 22\u001b[0m \u001b[38;5;124;03m----------\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;124;03mgraph_true_positive_ratio_model: ndarray\u001b[39;00m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 57\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMapping labels...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m---> 58\u001b[0m tmp \u001b[38;5;241m=\u001b[39m \u001b[43mmap_labels\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 59\u001b[0m \u001b[43m \u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 60\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 61\u001b[0m \u001b[43m \u001b[49m\u001b[43mthreshold_correct\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 62\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_total_number_gt_labels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 63\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_dict_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 64\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_graphical_summary\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_graphical_summary\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 65\u001b[0m \u001b[43m \u001b[49m\u001b[43mplot_according_to_gt_labels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mplot_according_to_gt_label\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 66\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m return_graphical_summary:\n\u001b[0;32m 68\u001b[0m (\n\u001b[0;32m 69\u001b[0m map_labels_existing,\n\u001b[0;32m 70\u001b[0m map_fused_neurons,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 75\u001b[0m graph_true_positive_ratio_model,\n\u001b[0;32m 76\u001b[0m ) \u001b[38;5;241m=\u001b[39m tmp\n",
+ "File \u001b[1;32m~\\Desktop\\Code\\CellSeg3D\\napari_cellseg3d\\dev_scripts\\evaluate_labels.py:422\u001b[0m, in \u001b[0;36mmap_labels\u001b[1;34m(gt_labels, model_labels, threshold_correct, return_total_number_gt_labels, return_dict_map, accuracy_function, return_graphical_summary, plot_according_to_gt_labels)\u001b[0m\n\u001b[0;32m 419\u001b[0m \u001b[38;5;66;03m# remove from new_labels the labels that are in map_labels_existing\u001b[39;00m\n\u001b[0;32m 420\u001b[0m new_labels \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marray(new_labels)\n\u001b[0;32m 421\u001b[0m i_new_labels \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39misin(\n\u001b[1;32m--> 422\u001b[0m \u001b[43mnew_labels\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdict_map\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel_label\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m,\n\u001b[0;32m 423\u001b[0m map_labels_existing[:, dict_map[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel_label\u001b[39m\u001b[38;5;124m\"\u001b[39m]],\n\u001b[0;32m 424\u001b[0m invert\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[0;32m 425\u001b[0m )\n\u001b[0;32m 426\u001b[0m new_labels \u001b[38;5;241m=\u001b[39m new_labels[i_new_labels, :]\n\u001b[0;32m 427\u001b[0m \u001b[38;5;66;03m# find the fused neurons: multiple gt labels are mapped to the same model label\u001b[39;00m\n",
"\u001b[1;31mIndexError\u001b[0m: too many indices for array: array is 1-dimensional, but 2 were indexed"
]
}
diff --git a/notebooks/colab_wnet_training.ipynb b/notebooks/colab_wnet_training.ipynb
index 5b984673..b5b4c98a 100644
--- a/notebooks/colab_wnet_training.ipynb
+++ b/notebooks/colab_wnet_training.ipynb
@@ -24,7 +24,7 @@
"---\n",
"*Disclaimer:*\n",
"\n",
- "This notebook, part of the [CellSeg3D project](https://github.com/AdaptiveMotorControlLab/CellSeg3d) under the [Mathis Lab of Adaptive Motor Control](https://www.mackenziemathislab.org/), is a work-in-progress resource for training the WNet model for unsupervised cell segmentation.\n",
+ "This notebook, part of the [CellSeg3D project](https://github.com/AdaptiveMotorControlLab/CellSeg3D) under the [Mathis Lab of Adaptive Motor Control](https://www.mackenziemathislab.org/), is a work-in-progress resource for training the WNet model for unsupervised cell segmentation.\n",
"\n",
"The foundation of this notebook owes much to the **[ZeroCostDL4Mic](https://github.com/HenriquesLab/ZeroCostDL4Mic)** project —a collaborative effort between the Jacquemet and Henriques laboratories, and created by Daniel Krentzel. Except for the model provided herein, all credits are duly given to their team."
],
@@ -226,7 +226,7 @@
],
"source": [
"#@markdown ##Play to install WNet dependencies\n",
- "!git clone https://github.com/AdaptiveMotorControlLab/CellSeg3d.git --branch cy/wnet-extras --single-branch ./CellSeg3D\n",
+ "!git clone https://github.com/AdaptiveMotorControlLab/CellSeg3D.git --branch cy/wnet-extras --single-branch ./CellSeg3D\n",
"!pip install -e CellSeg3D"
]
},
diff --git a/pyproject.toml b/pyproject.toml
index e76cb4b7..b0a7b711 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -49,9 +49,9 @@ dependencies = [
dynamic = ["version", "entry-points"]
[project.urls]
-Homepage = "https://github.com/AdaptiveMotorControlLab/CellSeg3d"
+Homepage = "https://github.com/AdaptiveMotorControlLab/CellSeg3D"
Documentation = "https://adaptivemotorcontrollab.github.io/cellseg3d-docs/res/welcome.html"
-Issues = "https://github.com/AdaptiveMotorControlLab/CellSeg3d/issues"
+Issues = "https://github.com/AdaptiveMotorControlLab/CellSeg3D/issues"
[build-system]
requires = ["setuptools", "wheel"]
|