forked from luanfujun/deep-painterly-harmonization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_paint.lua
executable file
·738 lines (623 loc) · 24.6 KB
/
neural_paint.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
require 'torch'
require 'nn'
require 'image'
require 'optim'
require 'loadcaffe'
require 'libcuda_utils'
require 'cutorch'
require 'cunn'
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-style_image', 'examples/inputs/seated-nude.jpg', 'Style target image')
cmd:option('-content_image', 'examples/inputs/tubingen.jpg', 'Content target image')
cmd:option('-cnnmrf_image', 'examples/inputs/cnnmrf.jpg', 'CNNMRF image')
cmd:option('-tmask_image', 'examples/inputs/t_mask.jpg', 'Content tight mask image')
cmd:option('-mask_image', 'examples/inputs/t_mask.jpg', 'Content loose mask image')
cmd:option('-image_size', 700, 'Maximum height / width of generated image')
cmd:option('-gpu', 0, 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
-- Optimization optins
cmd:option('-init', 'image', 'random|image')
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam')
cmd:option('-learning_rate', 0.1)
-- Output options
cmd:option('-print_iter', 50)
cmd:option('-save_iter', 100)
cmd:option('-index', 0)
cmd:option('-output_image', 'out.png')
-- Other options
cmd:option('-original_colors', 0)
cmd:option('-pooling', 'max', 'max|avg')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-backend', 'nn', 'nn|cudnn|clnn')
cmd:option('-cudnn_autotune', false)
cmd:option('-seed', 316)
cmd:option('-num_iterations', 1000)
-- Patchmatch
cmd:option('-patchmatch_size', 3)
-- RefineNNF
cmd:option('-refine_size', 5)
cmd:option('-refine_iter', 1)
-- Ring
cmd:option('-ring_radius', 1)
-- Wiki Art
cmd:option('-wikiart_fn', 'wikiart_output.txt')
local function main(params)
cutorch.setDevice(params.gpu + 1)
cutorch.setHeapTracking(true)
torch.manualSeed(params.seed)
idx = cutorch.getDevice()
print('Gpu, idx = ', params.gpu, idx)
local layers = string.format('relu1_1,relu2_1,relu3_1,relu4_1'):split(",")
local content_layers = string.format('relu4_1'):split(",")
local style_layers = string.format('relu1_1,relu2_1,relu3_1,relu4_1'):split(",")
local hist_layers = string.format('relu1_1,relu4_1'):split(",")
local content_weight = 1.0
local style_weight = 1.0
local hist_weight = 1.0
local tv_weight = 1.0
local num_iterations = params.num_iterations
local content_image = image.load(params.content_image, 3)
content_image = image.scale(content_image, params.image_size, 'bilinear')
local content_image_caffe = preprocess(content_image):float():cuda()
local style_image = image.load(params.style_image, 3)
style_image = image.scale(style_image, params.image_size, 'bilinear')
local style_image_caffe = preprocess(style_image):float():cuda()
local cnnmrf_image = image.load(params.cnnmrf_image, 3)
cnnmrf_image = image.scale(cnnmrf_image, params.image_size, 'bilinear')
local cnnmrf_image_caffe = preprocess(cnnmrf_image):float():cuda()
-- Loose mask
local mask_image = image.load(params.mask_image, 3)[1]
mask_image = image.scale(mask_image, params.image_size, 'bilinear'):float()
local mask_image_ori = mask_image:clone()
-- Tight mask
local tmask_image = image.load(params.tmask_image, 3)
tmask_image = image.scale(tmask_image, params.image_size, 'bilinear'):float()
local tmask_image_ori = tmask_image:clone()
local tr = 3;
local tkernel = image.gaussian(2*tr+1, tr, 1, true):float()
tmask_image = image.convolve(tmask_image, tkernel, 'same')
-- Note: Modify here for custom painting composites
-- or use our pre-trained model (coming soon) on wikiart dataset...
