-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
490 lines (379 loc) · 24.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
from torch import nn
from utils import *
from math import sqrt
import torchvision.models as models
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class VGGBase(nn.Module):
"""
VGG base networ to get the low level features
"""
def __init__(self):
super().__init__()
# Standard VGG network
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) # ceil mode for even dims
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) # retains size because stride & padding are 1
# Replacements for FC layers
self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) # dilated convolution
self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
# Load pretrained weights
self.load_pretrained_weights()
def forward(self, x):
"""
Forward pass of the network
:param x: input image
:return: low level feature maps from conv4_3, conv7
"""
out = F.relu(self.conv1_1(x)) # (N, 64, H=300, W=300)
out = F.relu(self.conv1_2(out)) # (N, 64, H=300, W=300)
out = self.pool1(out) # (N, 64, H=150, W=150)
out = F.relu(self.conv2_1(out)) # (N, 128, H=150, W=150)
out = F.relu(self.conv2_2(out)) # (N, 128, H=150, W=150)
out = self.pool2(out) # (N, 128, H=75, W=75)
out = F.relu(self.conv3_1(out)) # (N, 256, H=75, W=75)
out = F.relu(self.conv3_2(out)) # (N, 256, H=75, W=75)
out = F.relu(self.conv3_3(out)) # (N, 256, H=75, W=75)
out = self.pool3(out) # (N, 256, H=38, W=38) it is 38 because of ceil_mode=True
out = F.relu(self.conv4_1(out)) # (N, 512, H=38, W=38)
out = F.relu(self.conv4_2(out)) # (N, 512, H=38, W=38)
out = F.relu(self.conv4_3(out)) # (N, 512, H=38, W=38)
conv4_3_feats = out # (N, 512, H=38, W=38) -> this one we use
out = self.pool4(out) # (N, 512, H=19, W=19)
out = F.relu(self.conv5_1(out)) # (N, 512, H=19, W=19)
out = F.relu(self.conv5_2(out)) # (N, 512, H=19, W=19)
out = F.relu(self.conv5_3(out)) # (N, 512, H=19, W=19)
out = self.pool5(out) # (N, 512, H=19, W=19)
out = F.relu(self.conv6(out)) # (N, 1024, H=19, W=19)
conv7_feats = F.relu(self.conv7(out)) # (N, 1024, H=19, W=19) -> we use this one as well
return conv4_3_feats, conv7_feats
def load_pretrained_weights(self):
"""
Load pretrained weights from VGG16
the original VGG-16 does not contain the conv6 and con7 layers.
Therefore, we convert fc6 and fc7 into convolutional layers
"""
STATE_DICT = self.state_dict()
PARAMS = list(STATE_DICT.keys())
vgg16 = models.vgg16(weights=models.VGG16_Weights.DEFAULT)
vgg16_state_dict = vgg16.state_dict()
PRETRAINED_PARAMS = list(vgg16_state_dict.keys())
for i, param in enumerate(PARAMS[:-4]):
STATE_DICT[param] = vgg16_state_dict[PRETRAINED_PARAMS[i]]
# Convert fc6 and fc7 into conv layers
conv_fc6_w = vgg16_state_dict['classifier.0.weight'].data.view(4096, 512, 7, 7) # (4096, 512, 7, 7)
conv_fc6_b = vgg16_state_dict['classifier.0.bias'].data # (4096)
STATE_DICT['conv6.weight'] = decimate(conv_fc6_w, m=[4, None, 3, 3]) # (1024, 512, 3, 3)
STATE_DICT['conv6.bias'] = decimate(conv_fc6_b, m=[4]) # (1024)
conv_fc7_w = vgg16_state_dict['classifier.3.weight'].data.view(4096, 4096, 1, 1) # (4096, 4096, 1, 1)
conv_fc7_b = vgg16_state_dict['classifier.3.bias'].data # (4096)
STATE_DICT['conv7.weight'] = decimate(conv_fc7_w, m=[4, 4, None, None]) # (1024, 1024, 1, 1)
STATE_DICT['conv7.bias'] = decimate(conv_fc7_b, m=[4]) # (1024)
self.load_state_dict(STATE_DICT)
print('Loaded pretrained weights for VGG16')
class AuxiliaryConvolutions(nn.Module):
"""
Additional convolutions meant to produce high level feature maps
"""
def __init__(self):
super().__init__()
# Additional convolutions
self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) # (N, 256, H=19, W=19)
self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) # (N, 512, H=10, W=10)
self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) # (N, 128, H=10, W=10)
self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) # (N, 256, H=5, W=5)
