-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_freqtrade.py
224 lines (173 loc) · 7.65 KB
/
train_freqtrade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import datetime
from os import access
from pathlib import Path
import mpu
import tensortrade.env.default as default
import torch as th
from freqtrade.configuration import Configuration, TimeRange
from freqtrade.data import history
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exchange import Exchange as FreqtradeExchange
from freqtrade.resolvers import StrategyResolver
from gym.spaces import Discrete, Space
from stable_baselines3.a2c.a2c import A2C
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.ppo.ppo import PPO
from tensortrade.env.default.actions import BSH, TensorTradeActionScheme
from tensortrade.env.default.rewards import PBR, RiskAdjustedReturns, SimpleProfit, TensorTradeRewardScheme
from tensortrade.env.generic import ActionScheme, TradingEnv
from tensortrade.feed.core import DataFeed, NameSpace, Stream
from tensortrade.oms.exchanges import Exchange, ExchangeOptions
from tensortrade.oms.instruments import BTC, ETH, LTC, USD, Instrument
from tensortrade.oms.orders import proportion_order
from tensortrade.oms.services.execution.simulated import execute_order
from tensortrade.oms.wallets import Portfolio, Wallet
from tb_callbacks import SaveOnStepCallback
from trading_environments import FreqtradeEnv, GymAnytrading, SimpleROIEnv
"""Settings"""
PAIR = "ADA/USDT"
TRAINING_RANGE = "20210901-20211231"
WINDOW_SIZE = 10
LOAD_PREPROCESSED_DATA = False # useful if you have to calculate a lot of features
SAVE_PREPROCESSED_DATA = True
LEARNING_TIME_STEPS = int(1e9)
LOG_DIR = "./logs/"
TENSORBOARD_LOG = "./tensorboard/"
MODEL_DIR = "./models/"
USER_DATA = Path(__file__).parent / "user_data"
"""End of settings"""
freqtrade_config = Configuration.from_files([str(USER_DATA / "config.json")])
_preprocessed_data_file = "preprocessed_data.pickle"
from gym.spaces import Discrete, Space
class BuySellHold(TensorTradeActionScheme):
"""A simple discrete action scheme where the only options are to buy, sell,
or hold.
Parameters
----------
cash : `Wallet`
The wallet to hold funds in the base instrument.
asset : `Wallet`
The wallet to hold funds in the quote instrument.
"""
registered_name = "bsh"
def __init__(self, cash: "Wallet", asset: "Wallet"):
super().__init__()
self.cash = cash
self.asset = asset
self.listeners = []
@property
def action_space(self):
return Discrete(3)
def attach(self, listener):
self.listeners += [listener]
return self
def get_orders(self, action: int, portfolio: "Portfolio"):
order = None
if action == 2: # Hold
return []
if action == 0: # Buy
if self.cash.balance == 0:
return []
order = proportion_order(portfolio, self.cash, self.asset, 1.0)
if action == 1: # Sell
if self.asset.balance == 0:
return []
order = proportion_order(portfolio, self.asset, self.cash, 1.0)
for listener in self.listeners:
listener.on_action(action)
return [order]
def reset(self):
super().reset()
def main():
strategy = StrategyResolver.load_strategy(freqtrade_config)
strategy.dp = DataProvider(freqtrade_config, FreqtradeExchange(freqtrade_config), None)
required_startup = strategy.startup_candle_count
timeframe = freqtrade_config.get("timeframe")
data = dict()
if LOAD_PREPROCESSED_DATA:
assert Path(_preprocessed_data_file).exists(), "Unable to load preprocessed data!"
data = mpu.io.read(_preprocessed_data_file)
assert PAIR in data, f"Loaded preprocessed data does not contain pair {PAIR}!"