style_weight, hist_weight, tv_weight = params_wikiart_genre(style_image, params.index, params.wikiart_fn)
-- content_weight = 1.0
-- style_weight = 1.0
-- hist_weight = 1.0
-- tv_weight = 10.0
-- load VGG-19 network
local cnn = loadcaffe.load(params.proto_file, params.model_file, params.backend):float():cuda()
local feature_extractor = nn.Sequential()
local input_features, target_features, match_features, match_masks = {}, {}, {}, {}
local layerIdx = 1
for i = 1, cnn:size() do
if layerIdx <= #layers then
local layer = cnn:get(i)
local name = layer.name
feature_extractor:add(layer)
if name == layers[layerIdx] then
print("Extracting feature layer ", i, ":", layer.name)
local input = feature_extractor:forward(cnnmrf_image_caffe):clone()
local target = feature_extractor:forward(style_image_caffe):clone()
table.insert(input_features, input)
table.insert(target_features, target)
layerIdx = layerIdx + 1
end
end
end
feature_extractor = nil
collectgarbage()
-- Feature matching & manipulation
local curr_corr, corr = nil, nil
local curr_mask, mask = nil, nil
for i = #layers, 1, -1 do
local name = layers[i]
print("Working on patchmatch layer ", i, ":", name)
local A = input_features[i]:clone()
local BP = target_features[i]:clone()
local N_A = normalize_features(A)
local N_BP = normalize_features(BP)
local c, h, w = A:size(1), A:size(2), A:size(3)
local _, h2, w2 = BP:size(1), BP:size(2), BP:size(3)
if h ~= h2 or w ~= w2 then
print(" Input and target should have the same dimension! h, h2, w, w2 = ", h, h2, w, w2)
end
local tmask = image.scale(torch.gt(tmask_image_ori[1], 0.1), w, h, 'simple'):cudaInt()
if i == #layers then -- i = 5, relu5_1
print(" Initializing NNF in layer ", i, ":", name, " with patch ", params.patchmatch_size)
print(" Brute-force patch matching...")
local init_corr = cuda_utils.patchmatch(N_A, N_BP, params.patchmatch_size)
local guide = image.scale(style_image, w, h, 'bilinear'):float():cuda()
print(" Refining NNF...")
corr = cuda_utils.refineNNF(N_A, N_BP, init_corr, guide, tmask, params.refine_size, params.refine_iter)
mask = cuda_utils.Ring2(N_A, N_BP, corr, params.ring_radius, tmask)
curr_corr = corr
curr_mask = mask
else -- i = 4, relu4_1
print(" Upsampling NNF in layer ", i, ":", name)
curr_corr = cuda_utils.upsample_corr(corr, h, w)
curr_mask = image.scale(mask:double(), w, h, 'simple'):cudaInt()
end
table.insert(match_features, BP)
table.insert(match_masks, curr_mask)
end
local gram_features, hist_features = {}, {}
local gram_match_masks, hist_match_masks = {}, {}
local gramIdx, histIdx = 1, 1
for i = 1, #layers do
local name = layers[i]
local features = match_features[#layers - i + 1]
local mask = match_masks[#layers - i + 1]
if gramIdx <= #style_layers or histIdx <= #hist_layers then
if name == style_layers[gramIdx] then
table.insert(gram_features, features)
table.insert(gram_match_masks, mask)
gramIdx = gramIdx + 1
end
if name == hist_layers[histIdx] then
table.insert(hist_features, features)
table.insert(hist_match_masks, mask)
histIdx = histIdx + 1
end
end
end
input_features = nil
target_features = nil
collectgarbage()
-- Set up the network, inserting style and content loss modules
local content_losses, style_losses, hist_losses = {}, {}, {}
local next_content_idx, next_style_idx, next_hist_idx = 1, 1, 1
local net = nn.Sequential()
local tv_mod = nn.TVLoss(tv_weight, mask_image):float():cuda()
net:add(tv_mod)
for i = 1, cnn:size() do
