This repository has been archived by the owner on Jul 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
process_stream.py
241 lines (198 loc) · 8.9 KB
/
process_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# import the necessary packages
import argparse
import os
import time
import cv2
import imutils
import numpy as np
ap = argparse.ArgumentParser()
ap.add_argument('-n', '--network', required=True,
help='name of network')
ap.add_argument('-c', '--confidence', required=False, type=float, default=0.5,
help='confidence level')
ap.add_argument('-t', '--threshold', required=False, type=float, default=0.4,
help='threshold level')
args = ap.parse_args()
current_fps = 0
myFrame = 0
myConfidence = args.confidence
myThreshold = args.threshold
limitCPUtemp = True
cpuTempLimit = 64
limitToVideoFPS = False
# createOutput = True
# myOutput = "output.mp4"
createOutput = False
device = "pi"
# device = "pc"
if device is "pi":
from gpiozero import CPUTemperature
limitToVideoFPS = True
myWidth = 640
myHeight = 480
fps_limit = 3
my_buffer_size = 1 # number of frames in buffer
if device is "pc":
limitToVideoFPS = True
myWidth = 1280
myHeight = 720
fps_limit = 30
my_buffer_size = 4
# Networks
networks = {}
networks["256x192-3l"] = {"folder": "256-192-yolo-tiny-3l", "resolution": {"width": 256, "height": 192}, "weights": "256x192-yolo-tiny-3l_final.weights", "cfg": "256x192-yolo-tiny-3l.cfg"}
networks["256x192-3l--oo"] = {"folder": "256x192-yolo-tiny-3l-only-original", "resolution": {"width": 256, "height": 192}, "weights": "256x192-yolo-tiny-3l-only-original_final.weights", "cfg": "256x192-yolo-tiny-3l-only-original.cfg"}
networks["192x128-3l"] = {"folder": "192x128-yolo-tiny-3l", "resolution": {"width": 192, "height": 128}, "weights": "192x128-yolo-tiny-3l_final.weights", "cfg": "192x128-yolo-tiny-3l.cfg"}
networks["192x128-3l-oo"] = {"folder": "192x128-yolo-tiny-3l-only-original", "resolution": {"width": 192, "height": 128}, "weights": "192x128-yolo-tiny-3l-only-original_final.weights", "cfg": "192x128-yolo-tiny-3l-only-original.cfg"}
networks["192x128-t"] = {"folder": "192x128-yolo-tiny", "resolution": {"width": 192, "height": 128}, "weights": "yolov3-tiny_final.weights", "cfg": "yolov3-tiny.cfg"}
networks["192x128-t-oo"] = {"folder": "192x128-yolo-tiny-only-original", "resolution": {"width": 192, "height": 128}, "weights": "192x128-yolo-tiny-only-original_final.weights", "cfg": "192x128-yolo-tiny-only-original.cfg"}
networks["192x128"] = {"folder": "192x128-yolo", "resolution": {"width": 192, "height": 128}, "weights": "192x128-yolov3_final.weights", "cfg": "192x128-yolov3.cfg"}
selectedNetwork = networks[args.network]
#selectedNetwork = networks["128x96-9-v2"]
# Video Inputs
# myInput = "../videos/test-video1.mp4"
# myInput = "../videos/test-video2.mp4"
# webcams 0 and 1
myInput = 0
# myInput = 1
myDNNsize = selectedNetwork["resolution"]
winname = selectedNetwork["folder"]
cv2.namedWindow(winname)
cv2.moveWindow(winname, 10, 10)
# load the class labels our YOLO model was trained on
labelsPath = os.path.sep.join(["./","obj.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join(["networks", selectedNetwork["folder"], selectedNetwork["weights"]])
configPath = os.path.sep.join(["networks", selectedNetwork["folder"], selectedNetwork["cfg"]])
# load our trained YOLO object detector (5 classes)
# and determine only the *output* layer names that we need from YOLO
print("[INFO] loading YOLO from disk...")
print(configPath, weightsPath)
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
writer = None
(W, H) = (None, None)
# initialize the video stream, pointer to output video file, and
# frame dimensions
vs = cv2.VideoCapture(myInput)
if(myInput is 0 or myInput is 1): # Camera
vs.set(cv2.CAP_PROP_BUFFERSIZE, my_buffer_size)
# print(f"Buffer size = {vs.get(cv2.CAP_PROP_BUFFERSIZE)}")
vs.set(cv2.CAP_PROP_FRAME_WIDTH, myWidth)
vs.set(cv2.CAP_PROP_FRAME_HEIGHT, myHeight)
# loop over frames from the video file stream (from camera or file)
while True:
if limitCPUtemp is True and device is "pi":
# CPU temp
cpu = CPUTemperature()
cpuTemp = cpu.temperature
# print(cpuTemp)
while cpuTemp > cpuTempLimit:
time.sleep(0.1)
cpuTemp = cpu.temperature
print("cooling down...")
print(cpuTemp)
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
# if the frame dimensions are empty, grab them
if W is None or H is None:
(H, W) = frame.shape[:2]
start = time.time()
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (myDNNsize["width"], myDNNsize["height"]),
swapRB=True, crop=False)
net.setInput(blob)
# most CPU intensive part!
layerOutputs = net.forward(ln)
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > myConfidence:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, myConfidence, myThreshold)
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the frame
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 8)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
cv2.putText(frame, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 1.3, color, 4)
if createOutput:
if writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"X264")
writer = cv2.VideoWriter(myOutput, fourcc, 30,
(frame.shape[1], frame.shape[0]), True)
# write the output frame to disk
writer.write(frame)
# some information on processing single frame
myFrame += 1
end = time.time()
elap = (end - start)
current_fps = "{:.2f}".format(1/elap)
fps = current_fps
if limitToVideoFPS:
timeToSleepForFPS = (1 / fps_limit)
if(timeToSleepForFPS > elap):
timeToSleepForFPS -= elap
time.sleep(timeToSleepForFPS)
end = time.time()
elap_with_delay = end - start
fps = "{:.2f}".format(1 / elap_with_delay)
cv2.putText(frame, "DNN FPS: " + current_fps, (5, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 255, 0), 4)
cv2.putText(frame, "FPS: " + fps, (5, 100),
cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 255, 0), 4)
# frame = imutils.resize(frame, height=myHeight, width=myWidth)
cv2.imshow(selectedNetwork["folder"], frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
vs.release()
cv2.destroyAllWindows()