-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_output_transformations.py
468 lines (402 loc) · 16.3 KB
/
test_output_transformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import json
from datetime import datetime
import pytest
from chispa import assert_df_equality
from pyspark.sql import SparkSession
from src.dq_suite.output_transformations import (
construct_regel_id,
create_empty_dataframe,
extract_afwijking_data,
extract_attribute_data,
extract_dataset_data,
extract_regel_data,
extract_table_data,
extract_validatie_data,
filter_df_based_on_deviating_values,
get_grouped_ids_per_deviating_value,
get_parameters_from_results,
get_target_attr_for_rule,
get_unique_deviating_values,
list_of_dicts_to_df,
)
from .test_data.test_schema import SCHEMA as AFWIJKING_SCHEMA
from .test_data.test_schema import SCHEMA2 as AFWIJKING_SCHEMA2
@pytest.mark.usefixtures("rules_file_path")
@pytest.fixture()
def read_test_rules_as_dict(rules_file_path):
with open(rules_file_path, "r") as json_file:
dq_rules_json_string = json_file.read()
return json.loads(dq_rules_json_string)
@pytest.mark.usefixtures("result_file_path")
@pytest.fixture()
def read_test_result_as_dict(result_file_path):
with open(result_file_path, "r") as json_file:
dq_result_json_string = json_file.read()
return json.loads(dq_result_json_string)
@pytest.fixture()
def spark():
return SparkSession.builder.master("local").appName("chispa").getOrCreate()
@pytest.mark.usefixtures("spark")
class TestCreateEmptyDataframe:
def test_create_empty_dataframe_returns_empty_dataframe(self, spark):
empty_dataframe = create_empty_dataframe(
spark_session=spark,
schema=AFWIJKING_SCHEMA,
)
assert len(empty_dataframe.head(1)) == 0
@pytest.mark.usefixtures("spark")
class TestListOfDictsToDf:
def test_list_of_dicts_to_df_raises_type_error(self, spark):
with pytest.raises(TypeError):
list_of_dicts_to_df(
list_of_dicts={}, spark_session=spark, schema=AFWIJKING_SCHEMA
)
def test_list_of_dicts_to_df_returns_dataframe(self, spark):
current_timestamp = datetime.now()
source_data = [
{"the_string": "test_string", "the_timestamp": current_timestamp}
]
actual_df = list_of_dicts_to_df(
list_of_dicts=source_data,
spark_session=spark,
schema=AFWIJKING_SCHEMA,
)
expected_data = [("test_string", current_timestamp)]
expected_df = spark.createDataFrame(
expected_data, ["the_string", "the_timestamp"]
)
assert_df_equality(actual_df, expected_df)
@pytest.mark.usefixtures("spark")
class TestConstructRegelId:
def test_output_columns_list_raises_type_error(self, spark):
df = spark.createDataFrame([("123", "456")], ["123", "456"])
with pytest.raises(TypeError):
construct_regel_id(df=df, output_columns_list="123")
def test_construct_regel_id_returns_correct_hash(self, spark):
input_data = [
("test_regelNaam", "test_regelParameters", "test_bronTabelId")
]
input_df = spark.createDataFrame(
input_data, ["regelNaam", "regelParameters", "bronTabelId"]
)
actual_df = construct_regel_id(
df=input_df,
output_columns_list=[
"regelId",
"regelNaam",
],
)
expected_data = [("287467170918921248", "test_regelNaam")]
expected_df = spark.createDataFrame(
expected_data, ["regelId", "regelNaam"]
)
expected_df.schema["regelId"].nullable = False
assert_df_equality(actual_df, expected_df)
class TestGetParametersFromResults:
def test_get_parameters_from_results_with_and_without_batch_id(self):
result = {
"kwargs": {
"param1": 10,
"param2": "example",
"batch_id": 123,
}
}
result2 = {"kwargs": {"param1": 10, "param2": "example"}}
expected_output = {"param1": 10, "param2": "example"}
assert get_parameters_from_results(result) == expected_output
assert get_parameters_from_results(result2) == expected_output
def get_parameters_from_results(self):
result = {"kwargs": {}}
expected_output = [{}]
assert get_parameters_from_results(result) == expected_output
def get_parameters_from_results(self):
result = {}
with pytest.raises(KeyError):
get_parameters_from_results(result)
class TestGetTargetAttrForRule:
def test_get_target_attr_for_rule_with_column(self):
result = {"kwargs": {"column": "age", "column_list": ["age", "name"]}}
expected_output = "age"
assert get_target_attr_for_rule(result) == expected_output
def test_get_target_attr_for_rule_without_column(self):
result = {"kwargs": {"column_list": ["age", "name"]}}
expected_output = ["age", "name"]
assert get_target_attr_for_rule(result) == expected_output
def test_get_target_attr_for_rule_no_column_or_column_list(self):
