-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_train.py
55 lines (32 loc) · 1.22 KB
/
face_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2 as cv
import os
import numpy as np
people=["Cristiano ronaldo","Lionel messi","Mohanlal","Sachin tendulkar"]
DIR=r'C:\Users\adwai\Python Adwaith\opencv\imagesforcvision'
features=[]
labels=[]
def create_train():
for person in people:
path=os.path.join(DIR,person)
label=people.index(person)
for img in os.listdir(path):
image_path=os.path.join(path,img)
image_array=cv.imread(image_path)
gray_img=cv.cvtColor(image_array,cv.COLOR_BGR2GRAY)
haar_cascade=cv.CascadeClassifier(r'C:\Users\adwai\Python Adwaith\.dist\haar_face.xml')
faces_rect=haar_cascade.detectMultiScale(gray_img,1.1,5)
for x,y,w,h in faces_rect:
faces_roi=gray_img[y:y+h,x:x+w]
features.append(faces_roi)
labels.append(label)
create_train()
print("training is done")
features=np.array(features,dtype='object')
labels=np.array(labels)
print(labels)
face_recognizer=cv.face.LBPHFaceRecognizer_create()
#train the recognizer on the feature list and label list
face_recognizer.train(features,labels)
face_recognizer.save('face_trained.yml')
np.save('features.npy',features)
np.save('labels.npy',labels)