-
Notifications
You must be signed in to change notification settings - Fork 72
/
ROIinOpenCV.py
80 lines (48 loc) · 1.93 KB
/
ROIinOpenCV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import cv2
import numpy as np
from keras.models import load_model
from skimage.transform import resize, pyramid_reduce
import PIL
from PIL import Image
model = load_model('CNNmodel.h5')
def prediction(pred):
return(chr(pred+ 65))
def keras_predict(model, image):
data = np.asarray( image, dtype="int32" )
pred_probab = model.predict(data)[0]
pred_class = list(pred_probab).index(max(pred_probab))
return max(pred_probab), pred_class
def keras_process_image(img):
image_x = 28
image_y = 28
img = cv2.resize(img, (1,28,28), interpolation = cv2.INTER_AREA)
return img
def crop_image(image, x, y, width, height):
return image[y:y + height, x:x + width]
def main():
l = []
while True:
cam_capture = cv2.VideoCapture(0)
_, image_frame = cam_capture.read()
# Select ROI
im2 = crop_image(image_frame, 300,300,300,300)
image_grayscale = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
image_grayscale_blurred = cv2.GaussianBlur(image_grayscale, (15,15), 0)
im3 = cv2.resize(image_grayscale_blurred, (28,28), interpolation = cv2.INTER_AREA)
im4 = np.resize(im3, (28, 28, 1))
im5 = np.expand_dims(im4, axis=0)
pred_probab, pred_class = keras_predict(model, im5)
curr = prediction(pred_class)
cv2.putText(image_frame, curr, (700, 300), cv2.FONT_HERSHEY_COMPLEX, 4.0, (255, 255, 255), lineType=cv2.LINE_AA)
# Display cropped image
cv2.rectangle(image_frame, (300, 300), (600, 600), (255, 255, 00), 3)
cv2.imshow("frame",image_frame)
#cv2.imshow("Image4",resized_img)
cv2.imshow("Image3",image_grayscale_blurred)
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
if __name__ == '__main__':
main()
cam_capture.release()
cv2.destroyAllWindows()