if next_content_idx <= #content_layers or next_style_idx <= #style_layers or next_hist_idx <= #hist_layers then
local layer = cnn:get(i)
local name = layer.name
local layer_type = torch.type(layer)
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling')
local is_conv = (layer_type == 'nn.SpatialConvolution' or layer_type == 'cudnn.SpatialConvolution')
net:add(layer)
if is_pooling then
mask_image = image.scale(mask_image, math.ceil(mask_image:size(2)/2), math.ceil(mask_image:size(1)/2))
elseif is_conv then
local sap = nn.SpatialAveragePooling(3,3,1,1,1,1):float()
mask_image = sap:forward(mask_image:repeatTensor(1,1,1))[1]:clone()
end
if name == content_layers[next_content_idx] then
print("Setting up content layer", i, ":", layer.name)
local input = net:forward(content_image_caffe):clone()
local mask = mask_image:float():repeatTensor(1,1,1):expandAs(input):cuda()
local loss_module = nn.ContentLoss(content_weight, input, mask):float():cuda()
net:add(loss_module)
table.insert(content_losses, loss_module)
next_content_idx = next_content_idx + 1
end
if name == style_layers[next_style_idx] then
print("Setting up style layer ", i, ":", layer.name)
local gram = GramMatrix():float():cuda()
local input = net:forward(cnnmrf_image_caffe):clone()
local target = net:forward(style_image_caffe):clone()
local mask = mask_image:clone():repeatTensor(1,1,1):expandAs(target):cuda()
local c, h1, w1 = input:size(1), input:size(2), input:size(3)
local _, h2, w2 = target:size(1), target:size(2), target:size(3)
local gram_feature = gram_features[next_style_idx]
local gram_mask = gram_match_masks[next_style_idx] --mask_image --torch.ones(h1, w1) --gram_match_masks[next_style_idx]
local gram_msk = gram_mask:float():repeatTensor(1,1,1):expandAs(input):cuda()
local target_gram = gram:forward(torch.cmul(gram_feature, gram_msk)):clone()
target_gram:div(gram_mask:sum() * c)
local norm = params.normalize_gradients
local loss_module = nn.StyleLoss(style_weight, target_gram, mask):float():cuda()
net:add(loss_module)
table.insert(style_losses, loss_module)
next_style_idx = next_style_idx + 1
if name == hist_layers[next_hist_idx] then
print("Setting up histogram layer", i, ":", layer.name)
local maskI = torch.gt(mask_image, 0.1)
local maskJ = hist_match_masks[next_hist_idx]:byte() -- maskI:clone() --torch.ones(h1, w1):byte() --
local hist_feature = hist_features[next_hist_idx]
local loss_module = nn.HistLoss(hist_weight, input, hist_feature, 256, maskI, maskJ, mask_image):float():cuda()
net:add(loss_module)
table.insert(hist_losses, loss_module)
next_hist_idx = next_hist_idx + 1
end
end
end
end
-- We don't need the base CNN anymore, so clean it up to save memory.
cnn = nil
for i=1,#net.modules do
local module = net.modules[i]
if torch.type(module) == 'nn.SpatialConvolutionMM' then
-- remove these, not used, but uses gpu memory
module.gradWeight = nil
module.gradBias = nil
end
end
collectgarbage()
-- Initialize the image
if params.seed >= 0 then
torch.manualSeed(params.seed)
end
local img = nil
if params.init == 'random' then
img = torch.randn(content_image:size()):float():cuda():mul(0.001)
elseif params.init == 'image' then
img = content_image_caffe:clone():float():cuda()
else
error('Invalid init type')
end
-- Run it through the network once to get the proper size for the gradient
-- All the gradients will come from the extra loss modules, so we just pass
-- zeros into the top of the net on the backward pass.
