-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
123 lines (100 loc) · 3.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from tqdm import tqdm
from env import Hangman
from network import Network, NNAgent
from utils import *
from keras import optimizers
import numpy as np
with open('/Users/ashutoshganguly/Desktop/personal/ml_work/hangman/hangman_try5/HangmanKeras/train_words.txt') as f :
word_src = f.read().splitlines()
len_list = list(map(len, word_src))
maxlen = max(len_list)
print('Max length of words is', maxlen)
policy_net = Network(maxlen=maxlen)
player = NNAgent(policy_net)
policy_net.summary()
save_episode = 1000
view_episode = 100
update_episode = 1
avg_correct = 0
wins_avg = 0
n_trials = 20000
#n_trials = 10000
progbar = tqdm(range(n_trials))
"""
Warmup Phase
Since the network can only collect data by interacting with the environment,
to collect more data max_lives parameter or the maximum number of trial before game over is set
slightly extra than the actual game parameter so episodes are longer.
"""
game_params = {'max_lives' : 8}
env = Hangman(word_src, **game_params)
print('Training Start ...', end = '\n\n')
for episode_set in progbar :
for _ in range(update_episode) :
state = env.reset()
done = False
correct_count = 0
while not done :
guess = player.select_action(state)
state, reward, done, ans = env.step(guess)
if reward > 0 :
correct_count += 1.0
if reward == env.win_reward :
wins_avg += 1.0
player.finalize_episode(ans['ans'])
avg_correct += correct_count
loss = player.train_model()
progbar.set_description("Loss : {:.3f} ".format(loss))
if (episode_set +1) % view_episode == 0 :
views = (episode_set + 1,avg_correct/(update_episode*view_episode), view_episode*update_episode, wins_avg/(update_episode*view_episode))
print('Episode {} -------- Average Correct Count : {:.3f} Last {} winrate : {:.3f}'.format(*views))
if loss is not None :
print('Loss :', loss)
print()
avg_correct = 0
wins_avg = 0
if (episode_set +1) % save_episode == 0 :
player.model.save('policy.h5', include_optimizer=False)
print()
game_params = {'max_lives' : 6}
env = Hangman(word_src, **game_params)
"""
Final Phase,
Collect data by interacting with similar parameter as the actual game.
"""
#n_trials = 70000
n_trials = 30000
progbar = tqdm(range(n_trials))
player.model.compile(optimizer= optimizers.Adam(3e-5, clipnorm=1))
for episode_set in progbar :
for _ in range(update_episode) :
total_reward = 0
state = env.reset()
done = False
correct_count = 0
while not done :
guess = player.select_action(state)
state, reward, done, ans = env.step(guess)
#player.append_sample(letter_dict[guess] - 1, reward)
if reward > 0 :
correct_count += 1.0
if reward == env.win_reward :
wins_avg += 1.0
player.finalize_episode(ans['ans'])
avg_correct += correct_count
loss = player.train_model()
progbar.set_description("Loss : {:.3f} ".format(loss))
if (episode_set +1) % view_episode == 0 :
views = (episode_set + 1,avg_correct/(update_episode*view_episode), view_episode, wins_avg/(update_episode*view_episode))
print('Episode {} -------- Average Correct Count : {:.3f} Last {} winrate : {:.3f}'.format(*views))
if loss is not None :
print('Loss :', loss)
print()
avg_correct = 0
wins_avg = 0
if (episode_set +1) % save_episode == 0 :
player.model.save('policy.h5', include_optimizer=False)