-
Notifications
You must be signed in to change notification settings - Fork 5
/
lzokay.cpp
647 lines (591 loc) · 20.1 KB
/
lzokay.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
#include "lzokay.hpp"
#include <cstring>
#include <algorithm>
#include <iterator>
/*
* Based on documentation from the Linux sources: Documentation/lzo.txt
* https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/lzo.txt
*/
namespace lzokay {
#if _WIN32
#define HOST_BIG_ENDIAN 0
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define HOST_BIG_ENDIAN 1
#else
#define HOST_BIG_ENDIAN 0
#endif
#if HOST_BIG_ENDIAN
static uint16_t get_le16(const uint8_t* p) {
uint16_t val = *reinterpret_cast<const uint16_t*>(p);
#if __GNUC__
return __builtin_bswap16(val);
#elif _WIN32
return _byteswap_ushort(val);
#else
return (val = (val << 8) | ((val >> 8) & 0xFF));
#endif
}
#else
static uint16_t get_le16(const uint8_t* p) {
return *reinterpret_cast<const uint16_t*>(p);
}
#endif
constexpr std::size_t Max255Count = std::size_t(~0) / 255 - 2;
#define NEEDS_IN(count) \
if (inp + (count) > inp_end) { \
dst_size = outp - dst; \
return EResult::InputOverrun; \
}
#define NEEDS_OUT(count) \
if (outp + (count) > outp_end) { \
dst_size = outp - dst; \
return EResult::OutputOverrun; \
}
#define CONSUME_ZERO_BYTE_LENGTH \
std::size_t offset; \
{ \
const uint8_t *old_inp = inp; \
while (*inp == 0) ++inp; \
offset = inp - old_inp; \
if (offset > Max255Count) { \
dst_size = outp - dst; \
return EResult::Error; \
} \
}
#define WRITE_ZERO_BYTE_LENGTH(length) \
{ \
std::size_t l; \
for (l = length; l > 255; l -= 255) { *outp++ = 0; } \
*outp++ = l; \
}
constexpr uint32_t M1MaxOffset = 0x0400;
constexpr uint32_t M2MaxOffset = 0x0800;
constexpr uint32_t M3MaxOffset = 0x4000;
constexpr uint32_t M4MaxOffset = 0xbfff;
constexpr uint32_t M1MinLen = 2;
constexpr uint32_t M1MaxLen = 2;
constexpr uint32_t M2MinLen = 3;
constexpr uint32_t M2MaxLen = 8;
constexpr uint32_t M3MinLen = 3;
constexpr uint32_t M3MaxLen = 33;
constexpr uint32_t M4MinLen = 3;
constexpr uint32_t M4MaxLen = 9;
constexpr uint32_t M1Marker = 0x0;
constexpr uint32_t M2Marker = 0x40;
constexpr uint32_t M3Marker = 0x20;
constexpr uint32_t M4Marker = 0x10;
constexpr uint32_t MaxMatchByLengthLen = 34; /* Max M3 len + 1 */
EResult decompress(const uint8_t* src, std::size_t src_size,
uint8_t* dst, std::size_t init_dst_size,
std::size_t& dst_size) {
dst_size = init_dst_size;
if (src_size < 3) {
dst_size = 0;
return EResult::InputOverrun;
}
const uint8_t* inp = src;
const uint8_t* inp_end = src + src_size;
uint8_t* outp = dst;
uint8_t* outp_end = dst + dst_size;
uint8_t* lbcur;
std::size_t lblen;
std::size_t state = 0;
std::size_t nstate = 0;
/* First byte encoding */
if (*inp >= 22) {
/* 22..255 : copy literal string
* length = (byte - 17) = 4..238
* state = 4 [ don't copy extra literals ]
* skip byte
*/
std::size_t len = *inp++ - uint8_t(17);
NEEDS_IN(len)
NEEDS_OUT(len)
for (std::size_t i = 0; i < len; ++i)
*outp++ = *inp++;
state = 4;
} else if (*inp >= 18) {
/* 18..21 : copy 0..3 literals
* state = (byte - 17) = 0..3 [ copy <state> literals ]
* skip byte
*/
nstate = *inp++ - uint8_t(17);
state = nstate;
NEEDS_IN(nstate)
NEEDS_OUT(nstate)
for (std::size_t i = 0; i < nstate; ++i)
*outp++ = *inp++;
}
/* 0..17 : follow regular instruction encoding, see below. It is worth
* noting that codes 16 and 17 will represent a block copy from
* the dictionary which is empty, and that they will always be
* invalid at this place.