local y = net:forward(img)
local dy = img.new(#y):zero()
-- Declaring this here lets us access it in maybe_print
local optim_state = nil
if params.optimizer == 'lbfgs' then
optim_state = {
maxIter = num_iterations,
verbose=true,
tolX=-1,
tolFun=-1,
learningRate=params.learning_rate,
}
elseif params.optimizer == 'adam' then
optim_state = {
learningRate = params.learning_rate,
}
else
error(string.format('Unrecognized optimizer "%s"', params.optimizer))
end
local function maybe_print(t, loss)
local verbose = (params.print_iter > 0 and t % params.print_iter == 0)
if verbose then
print(string.format('Iteration %d / %d', t, num_iterations))
for i, loss_module in ipairs(content_losses) do
print(string.format(' Content %d loss: %f', i, loss_module.loss))
end
for i, loss_module in ipairs(style_losses) do
print(string.format(' Style %d loss: %f', i, loss_module.loss))
end
for i, loss_module in ipairs(hist_losses) do
print(string.format(' Histogram %d loss: %f', i, loss_module.loss))
end
print(string.format(' Total loss: %f', loss))
end
end
local function maybe_save(t)
local should_save = params.save_iter > 0 and t % params.save_iter == 0
should_save = should_save or t == num_iterations
if should_save then
-- local disp = deprocess(img:double())
local disp = torch.cmul(img:double(), tmask_image:double())
disp:add(torch.cmul(style_image_caffe:double(), 1.0 - tmask_image:double()))
disp = deprocess(disp)
disp = image.minmax{tensor=disp, min=0, max=1}
local filename = build_filename(params.output_image, t)
if t == num_iterations then
filename = params.output_image
end
-- Maybe perform postprocessing for color-independent style transfer
if params.original_colors == 1 then
disp = original_colors(content_image, disp)
end
image.save(filename, disp)
end
end
-- Function to evaluate loss and gradient. We run the net forward and
-- backward to get the gradient, and sum up losses from the loss modules.
-- optim.lbfgs internally handles iteration and calls this fucntion many
-- times, so we manually count the number of iterations to handle printing
-- and saving intermediate results.
local num_calls = 0
local function feval(x)
num_calls = num_calls + 1
net:forward(x)
local grad = net:updateGradInput(x, dy)
local msk = mask_image_ori:clone()
msk = msk:repeatTensor(1,1,1):expandAs(x):cuda()
grad:cmul(msk)
local loss = 0
for _, mod in ipairs(content_losses) do
loss = loss + mod.loss
end
for _, mod in ipairs(style_losses) do
loss = loss + mod.loss
end
for _, mod in ipairs(hist_losses) do
loss = loss + mod.loss
end
maybe_print(num_calls, loss)
maybe_save(num_calls)
collectgarbage()
-- optim.lbfgs expects a vector for gradients
return loss, grad:view(grad:nElement())
end
-- Run optimization.
if params.optimizer == 'lbfgs' then
print('Running optimization with L-BFGS')
local x, losses = optim.lbfgs(feval, img, optim_state)
elseif params.optimizer == 'adam' then
print('Running optimization with ADAM')
for t = 1, num_iterations do
local x, losses = optim.adam(feval, img, optim_state)
end
end
end
function build_filename(output_image, iteration)
local ext = paths.extname(output_image)
local basename = paths.basename(output_image, ext)
local directory = paths.dirname(output_image)
return string.format('%s/%s_%d.%s',directory, basename, iteration, ext)
end
-- Preprocess an image before passing it to a Caffe model.
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR,
-- and subtract the mean pixel.
function preprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):mul(256.0)
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img:add(-1, mean_pixel)
return img
end
-- Undo the above preprocessing.
function deprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img = img + mean_pixel
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):div(256.0)
return img
end
-- Combine the Y channel of the generated image and the UV channels of the
-- content image to perform color-independent style transfer.
