-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstep3_training_evaluation.py
284 lines (206 loc) · 14.6 KB
/
step3_training_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
##########################################################################################################################################
## This Python script will do the following:
## 1. Split LoS into a Training LoS_Train, and a Testing set LoS_Test.
## 2. Train Random Forest (rx_dforest implementation) and Boosted Trees (rxFastTrees [work in progress] implementation) and save them to SQL.
## 3. Score the models on LoS_Test.
## 4. Evalaute the scored models.
## Input : Data set LoS
## Output: Regression Random forest and Boosted Trees saved to SQL.
##########################################################################################################################################
## Compute Contexts and Packages
##########################################################################################################################################
# Load packages.
import sys
from math import sqrt
from revoscalepy import rx_dforest, rx_btrees, rx_predict, RxSqlServerData, rx_get_var_names, rx_create_col_info
from revoscalepy import rx_set_compute_context, rx_import, rx_data_step
#from microsoftml import rx_fast_trees, rx_neural_network, adadelta_optimizer
#from microsoftml import rx_predict as ml_predict
from length_of_stay_utils import train_test_split, evaluate_model, create_formula, get_num_rows, write_rts_model
from SQLConnection import *
# Set the Compute Context to SQL.
rx_set_compute_context(local)
##########################################################################################################################################
## Input: Point to the SQL table with the data set for modeling
##########################################################################################################################################
LoS = RxSqlServerData(table="LoS", connection_string=connection_string, strings_as_factors=True)
##########################################################################################################################################
## Split the data set into a training and a testing set
##########################################################################################################################################
# Randomly split the data into a training set and a testing set, with a splitting % p.
# p % goes to the training set, and the rest goes to the testing set. Default is 70%.
p = 70
## Create the Train_Id table containing Lead_Id of training set.
train_test_split("eid", "LoS", "Train_Id", p, connection_string)
#rx_set_compute_context(sql)
## Point to the training set. It will be created on the fly when training models.
variables_all = rx_get_var_names(LoS)
variables_to_remove = ["eid", "vdate", "discharged", "facid"]
training_variables = [x for x in variables_all if x not in variables_to_remove]
LoS_Train = RxSqlServerData(sql_query="SELECT eid, {} FROM LoS WHERE eid IN (SELECT eid from Train_Id)".format(
', '.join(training_variables)), connection_string=connection_string, string_as_factors = True)
col_type_info = rx_create_col_info(LoS_Train)
## Point to the testing set. It will be created on the fly when testing models.
LoS_Test = RxSqlServerData(sql_query="SELECT eid, {} FROM LoS WHERE eid NOT IN (SELECT eid from Train_Id)".format(
', '.join(training_variables)), connection_string=connection_string, column_info=col_type_info
)
##########################################################################################################################################
## Specify the variables to keep for training
##########################################################################################################################################
# Write the formula after removing variables not used in the modeling.
formula = create_formula("lengthofstay", variables_all, variables_to_remove)
print("Formula: ", formula)
##########################################################################################################################################
## Functions to automate hyperparameter tuning. They use internal oob error estimates as the basis for tuning.
## NOTE: When it comes to tuning, Cross Validation or a Train-Validate-Test split would be better than using OOB error.
##########################################################################################################################################
num_rows = get_num_rows("Train_Id", connection_string)
def tune_rx_dforest(formula, data, n_tree_list, cp_list, cc):
print("Tuning rx_dforest")
best_error = sys.maxsize
best_model = None
for nt in n_tree_list:
for cp in cp_list:
model = rx_dforest(formula=formula,
data=data,
n_tree=nt,
cp=cp,
min_split=int(sqrt(num_rows)),
max_num_bins=int(sqrt(num_rows)),
seed=5,
compute_context=cc)
error = model.oob_err['oob.err'][model.ntree - 1]
print("OOB Error: {} \t n_tree: {} \t cp: {}".format(error, nt, cp))
if error < best_error:
best_error = error
best_model = model
return best_model
def tune_rx_btrees(formula, data, n_tree_list, lr_list, cp_list, cc):
print("Tuning rx_btrees")
best_error = sys.maxsize
best_model = None
for nt in n_tree_list:
for lr in lr_list:
for cp in cp_list:
model = rx_btrees(formula=formula,
data=data,
n_tree=nt,
learning_rate=lr,
cp=cp,
loss_function="gaussian",
min_split=int(sqrt(num_rows)),
max_num_bins=int(sqrt(num_rows)),
seed=9,
compute_context=cc)
error = model.oob_err['oob.err'][model.ntree - 1]
print("OOB Error: {} \t n_tree: {} \t learning_rate: {} \t cp: {}".format(error, nt, lr, cp))
if error < best_error:
print("^^^ New best model!")
best_error = error
best_model = model
return best_model
##########################################################################################################################################
## Random Forest (rx_dforest implementation) Training and saving the model to SQL
##########################################################################################################################################
# Tune the Random Forest. This tunes on the basis of minimizing oob error. Compute context is set to sql for model training.
