-
Notifications
You must be signed in to change notification settings - Fork 9
/
option_pricing.py
51 lines (43 loc) · 1.81 KB
/
option_pricing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import numba
from math import erfc, sqrt
SQRT2 = sqrt(2.0)
# @numba.jit("float64(float64)", nopython=True)
@numba.vectorize("float64(float64)", nopython=True, cache=True)
def normcdf(x):
"""Normal cumulative distribution function
"""
# If X ~ N(0,1), returns P(X < x).
return erfc(-x / SQRT2) / 2.0
# @numba.jit("float64(float64, float64)", nopython=True)
@numba.vectorize("float64(float64, float64)", nopython=True, cache=True)
def clip(x, y):
"""Max between x and y
"""
b = x < y + 0.
return x * (1 - b) + y * b
@numba.vectorize("float64(float64, float64, float64, float64, float64, float64, int64)", nopython=True, cache=True)
# @numba.jit(["float64[:](float64[:], float64, float64, float64, float64, float64, int64)",
# "float64(float64, float64, float64, float64, float64, float64, int64)"], nopython=True, cache=True)
def vanilla_option(S, K, T, r, q, sigma, option):
"""Option pricing for array
:param S: spot price
:param K: strike price
:param T: time to maturity in years
:param r: risk-free interest rate for stablecoin
:param q: risk-free interest rate for crypto
:param sigma: standard deviation of log of price of underlying
:param option: 1=call, 2=put
"""
if T:
d1 = (np.log(S / K) + (r - q + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
d2 = (np.log(S / K) + (r - q - 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
if option == 1:
return S * np.exp(-q * T) * normcdf(d1) - K * np.exp(-r * T) * normcdf(d2)
else:
return K * np.exp(-r * T) * normcdf(-1. * d2) - S * np.exp(-q * T) * normcdf(-1. * d1)
else:
if option == 1:
return clip(S - K, 0.)
else:
return clip(K - S, 0.)