-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestFile7.m
287 lines (202 loc) · 6.68 KB
/
testFile7.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
clear all
close all
clc
image = imread('airfield-05.tif');
[x, y, z] = size(image);
for i = 1 : 1 : x
for j = 1 : 1 : y
gray_image(i, j) = image(i, j);
end
end
%% Gaussian Noise
variance = 0.01;
mean = 0.1;
gaussianNoised = gaussianNoise(gray_image,variance, mean);
gaussianNoisedImg = ( 255 * gaussianNoised ) + double(gray_image);
gaussianNoisedImg = uint8(gaussianNoisedImg);
imshow(gaussianNoised)
title('Gaussian Noise')
figure
imshow(gaussianNoisedImg)
title('Gaussian Noised Image')
figure
%% Uniform Noise
lower = 10;
higher = 65 ;
UniformNoised = uniformNoise(image,lower,higher);
UniformNoisedImg = (UniformNoised ) + double(gray_image);
UniformNoisedImg = uint8(UniformNoisedImg);
imshow(uint8(UniformNoised))
title('Uniform Noise')
figure
imshow(UniformNoisedImg)
title('Uniform Noised Image')
figure
%% Exponential Noise
coef = 100 ;
expNoiesed = exponentialNoise(image,coef);
expNoiesedImg = (expNoiesed ) + double(gray_image);
expNoiesedImg = uint8(expNoiesedImg);
imshow(uint8(expNoiesed))
title('Exponential Noise')
figure
imshow(expNoiesedImg)
title('Exponential Noised Image')
figure
%% Salt Pepper Noise
low = 4;
high = 250;
outimg = saltPepperNoise(gray_image, low, high);
saltPepperNoisedImg = (outimg) .* double(gray_image);
saltPepperNoisedImg = uint8(saltPepperNoisedImg);
imshow(outimg)
title('Salt Pepper Noise')
figure
imshow(saltPepperNoisedImg)
title('Salt Pepper Noised Image')
figure
%% Testing Max Filter
% Reduce dark noise, increace bright noise
% for Pepper Noise
filterSize = 3 ;
maxFilteredImg = maxFilter(gaussianNoisedImg,filterSize);
subplot(2 ,2 ,1)
imshow(maxFilteredImg)
s1 = 'Max Filter for Gaussian Noised Image';
title(s1)
maxFilteredImg = maxFilter(UniformNoisedImg,filterSize);
subplot(2 ,2 ,2)
imshow(maxFilteredImg)
s1 = 'Max Filter for Uniform Noised Image';
title(s1)
maxFilteredImg = maxFilter(expNoiesedImg,filterSize);
subplot(2 ,2 ,3)
imshow(maxFilteredImg)
s1 = 'Max Filter for Exponential Noised Image';
title(s1)
maxFilteredImg = maxFilter(saltPepperNoisedImg,filterSize);
subplot(2 ,2 ,4)
imshow(maxFilteredImg)
s1 = 'Max Filter for Salt-Pepper Noised Image';
title(s1)
figure
%% Testing Min Filter
% Reduce bright noise, increace dark noise
% for Salt Noise
filterSize = 3 ;
minFilteredImg = minFilter(gaussianNoisedImg,filterSize);
subplot(2 ,2 ,1)
imshow(minFilteredImg)
s1 = 'Min Filter for Gaussian Noised Image';
title(s1)
minFilteredImg = minFilter(UniformNoisedImg,filterSize);
subplot(2 ,2 ,2)
imshow(minFilteredImg)
s1 = 'Min Filter for Uniform Noised Image';
title(s1)
minFilteredImg = minFilter(expNoiesedImg,filterSize);
subplot(2 ,2 ,3)
imshow(minFilteredImg)
s1 = 'Min Filter for Exponential Noised Image';
title(s1)
minFilteredImg = minFilter(saltPepperNoisedImg,filterSize);
subplot(2 ,2 ,4)
imshow(minFilteredImg)
s1 = 'Min Filter for Salt-Pepper Noised Image';
title(s1)
figure
%% Testing Median Filter
% For Salt - Pepper Noise
filterSize = 3 ;
medianFilteredImg = medianFilter(saltPepperNoisedImg,filterSize);
imshow(medianFilteredImg)
title('Median Filtered Image for Salt Pepper Noise')
