-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_colab.py
199 lines (158 loc) · 9.23 KB
/
train_colab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import copy
import torch
import numpy as np
from torch.utils.data import DataLoader, ConcatDataset
from torchvision import transforms
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from tqdm import tqdm
from utils.loss_function import SaliencyLoss
from utils.data_process_uni import TrainDataset,ValDataset
from net.models.SUM import SUM
from net.configs.config_setting import setting_config
train_datasets_info = [
{"id_train": 'datasets/salicon_256/train_ids.csv', "stimuli_dir": 'datasets/salicon_256/stimuli/train/', "saliency_dir": 'datasets/salicon_256/saliency/train/', "fixation_dir": 'datasets/salicon_256/fixations/train_edit/', "label": 0},
{"id_train": 'datasets/OSIE_256/train_id.csv', "stimuli_dir": 'datasets/OSIE_256/train/train_stimuli/', "saliency_dir": 'datasets/OSIE_256/train/train_saliency/', "fixation_dir": 'datasets/OSIE_256/train/train_fixation/', "label": 1},
{"id_train": 'datasets/CAT2000_256/train_id.csv', "stimuli_dir": 'datasets/CAT2000_256/train/train_stimuli/', "saliency_dir": 'datasets/CAT2000_256/train/train_saliency/', "fixation_dir": 'datasets/CAT2000_256/train/train_fixation/', "label": 1},
{"id_train": 'datasets/MIT1003_256/train_id.csv', "stimuli_dir": 'datasets/MIT1003_256/train/train_stimuli/', "saliency_dir": 'datasets/MIT1003_256/train/train_saliency/', "fixation_dir": 'datasets/MIT1003_256/train/train_fixation/', "label": 1},
{"id_train": 'datasets/SalEC/train_ids.csv', "stimuli_dir": 'datasets/SalEC/train/train_stimuli/', "saliency_dir": 'datasets/SalEC/train/train_saliency/', "fixation_dir": 'datasets/SalEC/train/train_fixation/', "label": 2},
{"id_train": 'datasets/datasets_UI_256/train_id.csv', "stimuli_dir": 'datasets/datasets_UI_256/train/train_images/', "saliency_dir": 'datasets/datasets_UI_256/train/train_saliency/', "fixation_dir": 'datasets/datasets_UI_256/train/train_fixation/', "label": 3}
]
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
train_datasets = [TrainDataset(datasets_info=train_datasets_info, transform=train_transform)]
train_loader = DataLoader(ConcatDataset(train_datasets), batch_size=4, shuffle=True, num_workers=0)
val_datasets_info = [
{"id_val": 'datasets/salicon_256/val_ids.csv', "stimuli_dir": 'datasets/salicon_256/stimuli/val/', "saliency_dir": 'datasets/salicon_256/saliency/val/', "fixation_dir": 'datasets/salicon_256/fixations/val_edit/', "label": 0},
{"id_val": 'datasets/OSIE_256/val_id.csv', "stimuli_dir": 'datasets/OSIE_256/val/val_stimuli/', "saliency_dir": 'datasets/OSIE_256/val/val_saliency/', "fixation_dir": 'datasets/OSIE_256/val/val_fixation/', "label": 1},
{"id_val": 'datasets/CAT2000_256/val_id.csv', "stimuli_dir": 'datasets/CAT2000_256/val/val_stimuli/', "saliency_dir": 'datasets/CAT2000_256/val/val_saliency/', "fixation_dir": 'datasets/CAT2000_256/val/val_fixation/', "label": 1},
{"id_val": 'datasets/MIT1003_256/val_id.csv', "stimuli_dir": 'datasets/MIT1003_256/val/val_stimuli/', "saliency_dir": 'datasets/MIT1003_256/val/val_saliency/', "fixation_dir": 'datasets/MIT1003_256/val/val_fixation/', "label": 1},
{"id_val": 'datasets/SalEC/val_ids.csv', "stimuli_dir": 'datasets/SalEC/val/val_stimuli/', "saliency_dir": 'datasets/SalEC/val/val_saliency/', "fixation_dir": 'datasets/SalEC/val/val_fixation/', "label": 2},
{"id_val": 'datasets/datasets_UI_256/val_id.csv', "stimuli_dir": 'datasets/datasets_UI_256/val/val_images/', "saliency_dir": 'datasets/datasets_UI_256/val/val_saliency/', "fixation_dir": 'datasets/datasets_UI_256/val/val_fixation/', "label": 3}
]
val_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Instantiate a ValDataset for each validation dataset
val_datasets = [
ValDataset(
ids_path=info["id_val"],
stimuli_dir=info["stimuli_dir"],
saliency_dir=info["saliency_dir"],
fixation_dir=info["fixation_dir"],
label=info["label"],
transform=val_transform
) for info in val_datasets_info
]
# Create a DataLoader for each ValDataset
val_loaders = {
f"val_loader_{idx}": DataLoader(dataset, batch_size=4, shuffle=False, num_workers=0)
for idx, dataset in enumerate(val_datasets)
