-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile_bt
595 lines (557 loc) · 35.6 KB
/
Snakefile_bt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# if ran on cluster, change all "conda: config['envfile']" to "conda: 'env_cluster.yaml'"
configfile:
'config.yaml'
N = list(range(config['repetitions']))
rule all:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/{s}_trial_' + str(config['trial']) + '/{s}_{file}_median_{metric}s_and_hyperparams.json', test_percentage=config['test_percentage'], validation_percentage=config['validation_percentage'], s=config['solver'], file=config['file'], imputation=config['imputation'], metric=config['metric']),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/{file}_trial_' + str(config['trial']) + '_{metric}plot.pdf', test_percentage=config['test_percentage'], validation_percentage=config['validation_percentage'], file=config['file'], imputation=config['imputation'], metric=config['metric'])
rule bt_split:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', k=N, allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', k=N, allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/bt_split.py'
if 'SVR' in config['solver']:
rule train_and_validate_SVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/SVR_trial_' + str(config['trial']) + '/inner/SVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/SVR.py'
rule mean_scores_SVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/SVR_trial_' + str(config['trial']) + '/inner/SVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/SVR_trial_' + str(config['trial']) + '/inner/SVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_SVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/SVR_trial_' + str(config['trial']) + '/inner/SVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_mean_{metric}.npy', kernel=config['kernel'], kernel_param=config['kernel_param'], C=config['C'], eps=config['eps'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/SVR_trial_' + str(config['trial']) + '/inner/SVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_SVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/SVR_trial_' + str(config['trial']) + '/inner/SVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/SVR_trial_' + str(config['trial']) + '/outer/SVR_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/SVR.py'
if 'LSSVR' in config['solver']:
rule train_and_validate_LSSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/LSSVR_trial_' + str(config['trial']) + '/inner/LSSVR_{file}_{kernel}_{kernel_param}_C{C}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/LSSVR.py'
rule mean_scores_LSSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/LSSVR_trial_' + str(config['trial']) + '/inner/LSSVR_{file}_{kernel}_{kernel_param}_C{C}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/LSSVR_trial_' + str(config['trial']) + '/inner/LSSVR_{file}_{kernel}_{kernel_param}_C{C}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_LSSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/LSSVR_trial_' + str(config['trial']) + '/inner/LSSVR_{file}_{kernel}_{kernel_param}_C{C}_split{k}_mean_{metric}.npy', kernel=config['kernel'], kernel_param=config['kernel_param'], C=config['C'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/LSSVR_trial_' + str(config['trial']) + '/inner/LSSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_LSSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/LSSVR_trial_' + str(config['trial']) + '/inner/LSSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/LSSVR_trial_' + str(config['trial']) + '/outer/LSSVR_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/LSSVR.py'
if 'MSVR' in config['solver']:
rule train_and_validate_MSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR_trial_' + str(config['trial']) + '/inner/MSVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/MSVR.py'
rule mean_scores_MSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR_trial_' + str(config['trial']) + '/inner/MSVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR_trial_' + str(config['trial']) + '/inner/MSVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_MSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR_trial_' + str(config['trial']) + '/inner/MSVR_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_mean_{metric}.npy', kernel=config['kernel'], kernel_param=config['kernel_param'], C=config['C'], eps=config['eps'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR_trial_' + str(config['trial']) + '/inner/MSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_MSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR_trial_' + str(config['trial']) + '/inner/MSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR_trial_' + str(config['trial']) + '/outer/MSVR_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/MSVR.py'
if 'MSVR2' in config['solver']:
rule train_and_validate_MSVR2:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR2_trial_' + str(config['trial']) + '/inner/MSVR2_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/MSVR2.py'
rule mean_scores_MSVR2:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR2_trial_' + str(config['trial']) + '/inner/MSVR2_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR2_trial_' + str(config['trial']) + '/inner/MSVR2_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_MSVR2:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR2_trial_' + str(config['trial']) + '/inner/MSVR2_{file}_{kernel}_{kernel_param}_C{C}_eps{eps}_split{k}_mean_{metric}.npy', kernel=config['kernel'], kernel_param=config['kernel_param'], C=config['C'], eps=config['eps'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR2_trial_' + str(config['trial']) + '/inner/MSVR2_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_MSVR2:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR2_trial_' + str(config['trial']) + '/inner/MSVR2_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MSVR2_trial_' + str(config['trial']) + '/outer/MSVR2_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/MSVR2.py'
if 'ELSSVR' in config['solver']:
rule train_and_validate_ELSSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ELSSVR_trial_' + str(config['trial']) + '/inner/ELSSVR_{file}_{kernel}_{kernel_param}_C{C}_zeta{zeta}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/ELSSVR.py'