function original_colors(content, generated)
local generated_y = image.rgb2yuv(generated)[{{1, 1}}]
local content_uv = image.rgb2yuv(content)[{{2, 3}}]
return image.yuv2rgb(torch.cat(generated_y, content_uv, 1))
end
-- Normalize 3D feature map in channel dimension
function normalize_features(x)
local c, h, w = x:size(1), x:size(2), x:size(3)
print("Normalizing feature map with dim3[x] = ", c, h, w)
local x2 = torch.pow(x, 2)
local sum_x2 = torch.sum(x2, 1)
local dis_x2 = torch.sqrt(sum_x2)
local Nx = torch.cdiv(x, dis_x2:expandAs(x) + 1e-8)
-- local Nx = torch.cdiv(x, dis_x2:expandAs(x))
return Nx
end
-- Compute weight map
function compute_weightMap(x)
local c, h, w = x:size(1), x:size(2), x:size(3)
print("Computing weight map with dim3[x] = ", c, h, w)
local x2 = torch.pow(x, 2)
local sum_x2 = torch.sum(x2, 1)[1]
local sum_min, sum_max = sum_x2:min(), sum_x2:max()
local wMap = (sum_x2 - sum_min) / (sum_max - sum_min + 1e-8)
-- local wMap = (sum_x2 - sum_min) / (sum_max - sum_min)
return wMap
end
-- Estimate noise level
function noise_estimate(input)
local C, H, W = input:size(1), input:size(2), input:size(3)
local x_diff = torch.zeros(3, H - 1, W - 1)
local y_diff = torch.zeros(3, H - 1, W - 1)
x_diff:copy(input[{{}, {1, -2}, {1, -2}}])
x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}])
y_diff:copy(input[{{}, {1, -2}, {1, -2}}])
y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}])
local x_diff_sqr = torch.pow(x_diff, 2)
local y_diff_sqr = torch.pow(y_diff, 2)
local diff_sqr = (x_diff_sqr + y_diff_sqr) / 2
local noise, idx = diff_sqr:view(diff_sqr:nElement()):median()
return noise[1]
end
function params_wikiart_genre(style_image, index, wikiart_fn)
-- Estimate painting TV noise level
local tv_nosie = noise_estimate(style_image)
local tv_weight = 10.0 / (1.0 + torch.exp(1e4 * tv_nosie - 25.0))
local hist_weight = 1.0
local content_weight = 1.0
local style_weight = 1.0
local fid = io.open(wikiart_fn)
local sty_idx = 0
-- local label = nil
local sty_lev = nil
for line in fid:lines() do
if sty_idx == index then
print(line)
local terms = line:split("=")
sty_lev = tonumber(terms[4])
end
sty_idx = sty_idx + 1
end
style_weight = sty_lev
hist_weight = (10.0 - tv_weight) * sty_lev
tv_weight = tv_weight * sty_lev
io.close(fid)
return style_weight, hist_weight, tv_weight
end
-- Define an nn Module to compute content loss in-place
local ContentLoss, parent = torch.class('nn.ContentLoss', 'nn.Module')
function ContentLoss:__init(strength, input, msk)
parent.__init(self)
self.strength = strength
self.input = torch.cmul(input, msk)
self.loss = 0
self.crit = nn.MSECriterion()
self.msk = msk
end
function ContentLoss:updateOutput(input)
self.output = input
return self.output
end
function ContentLoss:updateGradInput(input, gradOutput)
self.loss = self.crit:forward(torch.cmul(input, self.msk), self.input) * self.strength
self.gradInput = self.crit:backward(torch.cmul(input, self.msk), self.input)
self.gradInput:cmul(self.msk)
local magnitude = torch.norm(self.gradInput, 2)
self.gradInput:div(magnitude + 1e-8)
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
self.gradInput:cmul(self.msk)
return self.gradInput
end
-- Returns a network that computes the CxC Gram matrix from inputs
-- of size C x H x W
function GramMatrix()
local net = nn.Sequential()
net:add(nn.View(-1):setNumInputDims(2))
local concat = nn.ConcatTable()
concat:add(nn.Identity())
concat:add(nn.Identity())
net:add(concat)
net:add(nn.MM(false, true))
return net
end
-- Define an nn Module to compute style loss in-place
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module')
function StyleLoss:__init(strength, target_gram, msk)
parent.__init(self)
self.strength = strength
self.target_gram = target_gram
self.loss = 0
self.gram = GramMatrix()
self.G = nil
self.crit = nn.MSECriterion()
self.msk = msk
self.msk_mean = msk:mean()
end
function StyleLoss:updateOutput(input)
self.G = self.gram:forward(torch.cmul(input, self.msk))
self.G:div(self.msk_mean * input:nElement())
