-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulator.py
124 lines (91 loc) · 4.48 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from brian2 import *
import numpy as np
import pandas as pd
import hvc
def simulate_hvc(kind: str, mag_current: int, config_file=None, duration: int = 1, delta: float = 1e-5):
"""
@params
kind: str -> takes the type of the hvc neuron as either "X/x", "RA/ra" or "INT/int"
mag: int -> magnitude of the injected stimulus
config_file -> json file path containing constant values that were varied while
performing various simulations
duration -> duration for which we are running the simulation
delta -> time interval between two timestamps
simulates the firing activity of hvc neurons based on the neuron type, stimulus magnitude, and duration
"""
#creating a "t" named column for time
time_vec = np.arange(0,duration,delta)
df = pd.DataFrame({'t':time_vec})
# The Conductance Based Model Equations
eqs = '''
Iapp = curr_in(t) : ampere
dV/dt = (-Il -I_K -I_Na -I_Nap -I_A -I_Cal -I_CaT -I_SK -I_KNa +Iapp +Ih)/C_m : volt
Il = g_l*(V-Vl) : ampere
I_K = g_K*(n**4)*(V-Vk) : ampere
ninf = (1.0+exp((V-theta_n)/sigma_n))**(-1) : 1
tau_n = tau_bar_n*(cosh((V - theta_n)/(2*sigma_n)))**(-1) : second
dn/dt = (ninf - n)/(tau_n) : 1
I_Na = g_Na*(minf**3)*h*(V-VNa) : ampere
alpha_h = 0.128*exp((V+(15.0*mV))/(-18.0*mV)) : 1
beta_h = 4.0/(1.0+exp((V+(27.0*mV))/(-5.0*mV))) : 1
hinf = alpha_h/(alpha_h+beta_h) : 1
minf = (1.0+exp((V-theta_m)/sigma_m))**(-1) : 1
dh/dt = (hinf - h)/tau_h : 1
I_Nap = g_Nap*mpinf*hp*(V-VNa) : ampere
mpinf = (1.0+exp((V-theta_mp)/sigma_mp))**(-1) : 1
hpinf = (1.0+exp((V-theta_hp)/sigma_hp))**(-1) : 1
dhp/dt = (hpinf - hp)/tau_hp : 1
tau_hp = tau_bar_hp*(cosh((V-theta_hp)/(2.0*sigma_hp)))**(-1) : second
I_A = g_A*ainf*e_gate*(V-Vk) : ampere
ainf = (1.0+exp((V-theta_a)/sigma_a))**(-1) : 1
einf = (1.0+exp((V-theta_e)/sigma_e))**(-1) : 1
de_gate/dt = (einf - e_gate)/tau_e : 1
I_Cal = g_Cal*V*(sinf**2)*(Ca_ex/(1.0-exp(2.0*V*F/(R*T))))/mmolar : ampere
sinf = (1.0+exp((V-theta_s)/sigma_s))**(-1) : 1
I_CaT = g_CaT*V*(atinf**3)*(btinf**3)*(Ca_ex/(1.0-exp(2*F*V/(R*T))))/mmolar : ampere
atinf = (1.0+exp((V-theta_at)/sigma_at))**(-1) : 1
btinf = (1.0+exp((rt-theta_b)/sigma_b))**(-1) - (1.0+exp((-theta_b)/sigma_b))**(-1) : 1
rtinf = (1.0*mV)*(1.0+exp((V-theta_rt)/sigma_rt))**(-1) : volt
drt/dt = (rtinf - rt)/tau_rt : volt
tau_rt = tau_r0 + (tau_r1*(1+exp((V-theta_rrt)/sigma_rrt))**(-1)) : second
I_SK = g_SK*kinf*(V-Vk) : ampere
kinf = (ca_in**2)/((ca_in**2) + (k_s**2)) : 1
dca_in/dt = -f*(epsilon*(I_Cal+I_CaT) + k_Ca*(ca_in - b_Ca)) : mmolar
I_KNa = g_KNa*winf*(V - Vk) : ampere
winf = 0.37*((1 + (38.7*mmolar/nai)**(3.5))**(-1)) : 1
dnai/dt = -(alpha_Na)*(I_Na + I_Nap) - 3*R_pump*(phi_Nai - phi_Naeq) : mmolar
phi_Nai = (nai)**3/((nai)**3 + (K_p)**3) : 1
phi_Naeq = (Naeq)**3/((Naeq)**3 + (K_p)**3) : 1
Ih = g_h*((k_r*rf) + ((1-k_r)*rs))*(V-Vh) : ampere
drf/dt = (rfinf-rf)/tau_rf : 1
rfinf = (1.0+exp((V-theta_rf)/sigma_rf))**(-1) : 1
tau_rf = (p_rf*ms)*(((-7.4/mV)*(V+(70.0*mV))/(exp((V+(70.0*mV))/(-0.8*mV))-1))+(65.0*exp((V+(56.0*mV))/(-23.0*mV))))**(-1) : second
drs/dt = (rsinf-rs)/tau_rs : 1
rsinf = 1.0*(1.0+exp((theta_rs-V)/sigma_rs))**(-1) : 1
'''
# creating a model HVC neuron object depending on the type of hvc neuron
if kind.lower() == "x":
params = hvc.HVCX_Params(config_file)
elif kind.lower() == "ra":
params = hvc.HVCRA_Params(config_file)
elif kind.lower() == "int":
params = hvc.HVCINT_Params(config_file)
else:
print("invalid input")
#declaring the instance attributes of HVCX_Params class as global variables since the
#NeuronGroup class of brian2 requires the variables to be defined globally (atleast the
#variables which do not have a time dependent component)
for key in params.__dict__:
globals()[key] = params.__dict__[key]
# Threshold and refractoriness are only used for spike counting
N = NeuronGroup(1, eqs, threshold='V > 0*mV', refractory='V > 0*mV', method="rk4")
N.V = -70*mV
#Current input
current = np.array(hvc.stimuli(df,mag_current,stim = 'step',dur=2,st=0.3))
curr_in = TimedArray(current*pA, dt=delta*second)
#Record membrane potential V as it evolves with time during the simulation
M = StateMonitor(N, ["V"], record=True)
run(duration*second)
return M
if __name__ == "__main__":
my_neuron = simulate_hvc("ra", 150)