-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathstammer.py
executable file
·310 lines (261 loc) · 12.6 KB
/
stammer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python3
from argparse import ArgumentParser
from typing import List
import numpy as np
from scipy.io import wavfile
from pathlib import Path
import shutil
import subprocess
import sys
import io
from PIL import Image
import tempfile
import logging
import image_tiling
import fraction_bits
from audio_matching import BasicAudioMatcher, CombinedFrameAudioMatcher, UniqueAudioMatcher, WeightedAudioMatcher
import video_out
from video_out import VideoHandler, VideoHandlerDisk, VideoHandlerMem
TEMP_DIR = Path('temp')
MAX_BASIS_WIDTH = 6
MAX_TESSELLATION_COUNT = 9
DEFAULT_FRAME_LENGTH = 1/25 # Seconds
BAND_WIDTH = 1.2
INTERNAL_SAMPLERATE = 44100 # Hz
# max number of frames stored in memory
MEM_DECAY_MAX = 500
COMMON_AUDIO_EXTS = [
"wav",
"wv",
"mp3",
"m4a",
"aac",
"ogg",
"opus",
]
def test_command(cmd):
try:
subprocess.run(cmd, capture_output=True)
except FileNotFoundError as error:
logging.error(f"ERROR: '{cmd[0]}' not found. Please install it.")
raise error
def file_type(path):
# is the file at path an audio file, video file, or neither?
return subprocess.run(
[
'ffprobe',
'-loglevel', 'error',
'-show_entries', 'stream=codec_type',
'-of', 'csv=p=0',
str(path)
],
capture_output=True,
check=True,
text=True
).stdout
def get_duration(path):
return subprocess.run(
[
'ffprobe',
'-i', str(path),
'-show_entries', 'format=duration',
'-v', 'quiet',
'-of', 'csv=p=0'
],
capture_output=True,
check=True,
text=True
).stdout
def get_framecount(path):
return subprocess.run(
[
'ffprobe',
'-v', 'error',
'-select_streams', 'v:0',
'-count_packets',
'-show_entries', 'stream=nb_read_packets',
'-print_format', 'csv=p=0',
str(path)
],
capture_output=True,
check=True,
text=True
).stdout
def build_output_video(video_handler: VideoHandler, matcher):
logging.info("building output video")
def tesselate_composite(match_row, basis_coefficients, i):
tiles: List[Image.Image] = []
bits: List[List[int]] = []
used_coeffs = [(j, coefficient) for j, coefficient in enumerate(basis_coefficients) if coefficient != 0]
for k, coeff in used_coeffs:
frame_num = min(match_row[k], video_handler.framecount - 1)
tiles.append(Image.open(video_handler.get_frame(frame_num)))
hot_bits,_ = fraction_bits.as_array(coeff)
bits.append(hot_bits)
tesselation = image_tiling.Tiling(height=tiles[0].height,width=tiles[0].width)
output_frame = Image.new('RGB',(tiles[0].width, tiles[0].height))
for m in np.arange(1,MAX_TESSELLATION_COUNT):
first_hot = next(((offset, x) for offset, x in enumerate(bits) if x[m]), None)
if first_hot is not None:
do_tile = tesselation.needs_tiling
tb = tiles[first_hot[0]].copy()
x0, y0, w, h = tesselation.get_image_placement()
tb.thumbnail((w,h))
output_frame.paste(tb, (x0,y0))
if do_tile:
output_frame.paste(tb,(x0, y0 + tb.height))
img_bytes = io.BytesIO()
output_frame.save(img_bytes,format="PNG")
video_handler.write_frame(i, img_bytes)
video_frame_length = video_handler.frame_length
audio_frame_length = matcher.frame_length
best_matches = matcher.get_best_matches()
if type(matcher) in (BasicAudioMatcher, UniqueAudioMatcher, WeightedAudioMatcher):
for video_frame_i in range(video_handler.best_match_count):
elapsed_time = video_frame_i * video_frame_length
audio_frame_i = int(elapsed_time / audio_frame_length)
time_past_start_of_audio_frame = elapsed_time - (audio_frame_i * audio_frame_length)
match_num = best_matches[audio_frame_i]
elapsed_time_in_carrier = match_num * audio_frame_length + time_past_start_of_audio_frame