figure
%% Testing Mid Point Filter
% each pixel is replaced with the average of maximum and minimum
% of color values of the pixels in a surrounding region
filterSize = 3;
% midPointFilteredImg = midPointFilter(UniformNoisedImg,filterSize);
%
% imshow(midPointFilteredImg)
% title('Mid Point Filtered Image')
% figure
midFilteredImg = midPointFilter(gaussianNoisedImg,filterSize);
subplot(2 ,2 ,1)
imshow(midFilteredImg)
s1 = 'Mid Point Filter for Gaussian Noised Image';
title(s1)
midFilteredImg = midPointFilter(UniformNoisedImg,filterSize);
subplot(2 ,2 ,2)
imshow(midFilteredImg)
s1 = 'Mid Point Filter for Uniform Noised Image';
title(s1)
midFilteredImg = midPointFilter(expNoiesedImg,filterSize);
subplot(2 ,2 ,3)
imshow(midFilteredImg)
s1 = 'Mid Point Filter for Exponential Noised Image';
title(s1)
midFilteredImg = midPointFilter(saltPepperNoisedImg,filterSize);
subplot(2 ,2 ,4)
imshow(midFilteredImg)
s1 = 'Mid Point Filter for Salt-Pepper Noised Image';
title(s1)
figure
%% Arithmetic Mean Filter
% removes short tailed noise such as uniform and Gaussian type noise from the image at the cost of blurring the image
% arithmMeanFilteredImg = arithmeticMeanFilter(UniformNoisedImg);
% imshow(arithmMeanFilteredImg)
% title('Arithmetic Mean Filtered Image for Uniform Noised Image')
% figure
%
% arithmMeanFilteredImg = arithmeticMeanFilter(gaussianNoisedImg);
% imshow(arithmMeanFilteredImg)
% title('Arithmetic Mean Filtered Image for Gaussian Noised Image')
% figure
arithmMeanFilteredImg = arithmeticMeanFilter(gaussianNoisedImg);
subplot(2 ,2 ,1)
imshow(arithmMeanFilteredImg)
s1 = 'Arithmetic Mean Filter for Gaussian Noised Image';
title(s1)
arithmMeanFilteredImg = arithmeticMeanFilter(UniformNoisedImg);
subplot(2 ,2 ,2)
imshow(arithmMeanFilteredImg)
s1 = 'Arithmetic Mean Filter for Uniform Noised Image';
title(s1)
arithmMeanFilteredImg = arithmeticMeanFilter(expNoiesedImg);
subplot(2 ,2 ,3)
imshow(arithmMeanFilteredImg)
s1 = 'Arithmetic Mean Filter for Exponential Noised Image';
title(s1)
arithmMeanFilteredImg = arithmeticMeanFilter(saltPepperNoisedImg);
subplot(2 ,2 ,4)
imshow(arithmMeanFilteredImg)
s1 = 'Arithmetic Mean Filter for Salt-Pepper Noised Image';
title(s1)
figure
%% Geometric Mean Filter
% color value of each pixel is replaced with the geometric mean of color values of the pixels in a surrounding region
% geometricMeanFilteredImg = geometricMeanFilter(UniformNoisedImg);
% imshow(geometricMeanFilteredImg)
% title('Geometric Mean Filtered Image')
% figure
geometricMeanFilteredImg = geometricMeanFilter(gaussianNoisedImg);
subplot(2 ,2 ,1)
imshow(geometricMeanFilteredImg)
s1 = 'Geometric Mean Filter for Gaussian Noised Image';
title(s1)
geometricMeanFilteredImg = geometricMeanFilter(UniformNoisedImg);
subplot(2 ,2 ,2)
imshow(geometricMeanFilteredImg)
s1 = 'Geometric Mean Filter for Uniform Noised Image';
title(s1)
geometricMeanFilteredImg = geometricMeanFilter(expNoiesedImg);
subplot(2 ,2 ,3)
imshow(geometricMeanFilteredImg)
s1 = 'Geometric Mean Filter for Exponential Noised Image';
title(s1)
geometricMeanFilteredImg = geometricMeanFilter(saltPepperNoisedImg);
subplot(2 ,2 ,4)
imshow(geometricMeanFilteredImg)
s1 = 'Geometric Mean Filter for Salt-Pepper Noised Image';
title(s1)