Skip to content

Latest commit

 

History

History
363 lines (307 loc) · 7.56 KB

File metadata and controls

363 lines (307 loc) · 7.56 KB

Kruskal's Algorithms

Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which

  • form a tree that includes every vertex
  • has the minimum sum of weights among all the trees that can be formed from the graph

How it works:

We start from the edges with the lowest weight and keep adding edges until we reach our goal.

The steps for implementing Kruskal's algorithm are as follows:

  • Sort all the edges from low weight to high
  • Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
  • Keep adding edges until we reach all vertices.

Complexity:

The time complexity Of Kruskal's Algorithm is: O(E log E).

Pseudocode

KRUSKAL(G):
A = ∅
For each vertex v ∈ G.V:
    MAKE-SET(v)
For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v):
    if FIND-SET(u) ≠ FIND-SET(v):       
    A = A ∪ {(u, v)}
    UNION(u, v)
return A

Implementations

CPP

// Kruskal's algorithm in C++

#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

#define edge pair<int, int>

class Graph {
   private:
  vector<pair<int, edge> > G;  // graph
  vector<pair<int, edge> > T;  // mst
  int *parent;
  int V;  // number of vertices/nodes in graph
   public:
  Graph(int V);
  void AddWeightedEdge(int u, int v, int w);
  int find_set(int i);
  void union_set(int u, int v);
  void kruskal();
  void print();
};
Graph::Graph(int V) {
  parent = new int[V];

  //i 0 1 2 3 4 5
  //parent[i] 0 1 2 3 4 5
  for (int i = 0; i < V; i++)
    parent[i] = i;

  G.clear();
  T.clear();
}
void Graph::AddWeightedEdge(int u, int v, int w) {
  G.push_back(make_pair(w, edge(u, v)));
}
int Graph::find_set(int i) {
  // If i is the parent of itself
  if (i == parent[i])
    return i;
  else
    // Else if i is not the parent of itself
    // Then i is not the representative of his set,
    // so we recursively call Find on its parent
    return find_set(parent[i]);
}

void Graph::union_set(int u, int v) {
  parent[u] = parent[v];
}
void Graph::kruskal() {
  int i, uRep, vRep;
  sort(G.begin(), G.end());  // increasing weight
  for (i = 0; i < G.size(); i++) {
    uRep = find_set(G[i].second.first);
    vRep = find_set(G[i].second.second);
    if (uRep != vRep) {
      T.push_back(G[i]);  // add to tree
      union_set(uRep, vRep);
    }
  }
}
void Graph::print() {
  cout << "Edge :"
     << " Weight" << endl;
  for (int i = 0; i < T.size(); i++) {
    cout << T[i].second.first << " - " << T[i].second.second << " : "
       << T[i].first;
    cout << endl;
  }
}
int main() {
  Graph g(6);
  g.AddWeightedEdge(0, 1, 4);
  g.AddWeightedEdge(0, 2, 4);
  g.AddWeightedEdge(1, 2, 2);
  g.AddWeightedEdge(1, 0, 4);
  g.AddWeightedEdge(2, 0, 4);
  g.AddWeightedEdge(2, 1, 2);
  g.AddWeightedEdge(2, 3, 3);
  g.AddWeightedEdge(2, 5, 2);
  g.AddWeightedEdge(2, 4, 4);
  g.AddWeightedEdge(3, 2, 3);
  g.AddWeightedEdge(3, 4, 3);
  g.AddWeightedEdge(4, 2, 4);
  g.AddWeightedEdge(4, 3, 3);
  g.AddWeightedEdge(5, 2, 2);
  g.AddWeightedEdge(5, 4, 3);
  g.kruskal();
  g.print();
  return 0;
}

C

// Kruskal's algorithm in C

#include <stdio.h>

#define MAX 30

typedef struct edge {
  int u, v, w;
} edge;

typedef struct edge_list {
  edge data[MAX];
  int n;
} edge_list;

edge_list elist;

int Graph[MAX][MAX], n;
edge_list spanlist;

void kruskalAlgo();
int find(int belongs[], int vertexno);
void applyUnion(int belongs[], int c1, int c2);
void sort();
void print();