result = {"kwargs": {}}
expected_output = None
assert get_target_attr_for_rule(result) == expected_output
def test_get_target_attr_for_rule_no_kwargs_key(self):
result = {}
with pytest.raises(KeyError):
get_target_attr_for_rule(result)
class TestGetUniqueDeviatingValues:
def test_get_unique_deviating_values_empty_list(self):
result = get_unique_deviating_values([])
expected_output = set()
assert result == expected_output
def test_get_unique_deviating_values_list_of_strings(self):
result = get_unique_deviating_values(["apple", "banana", "cherry"])
expected_output = {"apple", "banana", "cherry"}
assert result == expected_output
def test_get_unique_deviating_values_with_duplicate_strings(self):
result = get_unique_deviating_values(["apple", "banana", "apple"])
expected_output = {"apple", "banana"}
assert result == expected_output
def test_get_unique_deviating_values_with_duplicate_dicts(self):
result = get_unique_deviating_values(
[
{"key1": "value1", "key2": "value2"},
{"key1": "value1", "key2": "value2"}, # same dict
]
)
expected_output = {(("key1", "value1"), ("key2", "value2"))}
assert result == expected_output
def test_get_unique_deviating_values_with_mixed_dicts_and_strings(self):
result = get_unique_deviating_values(
[
"apple",
{"key1": "value1", "key2": "value2"},
"banana",
{"key1": "value1", "key2": "value2"}, # same dict
"apple", # same string
]
)
expected_output = {
"apple",
"banana",
(("key1", "value1"), ("key2", "value2")),
}
assert result == expected_output
@pytest.mark.usefixtures("spark")
class TestFilterDfBasedOnDeviatingValues:
def test_filter_df_based_on_deviating_values_none_value(self, spark):
data = [("test", None, 20), ("John", None, 24), ("Alice", "Jansen", 45)]
df = spark.createDataFrame(data, AFWIJKING_SCHEMA2)
result_df = filter_df_based_on_deviating_values(None, "achternaam", df)
expected_data = [("test", None, 20), ("John", None, 24)]
expected_df = spark.createDataFrame(expected_data, AFWIJKING_SCHEMA2)
assert_df_equality(result_df, expected_df)
def test_filter_df_based_on_deviating_values_single_attribute(self, spark):
data = [
("Alice", "Jansen", 30),
("John", "Doe", 42),
("Alice", "Taylor", 28),
]
df = spark.createDataFrame(data, AFWIJKING_SCHEMA2)
result_df = filter_df_based_on_deviating_values("Alice", "voornaam", df)
expected_data = [("Alice", "Jansen", 30), ("Alice", "Taylor", 28)]
expected_df = spark.createDataFrame(expected_data, AFWIJKING_SCHEMA2)
assert_df_equality(result_df, expected_df)
def test_filter_df_based_on_deviating_values_compound_key(self, spark):
data = [
("Alice", "Jansen", 30),
("John", "Doe", 42),
("Alice", "Taylor", 28),
]
df = spark.createDataFrame(data, AFWIJKING_SCHEMA2)
result_df = filter_df_based_on_deviating_values(
[("voornaam", "Alice"), ("achternaam", "Jansen")],
["voornaam", "achternaam"],
df,
)
expected_data = [("Alice", "Jansen", 30)]
expected_df = spark.createDataFrame(expected_data, AFWIJKING_SCHEMA2)
assert_df_equality(result_df, expected_df)
@pytest.mark.usefixtures("spark")
class TestGetGroupedIdsPerDeviatingValue:
def test_get_grouped_ids_per_deviating_value(self, spark):
data = [
("Alice", "Jansen", 30),
("John", "Doe", 25),
("Alice", "Smith", 30),
("John", "Doe", 25),
]
df = spark.createDataFrame(data, AFWIJKING_SCHEMA2)
filtered_df = df.filter(df.voornaam == "Alice")
unique_identifier = ["voornaam", "achternaam"]
grouped_ids = get_grouped_ids_per_deviating_value(
filtered_df, unique_identifier
)
expected_grouped_ids = [["Alice", "Jansen"], ["Alice", "Smith"]]
assert grouped_ids == expected_grouped_ids
@pytest.mark.usefixtures("read_test_rules_as_dict")
class TestExtractDatasetData:
def test_extract_dataset_data_raises_type_error(self):
with pytest.raises(TypeError):
extract_dataset_data(dq_rules_dict="123")
def test_extract_dataset_data_returns_correct_list(
self, read_test_rules_as_dict
):
test_output = extract_dataset_data(
dq_rules_dict=read_test_rules_as_dict
)
expected_result = [
{"bronDatasetId": "the_dataset", "medaillonLaag": "the_layer"}
]
assert test_output == expected_result
@pytest.mark.usefixtures("read_test_rules_as_dict")
class TestExtractTableData:
def test_extract_table_data_raises_type_error(self):
with pytest.raises(TypeError):
extract_dataset_data(dq_rules_dict="123")
def test_extract_table_data_returns_correct_list(
self, read_test_rules_as_dict
):
test_output = extract_table_data(dq_rules_dict=read_test_rules_as_dict)
expected_result = [