*/
while (true) {
NEEDS_IN(1)
uint8_t inst = *inp++;
if (inst & 0xC0) {
/* [M2]
* 1 L L D D D S S (128..255)
* Copy 5-8 bytes from block within 2kB distance
* state = S (copy S literals after this block)
* length = 5 + L
* Always followed by exactly one byte : H H H H H H H H
* distance = (H << 3) + D + 1
*
* 0 1 L D D D S S (64..127)
* Copy 3-4 bytes from block within 2kB distance
* state = S (copy S literals after this block)
* length = 3 + L
* Always followed by exactly one byte : H H H H H H H H
* distance = (H << 3) + D + 1
*/
NEEDS_IN(1)
lbcur = outp - ((*inp++ << 3) + ((inst >> 2) & 0x7) + 1);
lblen = std::size_t(inst >> 5) + 1;
nstate = inst & uint8_t(0x3);
} else if (inst & M3Marker) {
/* [M3]
* 0 0 1 L L L L L (32..63)
* Copy of small block within 16kB distance (preferably less than 34B)
* length = 2 + (L ?: 31 + (zero_bytes * 255) + non_zero_byte)
* Always followed by exactly one LE16 : D D D D D D D D : D D D D D D S S
* distance = D + 1
* state = S (copy S literals after this block)
*/
lblen = std::size_t(inst & uint8_t(0x1f)) + 2;
if (lblen == 2) {
CONSUME_ZERO_BYTE_LENGTH
NEEDS_IN(1)
lblen += offset * 255 + 31 + *inp++;
}
NEEDS_IN(2)
nstate = get_le16(inp);
inp += 2;
lbcur = outp - ((nstate >> 2) + 1);
nstate &= 0x3;
} else if (inst & M4Marker) {
/* [M4]
* 0 0 0 1 H L L L (16..31)
* Copy of a block within 16..48kB distance (preferably less than 10B)
* length = 2 + (L ?: 7 + (zero_bytes * 255) + non_zero_byte)
* Always followed by exactly one LE16 : D D D D D D D D : D D D D D D S S
* distance = 16384 + (H << 14) + D
* state = S (copy S literals after this block)
* End of stream is reached if distance == 16384
*/
lblen = std::size_t(inst & uint8_t(0x7)) + 2;
if (lblen == 2) {
CONSUME_ZERO_BYTE_LENGTH
NEEDS_IN(1)
lblen += offset * 255 + 7 + *inp++;
}
NEEDS_IN(2)
nstate = get_le16(inp);
inp += 2;
lbcur = outp - (((inst & 0x8) << 11) + (nstate >> 2));
nstate &= 0x3;
if (lbcur == outp)
break; /* Stream finished */
lbcur -= 16384;
} else {
/* [M1] Depends on the number of literals copied by the last instruction. */
if (state == 0) {
/* If last instruction did not copy any literal (state == 0), this
* encoding will be a copy of 4 or more literal, and must be interpreted
* like this :
*
* 0 0 0 0 L L L L (0..15) : copy long literal string
* length = 3 + (L ?: 15 + (zero_bytes * 255) + non_zero_byte)
* state = 4 (no extra literals are copied)
*/
std::size_t len = inst + 3;
if (len == 3) {
CONSUME_ZERO_BYTE_LENGTH
NEEDS_IN(1)
len += offset * 255 + 15 + *inp++;
}
/* copy_literal_run */
NEEDS_IN(len)
NEEDS_OUT(len)
for (std::size_t i = 0; i < len; ++i)
*outp++ = *inp++;
state = 4;
continue;
} else if (state != 4) {
/* If last instruction used to copy between 1 to 3 literals (encoded in
* the instruction's opcode or distance), the instruction is a copy of a
* 2-byte block from the dictionary within a 1kB distance. It is worth