self.loss = self.crit:forward(self.G, self.target_gram)
self.loss = self.loss * self.strength
self.output = input
return self.output
end
function StyleLoss:updateGradInput(input, gradOutput)
local dG = self.crit:backward(self.G, self.target_gram)
dG:div(self.msk_mean * input:nElement())
self.gradInput = self.gram:backward(torch.cmul(input, self.msk), dG)
self.gradInput:cmul(self.msk)
local magnitude = torch.norm(self.gradInput, 2)
self.gradInput:div(magnitude + 1e-8)
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
self.gradInput:cmul(self.msk)
return self.gradInput
end
-- Histogram loss from: https://arxiv.org/pdf/1701.08893.pdf
local HistLoss, parent = torch.class('nn.HistLoss', 'nn.Module')
function HistLoss:__init(strength, input, target, nbins, maskI, maskJ, mask)
parent.__init(self)
self.strength = strength
self.loss = 0
self.nbins = nbins
self.maskI = maskI
self.nI = maskI:sum()
local c, h1, w1 = input:size(1), input:size(2), input:size(3)
self.msk = self.maskI:float():repeatTensor(1,1,1):expandAs(input):cuda()
self.msk_sub = torch.cmul(torch.ones(c, h1, w1):float(), 1 - self.msk:float()):cuda()
self.mask = mask:float():repeatTensor(1,1,1):expandAs(input):cuda()
self.nJ = maskJ:sum()
local c, h2, w2 = target:size(1), target:size(2), target:size(3)
local mJ = maskJ:repeatTensor(1,1,1):expandAs(target)
local J = target:float()
local _J = J[mJ]:view(c, self.nJ)
self.minJ, self.maxJ = _J:min(2), _J:max(2)
self.histJ = cuda_utils.histogram(target, self.nbins, self.minJ:cuda(), self.maxJ:cuda(), maskJ:cuda()):float()
self.histJ:mul(self.nI / self.nJ)
self.cumJ = torch.cumsum(self.histJ, 2)
end
function HistLoss:updateOutput(input)
self.output = input
return self.output
end
function HistLoss:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):zero()
local I = input
local c, h1, w1 = I:size(1), I:size(2), I:size(3)
local _I = torch.cmul(I, self.msk) - self.msk_sub
local sortI, idxI = torch.sort(_I:view(c, h1*w1), 2)
local R = I:clone()
cuda_utils.hist_remap2(I, self.nI, self.maskI:cuda(),
self.histJ:cuda(), self.cumJ:cuda(), self.minJ, self.maxJ,
self.nbins, sortI:cuda(), idxI:cudaInt(), R)
self.gradInput:add(I)
self.gradInput:add(-1, R)
local err = self.gradInput:clone()
err:pow(2.0)
self.loss = err:sum() * self.strength / input:nElement()
local magnitude = torch.norm(self.gradInput, 2)
self.gradInput:div(magnitude + 1e-8)
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
self.gradInput:cmul(self.mask)
return self.gradInput
end
local TVLoss, parent = torch.class('nn.TVLoss', 'nn.Module')
function TVLoss:__init(strength, mask)
parent.__init(self)
self.strength = strength
self.mask = mask
self.x_diff = torch.Tensor()
self.y_diff = torch.Tensor()
self.msk = self.mask:clone():repeatTensor(3,1,1):cuda()
end
function TVLoss:updateOutput(input)
self.output = input
return self.output
end
-- TV loss backward pass inspired by kaishengtai/neuralart
function TVLoss:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):zero()
local C, H, W = input:size(1), input:size(2), input:size(3)
self.x_diff:resize(3, H - 1, W - 1)
self.y_diff:resize(3, H - 1, W - 1)
self.x_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}])
self.y_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}])
self.gradInput[{{}, {1, -2}, {1, -2}}]:add(self.x_diff):add(self.y_diff)
self.gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, self.x_diff)
self.gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, self.y_diff)
self.gradInput:cmul(self.msk)
local magnitude = torch.norm(self.gradInput, 2)
self.gradInput:div(magnitude + 1e-8)
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
self.gradInput:cmul(self.msk)
return self.gradInput
end
-- min
function min(x, y)
local res = x
if res > y then
res = y
end
return res
end
-- max
function max(x, y)
local res = x
if res < y then
res = y
end
return res
end
-- clamp
function clamp(x, x_min, x_max)
local res = x
if x < x_min then
res = x_min
end
if x > x_max then
res = x_max
end
return res
end
local params = cmd:parse(arg)
main(params)