self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) # (N, 128, H=5, W=5)
self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=0) # (N, 256, H=3, W=3)
self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) # (N, 128, H=3, W=3)
self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=0) # (N, 256, H=1, W=1)
self.initialize_convolutions()
def initialize_convolutions(self):
for conv in self.children():
if isinstance(conv, nn.Conv2d):
nn.init.xavier_uniform_(conv.weight)
nn.init.constant_(conv.bias, 0.0)
def forward(self, conv7_feats):
"""
Forward propagation
:param conv7_feats: (N, 1024, H=19, W=19)
:return: high level feature maps (conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats)
"""
out = F.relu(self.conv8_1(conv7_feats)) # (N, 256, H=19, W=19)
out = F.relu(self.conv8_2(out)) # (N, 512, H=10, W=10)
conv8_2_feats = out # (N, 512, H=10, W=10)
out = F.relu(self.conv9_1(out)) # (N, 128, H=10, W=10)
out = F.relu(self.conv9_2(out)) # (N, 256, H=5, W=5)
conv9_2_feats = out # (N, 256, H=5, W=5)
out = F.relu(self.conv10_1(out)) # (N, 128, H=5, W=5)
out = F.relu(self.conv10_2(out)) # (N, 256, H=3, W=3)
conv10_2_feats = out # (N, 256, H=3, W=3)
out = F.relu(self.conv11_1(out)) # (N, 128, H=3, W=3)
conv11_2_feats = F.relu(self.conv11_2(out)) # (N, 256, H=1, W=1)
return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats
class PredictionConvolutions(nn.Module):
"""
Convolutions to predict class scores and bounding box offsets
"""
def __init__(self, n_classes):
"""
:param n_classes: number of classes
"""
super().__init__()
self.n_classes = n_classes
# Number of prior boxes per feature map location
self.n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4}
# Localization (offsets)
self.loc_conv4_3 = nn.Conv2d(512, self.n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) # (N, 16, H=38, W=38)
self.loc_conv7 = nn.Conv2d(1024, self.n_boxes['conv7'] * 4, kernel_size=3, padding=1) # (N, 24, H=19, W=19)
self.loc_conv8_2 = nn.Conv2d(512, self.n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) # (N, 24, H=10, W=10)
self.loc_conv9_2 = nn.Conv2d(256, self.n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) # (N, 24, H=5, W=5)
self.loc_conv10_2 = nn.Conv2d(256, self.n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) # (N, 16, H=3, W=3)
self.loc_conv11_2 = nn.Conv2d(256, self.n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) # (N, 16, H=1, W=1)
# Class scores
self.cl_conv4_3 = nn.Conv2d(512, self.n_boxes['conv4_3'] * self.n_classes, kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, self.n_boxes['conv7'] * self.n_classes, kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, self.n_boxes['conv8_2'] * self.n_classes, kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, self.n_boxes['conv9_2'] * self.n_classes, kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, self.n_boxes['conv10_2'] * self.n_classes, kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, self.n_boxes['conv11_2'] * self.n_classes, kernel_size=3, padding=1)
self.initialize_convolutions()
def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats):
"""
Forward propagation
:param conv4_3_feats: (N, 512, H=38, W=38)
:param conv7_feats: (N, 1024, H=19, W=19)
:param conv8_2_feats: (N, 512, H=10, W=10)
:param conv9_2_feats: (N, 256, H=5, W=5)
:param conv10_2_feats: (N, 256, H=3, W=3)
:param conv11_2_feats: (N, 256, H=1, W=1)
:return: class scores and bounding box offsets for each feature map
"""
batch_size = conv4_3_feats.size(0)
# Localization (offsets)
loc_conv4_3 = self.loc_conv4_3(conv4_3_feats) # (N, 16, H=38, W=38)
loc_conv4_3 = loc_conv4_3.permute(0, 2, 3, 1).contiguous() # (N, H=38, W=38, 16)
# contiguous() returns a neighboring memory block with the same data
loc_conv4_3 = loc_conv4_3.view(batch_size, -1, 4) # (N, 5776, 4) -> 5776 = 38*38*4 boxes
loc_conv7 = self.loc_conv7(conv7_feats) # (N, 24, H=19, W=19)
loc_conv7 = loc_conv7.permute(0, 2, 3, 1).contiguous() # (N, H=19, W=19, 24)