rule mean_scores_ELSSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ELSSVR_trial_' + str(config['trial']) + '/inner/ELSSVR_{file}_{kernel}_{kernel_param}_C{C}_zeta{zeta}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ELSSVR_trial_' + str(config['trial']) + '/inner/ELSSVR_{file}_{kernel}_{kernel_param}_C{C}_zeta{zeta}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_ELSSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ELSSVR_trial_' + str(config['trial']) + '/inner/ELSSVR_{file}_{kernel}_{kernel_param}_C{C}_zeta{zeta}_split{k}_mean_{metric}.npy', kernel=config['kernel'], kernel_param=config['kernel_param'], C=config['C'], zeta=config['zeta'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ELSSVR_trial_' + str(config['trial']) + '/inner/ELSSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_ELSSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ELSSVR_trial_' + str(config['trial']) + '/inner/ELSSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ELSSVR_trial_' + str(config['trial']) + '/outer/ELSSVR_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/ELSSVR.py'
if 'MLSSVR' in config['solver']:
rule train_and_validate_MLSSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MLSSVR_trial_' + str(config['trial']) + '/inner/MLSSVR_{file}_{kernel}_{kernel_param}_C{C}_CC{CC}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/MLSSVR.py'
rule mean_scores_MLSSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MLSSVR_trial_' + str(config['trial']) + '/inner/MLSSVR_{file}_{kernel}_{kernel_param}_C{C}_CC{CC}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MLSSVR_trial_' + str(config['trial']) + '/inner/MLSSVR_{file}_{kernel}_{kernel_param}_C{C}_CC{CC}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_MLSSVR:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MLSSVR_trial_' + str(config['trial']) + '/inner/MLSSVR_{file}_{kernel}_{kernel_param}_C{C}_CC{CC}_split{k}_mean_{metric}.npy', kernel=config['kernel'], kernel_param=config['kernel_param'], C=config['C'], CC=config['CC'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MLSSVR_trial_' + str(config['trial']) + '/inner/MLSSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_MLSSVR:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MLSSVR_trial_' + str(config['trial']) + '/inner/MLSSVR_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/MLSSVR_trial_' + str(config['trial']) + '/outer/MLSSVR_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/MLSSVR.py'
if 'ANNind' in config['solver']:
rule train_and_validate_ANNind:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANNind_trial_' + str(config['trial']) + '/inner/ANNind_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:04:59'
conda:
config['envfile']
script:
'scripts/ANN.py'
rule mean_scores_ANNind:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANNind_trial_' + str(config['trial']) + '/inner/ANNind_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANNind_trial_' + str(config['trial']) + '/inner/ANNind_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_ANNind:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANNind_trial_' + str(config['trial']) + '/inner/ANNind_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_mean_{metric}.npy', nl=config['num_layers'], hs=config['hidden_size'], lr=config['learning_rate'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANNind_trial_' + str(config['trial']) + '/inner/ANNind_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_ANNind:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANNind_trial_' + str(config['trial']) + '/inner/ANNind_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANNind_trial_' + str(config['trial']) + '/outer/ANNind_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:04:59'
conda:
config['envfile']
script:
'scripts/ANN.py'
if 'ANN' in config['solver']:
rule train_and_validate_ANN:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_inner_split{k}.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANN_trial_' + str(config['trial']) + '/inner/ANN_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:04:59'
conda:
config['envfile']
script:
'scripts/ANN.py'
rule mean_scores_ANN:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANN_trial_' + str(config['trial']) + '/inner/ANN_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_{metric}s.npy', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANN_trial_' + str(config['trial']) + '/inner/ANN_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_mean_{metric}.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/mean_scores.py'
rule get_best_inner_hyperparams_ANN:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANN_trial_' + str(config['trial']) + '/inner/ANN_{file}_nl{nl}_hs{hs}_lr{lr}_split{k}_mean_{metric}.npy', nl=config['num_layers'], hs=config['hidden_size'], lr=config['learning_rate'], allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANN_trial_' + str(config['trial']) + '/inner/ANN_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_best_inner_hyperparams.py'
rule test_ANN:
input:
expand('data/{file}.csv', allow_missing=True),
expand('data/{file}_outputs.csv', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/splits/{file}_y_outer_split{k}.npy', allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANN_trial_' + str(config['trial']) + '/inner/ANN_{file}_split{k}_best_inner_hyperparams_{metric}.json', allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/ANN_trial_' + str(config['trial']) + '/outer/ANN_{file}_split{k}_{metric}s.npy', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:04:59'
conda:
config['envfile']
script:
'scripts/ANN.py'
rule get_median_scores_and_hyperparams:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/{s}_trial_' + str(config['trial']) + '/outer/{s}_{file}_split{k}_{metric}s.npy', k=N, allow_missing=True),
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/{s}_trial_' + str(config['trial']) + '/inner/{s}_{file}_split{k}_best_inner_hyperparams_{metric}.json', k=N, allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/{s}_trial_' + str(config['trial']) + '/{s}_{file}_median_{metric}s_and_hyperparams.json', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/get_median_scores_and_hyperparams.py'
rule plot_results:
input:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/{s}_trial_' + str(config['trial']) + '/outer/{s}_{file}_split{k}_{metric}s.npy', s=config['solver'], k=N, allow_missing=True)
output:
expand('bootstrapping_test{test_percentage}_val{validation_percentage}_repeat' + str(config['repetitions']) + '/{file}_impute_{imputation}/{file}_trial_' + str(config['trial']) + '_{metric}plot.pdf', allow_missing=True)
params:
cpus = '1',
mem = '1G',
gpus = '0',
walltime = '00:00:59'
conda:
config['envfile']
script:
'scripts/plot_results.py'