else:
data = _load_data(freqtrade_config, timeframe, TRAINING_RANGE)
data = strategy.advise_all_indicators({PAIR: data[PAIR]})
if SAVE_PREPROCESSED_DATA:
mpu.io.write(_preprocessed_data_file, data)
pair_data = data[PAIR][required_startup:].copy()
pair_data.reset_index(drop=True, inplace=True)
del data
price_data = pair_data[["date", "open", "close", "high", "low", "volume"]].copy()
pair_data.drop(columns=["date", "open", "close", "high", "low", "volume"], inplace=True)
pair_data.fillna(0, inplace=True)
ADA = Instrument("ADA", 3, "Cardano")
price = Stream.source(list(price_data["close"]), dtype="float").rename("USD-ADA")
exchange_options = ExchangeOptions(commission=0.0035)
binance = Exchange("binance", service=execute_order, options=exchange_options)(price)
cash = Wallet(binance, 1000 * USD)
asset = Wallet(binance, 0 * ADA)
portfolio = Portfolio(USD, [cash, asset])
features = [Stream.source(list(pair_data[c]), dtype="float").rename(c) for c in pair_data.columns]
feed = DataFeed(features)
feed.compile()
renderer_feed = DataFeed(
[
Stream.source(list(price_data["date"])).rename("date"),
Stream.source(list(price_data["open"]), dtype="float").rename("open"),
Stream.source(list(price_data["high"]), dtype="float").rename("high"),
Stream.source(list(price_data["low"]), dtype="float").rename("low"),
Stream.source(list(price_data["close"]), dtype="float").rename("close"),
Stream.source(list(price_data["volume"]), dtype="float").rename("volume"),
]
)
action_scheme = BuySellHold(cash=cash, asset=asset)
# reward_scheme = PBR(price)
reward_scheme = SimpleProfit(window_size=8)
trading_env = default.create(
portfolio=portfolio,
action_scheme=action_scheme,
reward_scheme=reward_scheme,
feed=feed,
renderer_feed=renderer_feed,
window_size=WINDOW_SIZE,
max_allowed_loss=0.50,
)
trading_env = Monitor(trading_env, LOG_DIR, info_keywords=("net_worth",))
# Optional policy_kwargs
# see https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html?highlight=policy_kwargs#custom-network-architecture
# policy_kwargs = dict(activation_fn=th.nn.ReLU,
# net_arch=[dict(pi=[32, 32], vf=[32, 32])])
# policy_kwargs = dict(activation_fn=th.nn.Tanh, net_arch=[32, dict(pi=[64, 64], vf=[64, 64])])
policy_kwargs = dict(net_arch=[128, dict(pi=[128, 128], vf=[128, 128])])
start_date = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
model = PPO( # See https://stable-baselines3.readthedocs.io/en/master/guide/algos.html for other algos with discrete action space
"MlpPolicy", # MlpPolicy MultiInputPolicy
trading_env,
verbose=0,
device="cuda",
tensorboard_log=TENSORBOARD_LOG,
# n_steps = len(pair_data),
# batch_size = 1000,
# n_epochs = 20,
policy_kwargs=policy_kwargs,
)
base_name = f"{strategy.get_strategy_name()}_TensorTrade_{model.__class__.__name__}_{start_date}"
tb_callback = SaveOnStepCallback(
check_freq=10000, save_name=f"best_model_{base_name}", save_dir=MODEL_DIR, log_dir=LOG_DIR, verbose=1
)
print(f"You can run tensorboard with: 'tensorboard --logdir {Path(TENSORBOARD_LOG).absolute()}'")
print("Learning started.")
model.learn(total_timesteps=LEARNING_TIME_STEPS, callback=tb_callback)
model.save(f"{MODEL_DIR}final_model_{base_name}")
def _load_data(config, timeframe, timerange):
timerange = TimeRange.parse_timerange(timerange)
return history.load_data(
datadir=config["datadir"],
pairs=config["pairs"],
timeframe=timeframe,
timerange=timerange,
startup_candles=config["startup_candle_count"],
fail_without_data=True,
data_format=config.get("dataformat_ohlcv", "json"),
)
if __name__ == "__main__":
main()