loc_conv7 = loc_conv7.view(batch_size, -1, 4) # (N, 2166, 4) -> 2166 = 19*19*6 boxes
loc_conv8_2 = self.loc_conv8_2(conv8_2_feats) # (N, 24, H=10, W=10)
loc_conv8_2 = loc_conv8_2.permute(0, 2, 3, 1).contiguous() # (N, H=10, W=10, 24)
loc_conv8_2 = loc_conv8_2.view(batch_size, -1, 4) # (N, 600, 4) -> 600 = 10*10*6 boxes
loc_conv9_2 = self.loc_conv9_2(conv9_2_feats) # (N, 24, H=5, W=5)
loc_conv9_2 = loc_conv9_2.permute(0, 2, 3, 1).contiguous() # (N, H=5, W=5, 24)
loc_conv9_2 = loc_conv9_2.view(batch_size, -1, 4) # (N, 150, 4) -> 150 = 5*5*6 boxes
loc_conv10_2 = self.loc_conv10_2(conv10_2_feats) # (N, 16, H=3, W=3)
loc_conv10_2 = loc_conv10_2.permute(0, 2, 3, 1).contiguous() # (N, H=3, W=3, 16)
loc_conv10_2 = loc_conv10_2.view(batch_size, -1, 4) # (N, 36, 4) -> 36 = 3*3*4 boxes
loc_conv11_2 = self.loc_conv11_2(conv11_2_feats) # (N, 16, H=1, W=1)
loc_conv11_2 = loc_conv11_2.permute(0, 2, 3, 1).contiguous() # (N, H=1, W=1, 16)
loc_conv11_2 = loc_conv11_2.view(batch_size, -1, 4) # (N, 4, 4) -> 4 = 1*1*4 boxes
# total number of boxes: 5776 + 2166 + 600 + 150 + 36 + 4 = 8732
# Class scores
c_conv4_3 = self.cl_conv4_3(conv4_3_feats) # (N, 4 * n_classes, H=38, W=38)
c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous() # (N, H=38, W=38, 4 * n_classes)
c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes) # (N, 5776, n_classes) -> 5776 = 38*38*4 boxes
c_conv7 = self.cl_conv7(conv7_feats) # (N, 6 * n_classes, H=19, W=19)
c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous() # (N, H=19, W=19, 6 * n_classes)
c_conv7 = c_conv7.view(batch_size, -1, self.n_classes) # (N, 2166, n_classes) -> 2166 = 19*19*6 boxes
c_conv8_2 = self.cl_conv8_2(conv8_2_feats) # (N, 6 * n_classes, H=10, W=10)
c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous() # (N, H=10, W=10, 6 * n_classes)
c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes) # (N, 600, n_classes) -> 600 = 10*10*6 boxes
c_conv9_2 = self.cl_conv9_2(conv9_2_feats) # (N, 6 * n_classes, H=5, W=5)
c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous() # (N, H=5, W=5, 6 * n_classes)
c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes) # (N, 150, n_classes) -> 150 = 5*5*6 boxes
c_conv10_2 = self.cl_conv10_2(conv10_2_feats) # (N, 4 * n_classes, H=3, W=3)
c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous() # (N, H=3, W=3, 4 * n_classes)
c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes) # (N, 36, n_classes) -> 36 = 3*3*4 boxes
c_conv11_2 = self.cl_conv11_2(conv11_2_feats) # (N, 4 * n_classes, H=1, W=1)
c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous() # (N, H=1, W=1, 4 * n_classes)
c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes) # (N, 4, n_classes) -> 4 = 1*1*4 boxes
locs = torch.cat([loc_conv4_3, loc_conv7, loc_conv8_2,
loc_conv9_2, loc_conv10_2, loc_conv11_2], dim=1) # (N, 8732, 4)
class_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2,
c_conv9_2, c_conv10_2, c_conv11_2], dim=1) # (N, 8732, n_classes)
return locs, class_scores
def initialize_convolutions(self):
for conv in self.children():
if isinstance(conv, nn.Conv2d):
nn.init.xavier_uniform_(conv.weight)
nn.init.constant_(conv.bias, 0.0)
class SSD300(nn.Module):
"""
SSD300 architecture based on the base VGG-16 layers, auxiliary and prediction conv layers.
"""
def __init__(self, n_classes):
super().__init__()
self.n_classes = n_classes # number of different types of objects that we want to detect
self.base = VGGBase()
self.aux_convs = AuxiliaryConvolutions()
self.pred_convs = PredictionConvolutions(n_classes)
# Since low level features have considerably larger scales, we need to normalize them using L2 norm
self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1)) # (1, 512, 1, 1) in conv4_3
nn.init.constant_(self.rescale_factors, 20) # initialize with 20
# Prior boxes
self.priors_cxcy = self.create_prior_boxes() # (8732, 4) -> (cx, cy, w, h)
def forward(self, image):
"""
Forward propagation.