forest_model = tune_rx_dforest(formula, LoS_Train, n_tree_list=[40], cp_list=[0.00005], cc=sql)
# serialize and write for Real Time Scoring
write_rts_model(forest_model, "RF", connection_string)
##########################################################################################################################################
## Boosted Trees (rx_btrees implementation) Training and saving the model to SQL
##########################################################################################################################################
# Train the Boosted Trees model. This tunes on the basis of minimizing oob error.
boosted_model = tune_rx_btrees(formula, LoS_Train, n_tree_list=[40], lr_list=[0.3], cp_list=[0.00005], cc=sql)
# serialize and write for Real Time Scoring
write_rts_model(boosted_model, "GBT", connection_string)
##########################################################################################################################################
## Fast Trees (rx_fast_trees implementation) Training and saving the model to SQL
##########################################################################################################################################
# Train the Fast Trees model.
#print("Training Fast Trees")
#fast_model = rx_fast_trees(formula=formula,
# data=LoS_Train,
# method="regression",
# num_trees=40,
# learning_rate=0.2,
# split_fraction=5/24,
# min_split=10,
# compute_context=sql)
#write_rts_model(fast_model, "FT", connection_string)
##########################################################################################################################################
## Neural Network (rx_neural_network implementation) Training and saving the model to SQL
##########################################################################################################################################
# Train the Fast Trees model.
#print("Training Neural Network")
#NN_model = rx_neural_network(formula=formula,
# data=LoS_Train,
# method="regression",
# num_hidden_nodes=128,
# num_iterations=100,
# optimizer=adadelta_optimizer(),
# mini_batch_size=20,
# compute_context=sql)
#write_rts_model(NN_model, "NN", connection_string)
##########################################################################################################################################
## Random Forest Scoring
##########################################################################################################################################
# Make Predictions, then import them into Python.
forest_prediction_sql = RxSqlServerData(table="Forest_Prediction",string_as_factors = True, connection_string=connection_string)
rx_predict(forest_model,
data=LoS_Test,
output_data=forest_prediction_sql,
type="response",
extra_vars_to_write=["lengthofstay", "eid"],
overwrite=True)
# Compute the performance metrics of the model.
forest_prediction = rx_import(input_data=forest_prediction_sql)
forest_metrics = evaluate_model(observed=forest_prediction['lengthofstay'], predicted=forest_prediction['lengthofstay_Pred'], model="RF")
##########################################################################################################################################
## Boosted Trees Scoring
##########################################################################################################################################
# Make Predictions, then import them into Python.
boosted_prediction_sql = RxSqlServerData(table="Boosted_Prediction", string_as_factors = True, connection_string=connection_string)
rx_predict(boosted_model,
data=LoS_Test,
output_data=boosted_prediction_sql,
extra_vars_to_write=["lengthofstay", "eid"],
overwrite=True)
# Compute the performance metrics of the model.
boosted_prediction = rx_import(input_data=boosted_prediction_sql)
boosted_metrics = evaluate_model(observed=boosted_prediction['lengthofstay'], predicted=boosted_prediction['lengthofstay_Pred'], model="GBT")
##########################################################################################################################################
## Fast Trees Scoring
##########################################################################################################################################
# Make Predictions, then write them to a table.
#LoS_Test_import = rx_import(input_data=LoS_Test)
#fast_prediction = ml_predict(fast_model, data=LoS_Test_import, extra_vars_to_write=["lengthofstay", "eid"], overwrite=True)
#fast_prediction_sql = RxSqlServerData(table="Fast_Prediction", string_as_factors = True, connection_string=connection_string)
#rx_data_step(input_data=fast_prediction, output_file=fast_prediction_sql, overwrite=True)
# Compute the performance metrics of the model.
#fast_metrics = evaluate_model(observed=fast_prediction['lengthofstay'], predicted=fast_prediction['Score'], model="FT")
##########################################################################################################################################
## Neural Networks Scoring
##########################################################################################################################################
# Make Predictions, then write them to a table.
#NN_prediction = ml_predict(NN_model, data=LoS_Test_import, extra_vars_to_write=["lengthofstay", "eid"], overwrite=True)
#NN_prediction_sql = RxSqlServerData(table="NN_Prediction", string_as_factors = True, connection_string=connection_string)
#rx_data_step(input_data=NN_prediction, output_file=NN_prediction_sql, overwrite=True)
# Compute the performance metrics of the model.
#NN_metrics = evaluate_model(observed=NN_prediction['lengthofstay'], predicted=NN_prediction['Score'], model="NN")
##########################################################################################################################################
## Write to Master Predictions Table (LoS_Predictions)
##########################################################################################################################################
print("Writing LoS_Predictions")
query = """SELECT LengthOfStay.eid, CONVERT(DATE, LengthOfStay.vdate, 110) as vdate, LengthOfStay.rcount, LengthOfStay.gender,
LengthOfStay.dialysisrenalendstage, LengthOfStay.asthma, LengthOfStay.irondef, LengthOfStay.pneum, LengthOfStay.substancedependence,
LengthOfStay.psychologicaldisordermajor, LengthOfStay.depress, LengthOfStay.psychother, LengthOfStay.fibrosisandother,
LengthOfStay.malnutrition, LengthOfStay.hemo, LengthOfStay.hematocrit, LengthOfStay.neutrophils, LengthOfStay.sodium,
LengthOfStay.glucose, LengthOfStay.bloodureanitro, LengthOfStay.creatinine, LengthOfStay.bmi, LengthOfStay.pulse,
LengthOfStay.respiration, number_of_issues, LengthOfStay.secondarydiagnosisnonicd9,
CONVERT(DATE, LengthOfStay.discharged, 110) as discharged, LengthOfStay.facid, LoS.lengthofstay,
CONVERT(DATE, CONVERT(DATETIME, LengthOfStay.vdate, 110) + CAST(ROUND(Score, 0) as int), 110) as discharged_Pred,
CAST(ROUND(Score, 0) as int) as lengthofstay_Pred
FROM LoS JOIN Forest_Prediction ON LoS.eid = Forest_Prediction.eid JOIN LengthOfStay ON LoS.eid = LengthOfStay.eid;"""
results_sql = RxSqlServerData(sql_query=query, connection_string=connection_string)
los_pred_sql = RxSqlServerData(table="LoS_Predictions", connection_string=connection_string)
rx_data_step(results_sql, los_pred_sql, overwrite=True)