* noting that this instruction provides little savings since it uses 2
* bytes to encode a copy of 2 other bytes but it encodes the number of
* following literals for free. It must be interpreted like this :
*
* 0 0 0 0 D D S S (0..15) : copy 2 bytes from <= 1kB distance
* length = 2
* state = S (copy S literals after this block)
* Always followed by exactly one byte : H H H H H H H H
* distance = (H << 2) + D + 1
*/
NEEDS_IN(1)
nstate = inst & uint8_t(0x3);
lbcur = outp - ((inst >> 2) + (*inp++ << 2) + 1);
lblen = 2;
} else {
/* If last instruction used to copy 4 or more literals (as detected by
* state == 4), the instruction becomes a copy of a 3-byte block from the
* dictionary from a 2..3kB distance, and must be interpreted like this :
*
* 0 0 0 0 D D S S (0..15) : copy 3 bytes from 2..3 kB distance
* length = 3
* state = S (copy S literals after this block)
* Always followed by exactly one byte : H H H H H H H H
* distance = (H << 2) + D + 2049
*/
NEEDS_IN(1)
nstate = inst & uint8_t(0x3);
lbcur = outp - ((inst >> 2) + (*inp++ << 2) + 2049);
lblen = 3;
}
}
if (lbcur < dst) {
dst_size = outp - dst;
return EResult::LookbehindOverrun;
}
NEEDS_IN(nstate)
NEEDS_OUT(lblen + nstate)
/* Copy lookbehind */
for (std::size_t i = 0; i < lblen; ++i)
*outp++ = *lbcur++;
state = nstate;
/* Copy literal */
for (std::size_t i = 0; i < nstate; ++i)
*outp++ = *inp++;
}
dst_size = outp - dst;
if (lblen != 3) /* Ensure terminating M4 was encountered */
return EResult::Error;
if (inp == inp_end)
return EResult::Success;
else if (inp < inp_end)
return EResult::InputNotConsumed;
else
return EResult::InputOverrun;
}
struct State {
const uint8_t* src;
const uint8_t* src_end;
const uint8_t* inp;
uint32_t wind_sz;
uint32_t wind_b;
uint32_t wind_e;
uint32_t cycle1_countdown;
const uint8_t* bufp;
uint32_t buf_sz;
/* Access next input byte and advance both ends of circular buffer */
void get_byte(uint8_t* buf) {
if (inp >= src_end) {
if (wind_sz > 0)
--wind_sz;
buf[wind_e] = 0;
if (wind_e < DictBase::MaxMatchLen)
buf[DictBase::BufSize + wind_e] = 0;
} else {
buf[wind_e] = *inp;
if (wind_e < DictBase::MaxMatchLen)
buf[DictBase::BufSize + wind_e] = *inp;
++inp;
}
if (++wind_e == DictBase::BufSize)
wind_e = 0;
if (++wind_b == DictBase::BufSize)
wind_b = 0;
}
uint32_t pos2off(uint32_t pos) const {
return wind_b > pos ? wind_b - pos : DictBase::BufSize - (pos - wind_b);
}
};
class DictImpl : public DictBase {
public:
struct Match3Impl : DictBase::Match3 {
static uint32_t make_key(const uint8_t* data) {
return ((0x9f5f * (((uint32_t(data[0]) << 5 ^ uint32_t(data[1])) << 5) ^ data[2])) >> 5) & 0x3fff;
}
uint16_t get_head(uint32_t key) const {
return (chain_sz[key] == 0) ? uint16_t(UINT16_MAX) : head[key];
}
void init() {
std::fill(std::begin(chain_sz), std::end(chain_sz), 0);
}
void remove(uint32_t pos, const uint8_t* b) {
--chain_sz[make_key(b + pos)];
}