:param image: input images, a tensor of dimensions (N, 3, 300, 300)
:return: (batch_size, 8732, 4), (batch_size, 8732, n_classes)
"""
# Run VGG base network to generate lower level features
conv4_3_feats, conv7_feats = self.base(image) # (N, 512, 38, 38), (N, 1024, 19, 19)
# Normalize conv4_3_feats using L2 norm
norm = conv4_3_feats.pow(2).sum(dim=1, keepdim=True).sqrt() # (N, 1, 38, 38)
conv4_3_feats = conv4_3_feats / norm # (N, 512, 38, 38)
conv4_3_feats = conv4_3_feats * self.rescale_factors # (N, 512, 38, 38)
# Run auxiliary network to generate intermediate level features
conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats = \
self.aux_convs(conv7_feats) # (N, 256, 10, 10), (N, 256, 5, 5), (N, 256, 3, 3), (N, 256, 1, 1)
# Run prediction network to generate localization and class predictions
locs, class_scores = self.pred_convs(conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats,
conv10_2_feats, conv11_2_feats) # (N, 8732, 4), (N, 8732, n_classes)
return locs, class_scores
@staticmethod
def create_prior_boxes():
"""
Create 8732 prior (default) boxes for the 300x300 image size.
:return: (8732, 4) -> (cx, cy, w, h)
"""
fmap_dims = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10, 'conv9_2': 5, 'conv10_2': 3, 'conv11_2': 1}
obj_scales = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375,
'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9}
aspect_ratios = {'conv4_3': [1.0, 2.0, 0.5], 'conv7': [1.0, 2.0, 3.0, 0.5, 0.333],
'conv8_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv9_2': [1.0, 2.0, 3.0, 0.5, 0.333],
'conv10_2': [1.0, 2.0, 0.5], 'conv11_2': [1.0, 2.0, 0.5]}
fmaps = list(fmap_dims.keys()) # 'conv4_3', 'conv7', 'conv8_2', 'conv9_2', 'conv10_2', 'conv11_2' feature maps
prior_boxes = []
for k, fmap in enumerate(fmaps):
for i in range(fmap_dims[fmap]):
for j in range(fmap_dims[fmap]):
cx = (j + 0.5) / fmap_dims[fmap] # center x of the box for the current feature map
cy = (i + 0.5) / fmap_dims[fmap] # center y of the box for the current feature map
for ratio in aspect_ratios[fmap]:
prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt(ratio), obj_scales[fmap] / sqrt(ratio)])
# For an aspect ratio of 1, we use an additional prior whose scale is the geometric mean of the
# scale of the current feature map and the scale of the next feature map: sqrt(s_k * s_(k+1))
if ratio == 1:
try:
additional_scale = sqrt(obj_scales[fmap] * obj_scales[fmaps[k + 1]])
except IndexError:
additional_scale = 1.0
prior_boxes.append([cx, cy, additional_scale, additional_scale])
prior_boxes = torch.FloatTensor(prior_boxes).to(device) # (8732, 4)
prior_boxes.clamp_(0, 1) # (cx, cy, w, h) -> (cx, cy, w, h) in range [0, 1]
return prior_boxes
class MultiBoxLoss(nn.Module):
"""
The MultiBox Loss, as described in the paper.
This is a combination of:
(1) the localization loss: Smooth L1 Loss, and
(2) the classification loss: CrossEntropy Loss
"""
def __init__(self, priors_cxcy, threshold=0.5, neg_pos_ratio=3, alpha=1):
"""
:param priors_cxcy: (8732, 4) center-size default boxes in corner-form
:param threshold: overlap threshold for an anchor to be considered positive
:param neg_pos_ratio: 3:1 negative:positive ratio
:param alpha: weighting factor for localization loss
"""
super().__init__()
self.priors_cxcy = priors_cxcy
self.priors_xy = cxcy_to_xy(priors_cxcy)
self.threshold = threshold
self.neg_pos_ratio = neg_pos_ratio
self.alpha = alpha
self.smooth_l1_loss = nn.SmoothL1Loss()
self.cross_entropy_loss = nn.CrossEntropyLoss(reduction='none')
def forward(self, predicted_locs, predicted_scores, boxes, labels):
"""
Compute the loss for both the classification and the localization
:param predicted_locs: (batch_size, 8732, 4) predicted locations/boxes
:param predicted_scores: (batch_size, 8732, n_classes) class scores for each of the encoded locations/boxes
:param boxes: (batch_size, n_objects, 4) object boxes in [xmin, ymin, xmax, ymax] format, there can be a
different number of objects in each image in the batch
:param labels: (batch_size, n_objects) object labels, there can be a different number of objects in each image
in the batch
:return: a scalar tensor containing the loss
"""
# Compute the loss for classification
# Find the number of positive and negative examples
batch_size = predicted_locs.size(0)
n_priors = self.priors_cxcy.size(0)
n_classes = predicted_scores.size(2)
assert n_priors == predicted_locs.size(1) == predicted_scores.size(1)
true_locs = torch.zeros((batch_size, n_priors, 4), dtype=torch.float).to(device) # (batch_size, 8732, 4)
true_classes = torch.zeros((batch_size, n_priors), dtype=torch.long).to(device) # (batch_size, 8732)
for i in range(batch_size):
n_objects = boxes[i].size(0) # boxes[i] = (n_objects, 4)
overlap = find_jaccard_overlap(boxes[i], self.priors_xy) # (n_objects, 8732)
# For each prior, find the object that has the maximum overlap
overlap_for_each_prior, object_for_each_prior = overlap.max(dim=0) # (8732)