{
"bronTabelId": "the_dataset_the_table",
"tabelNaam": "the_table",
"uniekeSleutel": "id",
},
{
"bronTabelId": "the_dataset_the_other_table",
"tabelNaam": "the_other_table",
"uniekeSleutel": "other_id",
},
{
"bronTabelId": "the_dataset_the_third_table_name",
"tabelNaam": "the_third_table_name",
"uniekeSleutel": "id",
},
]
assert test_output == expected_result
@pytest.mark.usefixtures("read_test_rules_as_dict")
class TestExtractAttributeData:
def test_extract_attribute_data_raises_type_error(self):
with pytest.raises(TypeError):
extract_attribute_data(dq_rules_dict="123")
def test_extract_attribute_data_returns_correct_list(
self, read_test_rules_as_dict
):
test_output = extract_attribute_data(
dq_rules_dict=read_test_rules_as_dict
)
expected_result = [
{
"bronAttribuutId": "the_dataset_the_table_the_column",
"attribuutNaam": "the_column",
"bronTabelId": "the_dataset_the_table",
},
{
"bronAttribuutId": "the_dataset_the_other_table_the_other_column",
"attribuutNaam": "the_other_column",
"bronTabelId": "the_dataset_the_other_table",
},
]
assert test_output == expected_result
@pytest.mark.usefixtures("read_test_rules_as_dict")
class TestExtractRegelData:
def test_extract_regel_data_raises_type_error(self):
with pytest.raises(TypeError):
extract_regel_data(dq_rules_dict="123")
def test_extract_regel_data_returns_correct_list(
self, read_test_rules_as_dict
):
test_output = extract_regel_data(dq_rules_dict=read_test_rules_as_dict)
expected_result = [
{
"regelNaam": "ExpectColumnDistinctValuesToEqualSet",
"regelParameters": {
"column": "the_column",
"value_set": [1, 2, 3],
},
"bronTabelId": "the_dataset_the_table",
"attribuut": "the_column",
"norm": None,
},
{
"regelNaam": "ExpectColumnValuesToBeBetween",
"regelParameters": {
"column": "the_other_column",
"min_value": 6,
"max_value": 10000,
},
"bronTabelId": "the_dataset_the_other_table",
"attribuut": "the_other_column",
"norm": None,
},
{
"regelNaam": "ExpectTableRowCountToBeBetween",
"regelParameters": {"min_value": 1, "max_value": 1000},
"bronTabelId": "the_dataset_the_other_table",
"attribuut": None,
"norm": None,
},
]
assert test_output == expected_result
@pytest.mark.usefixtures("read_test_result_as_dict")
class TestExtractValidatieData:
def test_extract_validatie_data_raises_type_error(self):
with pytest.raises(TypeError):
extract_validatie_data(
table_name="table_name",
dataset_name="dataset_name",
run_time=datetime.now(),
dq_result="123",
)
def test_extract_validatie_data_returns_correct_list(
self, read_test_result_as_dict
):
test_output = extract_validatie_data(
table_name="table_name",
dataset_name="dataset_name",
run_time=datetime.now(),
dq_result=read_test_result_as_dict,
)
test_sample = test_output[0]
del test_sample["dqDatum"] # timestamp will be impossible to get right
expected_result = {
"aantalValideRecords": 23537,
"aantalReferentieRecords": 23538,
"dqResultaat": "success",
"percentageValideRecords": 0.99,
"regelNaam": "ExpectColumnDistinctValuesToEqualSet",
"regelParameters": {
"column": "the_column",
"value_set": [1, 2, 3],
},
"bronTabelId": "dataset_name_table_name",
}
assert test_sample == expected_result
@pytest.mark.usefixtures("spark")
@pytest.mark.usefixtures("read_test_result_as_dict")
class TestExtractAfwijkingData:
def test_extract_afwijking_data_raises_type_error(self, spark):
with pytest.raises(TypeError):
mock_data = [("str1", "str2")]
mock_df = spark.createDataFrame(
mock_data, ["the_string", "the_other_string"]
)
extract_afwijking_data(
df=mock_df,
unique_identifier="id",
table_name="table_name",
dataset_name="dataset_name",
run_time=datetime.now(),
dq_result="123",
)
def test_extract_afwijking_data_returns_correct_list(
self, spark, read_test_result_as_dict
):
input_data = [("id1", None), ("id2", "the_value")]
input_df = spark.createDataFrame(input_data, ["the_key", "the_column"])
test_output = extract_afwijking_data(
df=input_df,
unique_identifier="the_key",
table_name="table_name",
dataset_name="dataset_name",
run_time=datetime.now(),
dq_result=read_test_result_as_dict,
)
test_sample = test_output[0]
del test_sample["dqDatum"] # timestamp will be impossible to get right
expected_result = {
"identifierVeldWaarde": [["id1"]],
"afwijkendeAttribuutWaarde": None,
"regelNaam": "ExpectColumnDistinctValuesToEqualSet",
"regelParameters": {"column": "the_column", "value_set": [1, 2, 3]},
"bronTabelId": "dataset_name_table_name",
}
assert test_sample == expected_result