-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsoftmax.cu
executable file
·139 lines (130 loc) · 3.94 KB
/
softmax.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include "fashion.h"
void Softmax::softmax(int N, int Width_in, host_vector<int> &label,
host_vector<float> &output)
{
float sum;
float lamda = 1e-8;
float *output_pointer = thrust::raw_pointer_cast(output.data());
float tmp;
// compute the result of each value
for (int i = 0; i < N; i++)
{
sum = 0;
for (int j = 0; j < Width_in; j++)
{
tmp = exp(output_pointer[i * Width_in + j]);
sum += tmp;
}
for (int j = 0; j < Width_in; j++)
{
tmp = exp(output_pointer[i * Width_in + j]);
output_pointer[i * Width_in + j] = tmp / (sum + lamda);
}
}
}
// N -> current minibatch size
// minib -> minibatch index
void Softmax::accuracy(int N, int Width_in,
host_vector<host_vector<float>> &Xtrain,
host_vector<int> &label, host_vector<float> &output,
int minib, int &correct_num)
{
// Prepare input and output data for softmax accuracy
int *label_pointer = thrust::raw_pointer_cast(label.data());
float *output_pointer = thrust::raw_pointer_cast(output.data());
float estimation_value = -1;
int estimation_index = -1;
// check the accuracy of each sample
for (int i = 0; i < N; i++)
{
for (int j = 0; j < Width_in; j++)
{
if (estimation_value < output_pointer[i * Width_in + j])
{
estimation_value = output_pointer[i * Width_in + j];
estimation_index = j;
}
}
if (estimation_index == label_pointer[i + minib * MINIBATCH])
{
correct_num++;
}
estimation_value = -1;
estimation_index = -1;
}
}
// N : MINIBATCH
// minib : current minibatch index
void Softmax::softmax_backward(int N, host_vector<int> label,
host_vector<float> &softmax_output,
host_vector<float> &delta, int Width_in,
int minib)
{
// Prepare input and output data for softmax accuracy
int *label_pointer = thrust::raw_pointer_cast(label.data());
float *softmax_output_pointer =
thrust::raw_pointer_cast(softmax_output.data());
float *delta_pointer = thrust::raw_pointer_cast(delta.data());
for (int i = 0; i < N; i++)
{
int tmp_label_pointer = label_pointer[i + minib * N];
for (int j = 0; j < Width_in; j++)
{
delta_pointer[i * Width_in + j] =
(softmax_output_pointer[i * Width_in + j] -
(float)(tmp_label_pointer ==
j)); // 1 is label_pointer value. minibatch sum
}
}
for (int i = 1; i < N; i++)
{
for (int j = 0; j < Width_in; j++)
{
delta_pointer[0 * Width_in + j] +=
delta_pointer[i * Width_in +
j]; // 1 is label_pointer value. minibatch sum
}
}
for (int j = 0; j < Width_in; j++)
{
delta_pointer[0 * Width_in + j] =
delta_pointer[0 * Width_in + j] / N; // average
}
for (int i = 1; i < N; i++)
{
for (int j = 0; j < Width_in; j++)
{
delta_pointer[i * Width_in + j] =
delta_pointer[0 * Width_in + j]; // scattering
}
}
}
//softmax entropy loss criterion function
void Softmax::cross_entropy_loss(int N, host_vector<int> label,
host_vector<float> &input, int Width_in,
float &loss, int minib)
{
loss = 0;
float hyper_delta = 0.000001;
float *input_pointer = thrust::raw_pointer_cast(input.data());
for (int i = 0; i < N; i++)
{
int tmp_label = label[i + minib];
for (int j = 0; j < Width_in; j++)
{
float log1;
float log2;
log1 = log(input_pointer[i * Width_in + j] + hyper_delta);
log2 = log(1 - input_pointer[i * Width_in + j] + hyper_delta);
if (tmp_label == j) // label is scalar
{
loss -= (log1 * LABEL_ONE) + log2 * (1 - LABEL_ONE); // minibatch sum
}
else
{
loss -= (log1 * LABEL_ZERO) + log2 * (1 - LABEL_ZERO); // minibatch sum
}
}
}
loss = loss / N;
}