-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
60 lines (48 loc) · 2.42 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import argparse
import torch
from net import SUM, load_and_preprocess_image, predict_saliency_map, overlay_heatmap_on_image, write_heatmap_to_image
from net.configs.config_setting import setting_config
def setup_model(device):
config = setting_config
model_cfg = config.model_config
if config.network == 'sum':
model = SUM(
num_classes=model_cfg['num_classes'],
input_channels=model_cfg['input_channels'],
depths=model_cfg['depths'],
depths_decoder=model_cfg['depths_decoder'],
drop_path_rate=model_cfg['drop_path_rate'],
)
model.load_state_dict(torch.load('net/pre_trained_weights/sum_model.pth', map_location=device))
model.to(device)
return model
else:
raise NotImplementedError("The specified network configuration is not supported.")
def main():
parser = argparse.ArgumentParser(description='Saliency Map Prediction')
parser.add_argument('--img_path', type=str, required=True)
parser.add_argument('--condition', type=int, required=True, choices=[0, 1, 2, 3])
parser.add_argument('--output_path', type=str, default='results')
parser.add_argument('--heat_map_type', type=str, default='HOT', choices=['HOT', 'Overlay'], help='Type of heatmap: HOT or Overlay')
parser.add_argument('--from_pretrained', type=str)
args = parser.parse_args()
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if args.from_pretrained:
model = SUM.from_pretrained(args.from_pretrained).to(device)
else:
model = setup_model(device)
img, orig_size = load_and_preprocess_image(args.img_path)
pred_saliency = predict_saliency_map(img, args.condition, model, device)
filename = os.path.splitext(os.path.basename(args.img_path))[0]
hot_output_filename = os.path.join(args.output_path, f'{filename}_saliencymap.png')
write_heatmap_to_image(pred_saliency, orig_size, hot_output_filename)
print(f"Saved HOT saliency map to {hot_output_filename}")
if args.heat_map_type == 'Overlay':
overlay_output_filename = os.path.join(args.output_path, f'{filename}_overlay.png')
overlay_heatmap_on_image(args.img_path, hot_output_filename, overlay_output_filename)
print(f"Saved overlay image to {overlay_output_filename}")
if __name__ == "__main__":
main()