// Applying Krushkal Algo
void kruskalAlgo() {
  int belongs[MAX], i, j, cno1, cno2;
  elist.n = 0;

  for (i = 1; i < n; i++)
    for (j = 0; j < i; j++) {
      if (Graph[i][j] != 0) {
        elist.data[elist.n].u = i;
        elist.data[elist.n].v = j;
        elist.data[elist.n].w = Graph[i][j];
        elist.n++;
      }
    }

  sort();

  for (i = 0; i < n; i++)
    belongs[i] = i;

  spanlist.n = 0;

  for (i = 0; i < elist.n; i++) {
    cno1 = find(belongs, elist.data[i].u);
    cno2 = find(belongs, elist.data[i].v);

    if (cno1 != cno2) {
      spanlist.data[spanlist.n] = elist.data[i];
      spanlist.n = spanlist.n + 1;
      applyUnion(belongs, cno1, cno2);
    }
  }
}

int find(int belongs[], int vertexno) {
  return (belongs[vertexno]);
}

void applyUnion(int belongs[], int c1, int c2) {
  int i;

  for (i = 0; i < n; i++)
    if (belongs[i] == c2)
      belongs[i] = c1;
}

// Sorting algo
void sort() {
  int i, j;
  edge temp;

  for (i = 1; i < elist.n; i++)
    for (j = 0; j < elist.n - 1; j++)
      if (elist.data[j].w > elist.data[j + 1].w) {
        temp = elist.data[j];
        elist.data[j] = elist.data[j + 1];
        elist.data[j + 1] = temp;
      }
}

// Printing the result
void print() {
  int i, cost = 0;

  for (i = 0; i < spanlist.n; i++) {
    printf("\n%d - %d : %d", spanlist.data[i].u, spanlist.data[i].v, spanlist.data[i].w);
    cost = cost + spanlist.data[i].w;
  }

  printf("\nSpanning tree cost: %d", cost);
}

int main() {
  int i, j, total_cost;

  n = 6;

  Graph[0][0] = 0;
  Graph[0][1] = 4;
  Graph[0][2] = 4;
  Graph[0][3] = 0;
  Graph[0][4] = 0;
  Graph[0][5] = 0;
  Graph[0][6] = 0;

  Graph[1][0] = 4;
  Graph[1][1] = 0;
  Graph[1][2] = 2;
  Graph[1][3] = 0;
  Graph[1][4] = 0;
  Graph[1][5] = 0;
  Graph[1][6] = 0;

  Graph[2][0] = 4;
  Graph[2][1] = 2;
  Graph[2][2] = 0;
  Graph[2][3] = 3;
  Graph[2][4] = 4;
  Graph[2][5] = 0;
  Graph[2][6] = 0;

  Graph[3][0] = 0;
  Graph[3][1] = 0;
  Graph[3][2] = 3;
  Graph[3][3] = 0;
  Graph[3][4] = 3;
  Graph[3][5] = 0;
  Graph[3][6] = 0;

  Graph[4][0] = 0;
  Graph[4][1] = 0;
  Graph[4][2] = 4;
  Graph[4][3] = 3;
  Graph[4][4] = 0;
  Graph[4][5] = 0;
  Graph[4][6] = 0;

  Graph[5][0] = 0;
  Graph[5][1] = 0;
  Graph[5][2] = 2;
  Graph[5][3] = 0;
  Graph[5][4] = 3;
  Graph[5][5] = 0;
  Graph[5][6] = 0;

  kruskalAlgo();
  print();
}

python

# Kruskal's algorithm in Python


class Graph:
    def __init__(self, vertices):
        self.V = vertices
        self.graph = []

    def add_edge(self, u, v, w):
        self.graph.append([u, v, w])

    # Search function

    def find(self, parent, i):
        if parent[i] == i:
            return i
        return self.find(parent, parent[i])

    def apply_union(self, parent, rank, x, y):
        xroot = self.find(parent, x)
        yroot = self.find(parent, y)
        if rank[xroot] < rank[yroot]:
            parent[xroot] = yroot
        elif rank[xroot] > rank[yroot]:
            parent[yroot] = xroot
        else:
            parent[yroot] = xroot
            rank[xroot] += 1

    #  Applying Kruskal algorithm
    def kruskal_algo(self):
        result = []
        i, e = 0, 0
        self.graph = sorted(self.graph, key=lambda item: item[2])
        parent = []
        rank = []
        for node in range(self.V):
            parent.append(node)
            rank.append(0)
        while e < self.V - 1:
            u, v, w = self.graph[i]
            i = i + 1
            x = self.find(parent, u)
            y = self.find(parent, v)
            if x != y:
                e = e + 1
                result.append([u, v, w])
                self.apply_union(parent, rank, x, y)
        for u, v, weight in result:
            print("%d - %d: %d" % (u, v, weight))


g = Graph(6)
g.add_edge(0, 1, 4)
g.add_edge(0, 2, 4)
g.add_edge(1, 2, 2)
g.add_edge(1, 0, 4)
g.add_edge(2, 0, 4)
g.add_edge(2, 1, 2)
g.add_edge(2, 3, 3)
g.add_edge(2, 5, 2)
g.add_edge(2, 4, 4)
g.add_edge(3, 2, 3)
g.add_edge(3, 4, 3)
g.add_edge(4, 2, 4)
g.add_edge(4, 3, 3)
g.add_edge(5, 2, 2)
g.add_edge(5, 4, 3)
g.kruskal_algo()