}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
config = setting_config
model_cfg = config.model_config
if config.network == 'sum':
model = SUM(
num_classes=model_cfg['num_classes'],
input_channels=model_cfg['input_channels'],
depths=model_cfg['depths'],
depths_decoder=model_cfg['depths_decoder'],
drop_path_rate=model_cfg['drop_path_rate'],
load_ckpt_path=model_cfg['load_ckpt_path'],
)
model.load_from()
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
scheduler = lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.1)
loss_fn = SaliencyLoss()
mse_loss = nn.MSELoss()
# Training and Validation Loop
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = float('inf')
num_epochs = 30
# Early stopping setup
early_stop_counter = 0
early_stop_threshold = 4
for epoch in range(num_epochs):
print(f'Epoch {epoch+1}/{num_epochs}')
# Training Phase
model.train()
metrics = {'loss': [], 'kl': [], 'cc': [], 'sim': [], 'nss': []}
for batch in tqdm(train_loader, desc="Training"):
stimuli, smap, fmap, condition = batch['image'].to(device), batch['saliency'].to(device), batch['fixation'].to(device), batch['label'].to(device)
optimizer.zero_grad()
outputs = model(stimuli, condition)
# Compute losses
kl = loss_fn(outputs, smap, loss_type='kldiv')
cc = loss_fn(outputs, smap, loss_type='cc')
sim = loss_fn(outputs, smap, loss_type='sim')
nss = loss_fn(outputs, fmap, loss_type='nss')
loss1 = -2*cc + 10*kl - 1*sim - 1*nss
loss2 = mse_loss(outputs, smap)
loss = loss1 + 5 * loss2
loss.backward()
optimizer.step()
# Accumulate raw metric values
metrics['loss'].append(loss.item())
metrics['kl'].append(kl.item())
metrics['cc'].append(cc.item())
metrics['sim'].append(sim.item())
metrics['nss'].append(nss.item())
scheduler.step()
# Calculate mean and std dev for each metric
for metric in metrics.keys():
metrics[metric] = (np.mean(metrics[metric]), np.std(metrics[metric]))
# Print training metrics with mean and std dev
print("Train - " + ", ".join([f"{metric}: {mean:.4f} ± {std:.4f}" for metric, (mean, std) in metrics.items()]))
# Validation Phase
model.eval()
val_metrics = {name: {'loss': [], 'kl': [], 'cc': [], 'sim': [], 'nss': [], 'auc': []} for name in val_loaders.keys()}
for name, loader in val_loaders.items():
for batch in tqdm(loader, desc=f"Validating {name}"):
stimuli, smap, fmap, condition = batch['image'].to(device), batch['saliency'].to(device), batch['fixation'].to(device), batch['label'].to(device)
with torch.no_grad():
outputs = model(stimuli, condition)
# Compute losses
kl = loss_fn(outputs, smap, loss_type='kldiv')
cc = loss_fn(outputs, smap, loss_type='cc')
sim = loss_fn(outputs, smap, loss_type='sim')
nss = loss_fn(outputs, fmap, loss_type='nss')
auc = loss_fn(outputs, fmap, loss_type='auc')
loss1 = -2*cc + 10*kl - 1*sim - 1*nss
loss2 = mse_loss(outputs, smap)
loss = loss1 + 5 * loss2
# Accumulate raw metric values for validation
val_metrics[name]['loss'].append(loss.item())
val_metrics[name]['kl'].append(kl.item())
val_metrics[name]['cc'].append(cc.item())
val_metrics[name]['sim'].append(sim.item())
val_metrics[name]['nss'].append(nss.item())
val_metrics[name]['auc'].append(auc.item())
# Calculate mean and std dev for each validation metric
for metric in val_metrics[name].keys():
val_metrics[name][metric] = (np.mean(val_metrics[name][metric]), np.std(val_metrics[name][metric]))
# Print val metrics
metrics_str = ", ".join([f"{metric}: {mean:.4f} ± {std:.4f}" for metric, (mean, std) in val_metrics[name].items()])
print(f"{name} - Val Metrics: {metrics_str}")
# After validation phase
total_val_loss = sum([np.sum(val_metrics[name]['kl']) for name in val_loaders.keys()])
print(f"Epoch {epoch+1}: Total Val Loss across all datasets: {total_val_loss:.4f}")
# Check for best model
if total_val_loss < best_loss:
print(f"New best model found at epoch {epoch+1}!")
best_loss = total_val_loss
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(best_model_wts, 'best_7_model.pth')
early_stop_counter = 0 # Reset counter after improvement
else:
early_stop_counter += 1
print(f"No improvement in Total Val Loss for {early_stop_counter} epoch(s).")
# Early stopping check
if early_stop_counter >= early_stop_threshold:
print("Early stopping triggered.")
break