carrier_video_frame = int(elapsed_time_in_carrier / video_frame_length)
carrier_video_frame = min(carrier_video_frame, int(video_handler.framecount - 1))
video_handler.write_frame(video_frame_i,video_handler.get_frame(carrier_video_frame))
elif type(matcher) == CombinedFrameAudioMatcher:
basis_coefficients = matcher.get_basis_coefficients()
for video_frame_i in range(video_handler.best_match_count):
elapsed_time = video_frame_i * video_frame_length
audio_frame_i = int(elapsed_time / audio_frame_length)
time_past_start_of_audio_frame = elapsed_time - (audio_frame_i * audio_frame_length)
match_row = best_matches[audio_frame_i]
match_row = [int((i * audio_frame_length + time_past_start_of_audio_frame)/video_frame_length) for i in match_row]
tesselate_composite(match_row, basis_coefficients[audio_frame_i], video_frame_i)
# signals VideoHandlerDisk to start encoding
video_handler.complete()
def is_audio_filename(name):
return Path(name).suffixes[0][1:] in COMMON_AUDIO_EXTS
def get_audio_as_wav_bytes(path):
ff_out = bytearray(subprocess.check_output(
[
'ffmpeg',
'-hide_banner',
'-loglevel', 'error',
'-i', str(path),
'-vn', '-map', '0:a:0',
'-ac', '1',
'-ar', str(INTERNAL_SAMPLERATE),
'-c:a', 'pcm_s16le',
'-f', 'wav', '-'
]
))
# fix file size in header length
actual_data_len = len(ff_out)-44
ff_out[4:8] = (actual_data_len).to_bytes(4,byteorder="little")
return io.BytesIO(bytes(ff_out))
def process(carrier_path, modulator_path, output_path, custom_frame_length, matcher_mode, video_mode, color_mode, min_cached_frames):
if not carrier_path.is_file():
raise FileNotFoundError(f"Carrier file {carrier_path} not found.")
if not modulator_path.is_file():
raise FileNotFoundError(f"Modulator file {modulator_path} not found.")
carrier_type = file_type(carrier_path)
modulator_type = file_type(modulator_path)
carrier_duration = float(get_duration(carrier_path))
modulator_duration = float(get_duration(modulator_path))
video_in_mem = (video_mode == "mem_decay")
if 'video' in carrier_type:
output_is_audio = is_audio_filename(output_path)
carrier_is_video = not output_is_audio
logging.info("Calculating video length")
carrier_framecount = float(get_framecount(carrier_path))
video_frame_length = carrier_duration / carrier_framecount
if custom_frame_length is None:
frame_length = video_frame_length
else:
frame_length = float(custom_frame_length)
if not output_is_audio and not video_in_mem:
logging.info("Separating video frames")
frames_dir = TEMP_DIR / 'frames'
frames_dir.mkdir()
call = video_out.apply_color_mode([
'ffmpeg',
'-v', 'quiet', '-stats',
'-i', str(carrier_path),
'include_color_mode',
str(frames_dir / 'frame%06d.png')
],color_mode)
subprocess.run(call,check=True)
elif 'audio' in carrier_type:
carrier_is_video = False
if custom_frame_length is None:
frame_length = DEFAULT_FRAME_LENGTH
else:
frame_length = float(custom_frame_length)
else:
logging.error(f"Unrecognized file type: {carrier_path}. Should be audio or video")
return
if not (('video' in modulator_type) or ('audio' in modulator_type)):
logging.error(f"Unrecognized file type: {modulator_path}. Should be audio or video")
return
frame_length = min(frame_length, carrier_duration / 3)
frame_length = min(frame_length, modulator_duration / 3)
logging.info("reading audio")
_, carrier_audio = wavfile.read(get_audio_as_wav_bytes(carrier_path))
_, modulator_audio = wavfile.read(get_audio_as_wav_bytes(modulator_path))
logging.info("analyzing audio")
if matcher_mode == "basic":
matcher = BasicAudioMatcher(carrier_audio, modulator_audio, INTERNAL_SAMPLERATE, frame_length)
elif matcher_mode == "combination":
matcher = CombinedFrameAudioMatcher(carrier_audio, modulator_audio, INTERNAL_SAMPLERATE, frame_length)