# We don't want a situation where an object is not represented in our positive (non-background) priors -
# 1. An object might not be the best object for all priors, and is therefore not in object_for_each_prior.
# 2. All priors with the object may be assigned as background based on the threshold (0.5).
# We therefore assign the object to the prior with the highest overlap, and assign the prior to the object.
_, prior_for_each_object = overlap.max(dim=1) # (n_objects)
# We now have a 1:1 mapping between objects and priors, and can assign the priors to the objects.
object_for_each_prior[prior_for_each_object] = torch.LongTensor(range(n_objects)).to(device)
# To ensure that the priors are not assigned to background, we set the overlap to be greater than 0.5
overlap_for_each_prior[prior_for_each_object] = 1.
labels_for_each_prior = labels[i][object_for_each_prior] # (8732)
# Set priors whose overlap is < 0.5 to be background (0)
labels_for_each_prior[overlap_for_each_prior < self.threshold] = 0 # (8732)
true_classes[i] = labels_for_each_prior # (8732)
# Find the regression targets for each prior
true_locs[i] = cxcy_to_gcxgcy(
xy_to_cxcy(boxes[i][object_for_each_prior]), # (8732, 4)
self.priors_cxcy # (8732, 4)
)
# Identify priors that are positive (object/non-background)
positive_priors = true_classes != 0 # (batch_size, 8732)
# Localization Loss (Smooth L1 Loss) -> only compute loss for positive priors
loc_loss = self.smooth_l1_loss(
predicted_locs[positive_priors], # (n_positive_priors, 4)
true_locs[positive_priors] # (n_positive_priors, 4)
) # () scalar
# Classification Loss (Cross Entropy) -> compute loss for the most difficult priors only
# take the hardest (neg_pos_ration * n_positives) negative priors
# First, find the number of positive and negative priors for each image in the batch
n_positives = positive_priors.sum(dim=1) # (batch_size) () scalar
n_hard_negatives = self.neg_pos_ratio * n_positives # (batch_size) () scalar
# Next, find the loss for ALL priors
classification_loss = self.cross_entropy_loss(
predicted_scores.view(-1, n_classes), # (batch_size * 8732, n_classes)
true_classes.view(-1) # (batch_size * 8732)
) # (batch_size * 8732)
classification_loss = classification_loss.view(batch_size, n_priors) # (batch_size, 8732)
# we already know which priors are positive, so we can ignore the classification loss for the negative priors
classification_loss_pos = classification_loss[positive_priors] # (sum(n_positives))
# Next, we find the classification loss for the negative priors
# To do this, sort ONLY negative priors by their classification loss and take the top n_hard_negatives
classification_loss_neg = classification_loss.clone() # (batch_size, 8732)
classification_loss_neg[positive_priors] = 0. # (batch_size, 8732)
classification_loss_neg, _ = classification_loss_neg.sort(dim=1, descending=True) # (batch_size, 8732)
# Hardness Ranking -> (batch_size, 8732)
hardness_ranks = torch.LongTensor(range(n_priors)).unsqueeze(0).expand_as(classification_loss_neg).to(device)
hard_negatives = hardness_ranks < n_hard_negatives.unsqueeze(1) # (batch_size, 8732)
classification_loss_hard_neg = classification_loss_neg[hard_negatives] # (sum(n_hard_negatives))
# Finally, compute the total classification loss
classification_loss = (classification_loss_pos.sum() +
classification_loss_hard_neg.sum()) / n_positives.sum().float() # () scalar
return classification_loss + self.alpha * loc_loss