-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapplyImagenormalizationFCM.py
55 lines (43 loc) · 2.49 KB
/
applyImagenormalizationFCM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from oauth2client import tools
tools.argparser.add_argument("-m","--mouse", help="specify name of the mouse", required=False)
tools.argparser.add_argument("-d","--date", help="specify name of the mouse", required=False)
args = tools.argparser.parse_args()
import tools.extractSaveData as extractSaveData
import tools.dataAnalysis as dataAnalysis
#import tools.openCVImageProcessingTools as openCVImageProcessingTools
#import tools.createVisualizations as createVisualizations
import pdb
import sys
mouseD = '180602_m78'
expDATE = '180724'
normalizationRec = ['180724','2pScanning_calibration_larger_002']
# in case mouse, and date were specified as input arguments
if args.mouse == None:
mouse = mouseD
else:
mouse = args.mouse
if args.date == None:
expDate = expDATE
else:
expDate = args.date
eSD = extractSaveData.extractSaveData(mouse)
(foldersRecordings,dataFolder) = eSD.getRecordingsList(mouse,expDate) # get recordings for specific mouse and date
#cv2Tools = openCVImageProcessingTools.openCVImageProcessingTools(eSD.analysisLocation,eSD.figureLocation,eSD.f,showI=True)
#cV = createVisualizations.createVisualizations(eSD.figureLocation,mouse)
# read normalization mask first
for f in range(len(foldersRecordings)) :
if foldersRecordings[f][1]==normalizationRec[0]:
for r in range(len(foldersRecordings[f][2])):
if foldersRecordings[f][2][r] == normalizationRec[1]:
(existence, fileHandle) = eSD.checkIfDeviceWasRecorded(foldersRecordings[f][0], foldersRecordings[f][2][r], 'Imaging')
if existence:
(normFrame,_,normImageMetaInfo) = eSD.readImageStack([foldersRecordings[f][0],foldersRecordings[f][2][r],'raw_imaging_data'])
#pdb.set_trace()
for f in range(len(foldersRecordings)):
for r in [14]: #range(len(foldersRecordings[f][2])):
(existence,fileHandle) = eSD.checkIfDeviceWasRecorded(foldersRecordings[f][0],foldersRecordings[f][2][r],'Imaging')
if existence:
print r, foldersRecordings[f][2][r]
(frames,fTimes,imageMetaInfo) = eSD.readImageStack([foldersRecordings[f][0],foldersRecordings[f][2][r],'raw_imaging_data'])
normFrames = dataAnalysis.applyImageNormalizationMask(frames,imageMetaInfo,normFrame,normImageMetaInfo,mouse,foldersRecordings[f][0],foldersRecordings[f][2][r])
eSD.saveTif(normFrames[:,:,:,0], mouse,foldersRecordings[f][0],foldersRecordings[f][2][r],norm='GaussSmoothed') # tif file for possible image registration in ImageJ