elif matcher_mode == "unique":
matcher = UniqueAudioMatcher(carrier_audio, modulator_audio, INTERNAL_SAMPLERATE, frame_length)
elif matcher_mode == "weighted":
matcher = WeightedAudioMatcher(carrier_audio, modulator_audio, INTERNAL_SAMPLERATE, frame_length)
logging.info("creating output audio")
matcher.make_output_audio(TEMP_DIR / 'out.wav')
if carrier_is_video:
if video_mode == "mem_decay":
handler = VideoHandlerMem(carrier_path,output_path,TEMP_DIR,matcher,carrier_framecount,video_frame_length,color_mode)
handler.cache.decay = MEM_DECAY_MAX
handler.set_min_cached_frames(min_cached_frames)
elif video_mode == "disk":
handler = VideoHandlerDisk(carrier_path,output_path,TEMP_DIR,matcher,carrier_framecount,video_frame_length,color_mode)
build_output_video(handler, matcher)
else:
subprocess.run(
[
'ffmpeg',
'-loglevel', 'error',
'-y', '-i', str(TEMP_DIR / 'out.wav'),
str(output_path)
],
check=True
)
def main():
logging.basicConfig(format='%(message)s', level=logging.INFO)
# check required command line tools
test_command(['ffmpeg', '-version'])
test_command(['ffprobe', '-version'])
parser = ArgumentParser()
parser.add_argument('carrier_path', type=Path, metavar='carrier_track', help='path to an audio or video file that frames will be taken from')
parser.add_argument('modulator_path', type=Path, metavar='modulator_track', help='path to an audio or video file that will be reconstructed using the carrier track')
parser.add_argument('output_path', type=Path, metavar='output_file', help='path to file that will be written to; should have an audio or video file extension (such as .wav, .mp3, .mp4, etc.)')
parser.add_argument('--custom-frame-length', '-f', help='uses this number as frame length, in seconds. defaults to 0.04 seconds (1/25th of a second) for audio, or the real frame rate for video')
parser.add_argument('-vm', '--video_mode', choices=('disk', 'mem_decay'), default='disk', help='How STAMMER will store video frames internally.\
disk: Copy all frames to temp directory.\
mem_decay: Decode frames into memory as needed and deletes unused frames over time. Recommended for very large videos.')
parser.add_argument('-mcf', '--min_cached_frames', type=int, default=2, help='Only applies to "mem_decay" video mode. Minimum number of frames STAMMER will cache for one decayed frame.')
parser.add_argument('-c', '--color_mode', choices=('8fast', '8full', 'full'), default='full', help='Bitdepth of internal video frames.\
8fast: generates 8-bit PNGs with default palette, fast and low filesize but low-quality. \
8full: generates 8-bit PNGs with a custom 256-color palette for each frame. slow but looks great. \
full: generates 16-bit PNGs, default. fast and looks good, but high filesize.')
parser.add_argument('-m', '--matcher_mode', choices=('basic', 'combination', 'unique', 'weighted'), default='basic', help="""Which algorithm Stammer will use.
basic: replace each frame in the modulator with the most similar frame in the carrier.
combination: replace each frame in the modulator with a linear combination of several frames in the carrier, to more closely approximate it.
unique: limit each carrier frame to only appear once. If the carrier is longer than the modulator, some carrier frames will not be played, if it is shorter than the modulator, the modulator will be trimmed to the length of the carrier.
weighted: apply an A-weighting curve to the audio spectra, to try and make formants more similar.""")
args = parser.parse_args()
with tempfile.TemporaryDirectory() as tempdir:
global TEMP_DIR
TEMP_DIR = Path(tempdir)
process(**vars(args))
if __name__ == '__main__':
main()