-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreateTrainingSet.py
48 lines (39 loc) · 1.74 KB
/
createTrainingSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from oauth2client import tools
tools.argparser.add_argument("-m","--mouse", help="specify name of the mouse", required=False)
tools.argparser.add_argument("-d","--date", help="specify name of the mouse", required=False)
args = tools.argparser.parse_args()
import tools.extractSaveData as extractSaveData
import tools.dataAnalysis as dataAnalysis
import tools.pawClassifier as pawClassifier
import pdb
import numpy as np
import pickle
mouseD = '180107_m27'
expDateD = '180214'
#mouse = '171126_m90'
#expDate = '180118'
#mouse = '171218_f8'
#expDate = '180123'
# in case mouse, and date were specified as input arguments
if args.mouse == None:
mouse = mouseD
else:
mouse = args.mouse
if args.date == None:
expDate = expDateD
else:
expDate = args.date
eSD = extractSaveData.extractSaveData(mouse)
(foldersRecordings,dataFolder) = eSD.getRecordingsList(mouse,expDate) # get recordings for specific mouse and date
PClassifier = pawClassifier.pawClassifier(eSD.analysisLocation,eSD.figureLocation,eSD.f,showI=True)
roiInformation = pickle.load(open(eSD.analysisBase + 'data_analysis/in_vivo_cerebellum_walking/LocoRungsData/Masks.f'))
for f in range(len(foldersRecordings)) :
for r in range(8,len(foldersRecordings[f][2])): # for r in recordings[f][1]:
print foldersRecordings[f][2][r]
(existence,fileHandle) = eSD.checkIfDeviceWasRecorded(foldersRecordings[f][0],foldersRecordings[f][2][r],'CameraGigEBehavior')
print existence
if existence:
masks = roiInformation[mouse][foldersRecordings[f][0]][foldersRecordings[f][2][r]]
#pdb.set_trace()
PClassifier.createTrainingSetWithFeedback(mouse,foldersRecordings[f][0],foldersRecordings[f][2][r],masks['WheelMask'])
pdb.set_trace()