void advance(State& s, uint32_t& match_pos, uint32_t& match_count, const uint8_t* b) {
uint32_t key = make_key(b + s.wind_b);
match_pos = chain[s.wind_b] = get_head(key);
match_count = chain_sz[key]++;
if (match_count > DictBase::MaxMatchLen)
match_count = DictBase::MaxMatchLen;
head[key] = uint16_t(s.wind_b);
}
void skip_advance(State& s, const uint8_t* b) {
uint32_t key = make_key(b + s.wind_b);
chain[s.wind_b] = get_head(key);
head[key] = uint16_t(s.wind_b);
best_len[s.wind_b] = uint16_t(DictBase::MaxMatchLen + 1);
chain_sz[key]++;
}
};
struct Match2Impl : DictBase::Match2 {
static uint32_t make_key(const uint8_t* data) {
return uint32_t(data[0]) ^ (uint32_t(data[1]) << 8);
}
void init() {
std::fill(std::begin(head), std::end(head), UINT16_MAX);
}
void add(uint16_t pos, const uint8_t* b) {
head[make_key(b + pos)] = pos;
}
void remove(uint32_t pos, const uint8_t* b) {
uint16_t& p = head[make_key(b + pos)];
if (p == pos)
p = UINT16_MAX;
}
bool search(State& s, uint32_t& lb_pos, uint32_t& lb_len,
uint32_t best_pos[MaxMatchByLengthLen], const uint8_t* b) const {
uint16_t pos = head[make_key(b + s.wind_b)];
if (pos == UINT16_MAX)
return false;
if (best_pos[2] == 0)
best_pos[2] = pos + 1;
if (lb_len < 2) {
lb_len = 2;
lb_pos = pos;
}
return true;
}
};
void init(State& s, const uint8_t* src, std::size_t src_size) {
auto& match3 = static_cast<Match3Impl&>(_storage->match3);
auto& match2 = static_cast<Match2Impl&>(_storage->match2);
s.cycle1_countdown = DictBase::MaxDist;
match3.init();
match2.init();
s.src = src;
s.src_end = src + src_size;
s.inp = src;
s.wind_sz = uint32_t(std::min(src_size, std::size_t(MaxMatchLen)));
s.wind_b = 0;
s.wind_e = s.wind_sz;
std::copy_n(s.inp, s.wind_sz, _storage->buffer);
s.inp += s.wind_sz;
if (s.wind_e == DictBase::BufSize)
s.wind_e = 0;
if (s.wind_sz < 3)
std::fill_n(_storage->buffer + s.wind_b + s.wind_sz, 3, 0);
}
void reset_next_input_entry(State& s, Match3Impl& match3, Match2Impl& match2) {
/* Remove match from about-to-be-clobbered buffer entry */
if (s.cycle1_countdown == 0) {
match3.remove(s.wind_e, _storage->buffer);
match2.remove(s.wind_e, _storage->buffer);
} else {
--s.cycle1_countdown;
}
}
void advance(State& s, uint32_t& lb_off, uint32_t& lb_len,
uint32_t best_off[MaxMatchByLengthLen], bool skip) {
auto& match3 = static_cast<Match3Impl&>(_storage->match3);
auto& match2 = static_cast<Match2Impl&>(_storage->match2);
if (skip) {
for (uint32_t i = 0; i < lb_len - 1; ++i) {
reset_next_input_entry(s, match3, match2);
match3.skip_advance(s, _storage->buffer);
match2.add(uint16_t(s.wind_b), _storage->buffer);
s.get_byte(_storage->buffer);
}
}
lb_len = 1;
lb_off = 0;
uint32_t lb_pos;
uint32_t best_pos[MaxMatchByLengthLen] = {};
uint32_t match_pos, match_count;
match3.advance(s, match_pos, match_count, _storage->buffer);
int best_char = _storage->buffer[s.wind_b];
uint32_t best_len = lb_len;
if (lb_len >= s.wind_sz) {
if (s.wind_sz == 0)
best_char = -1;
lb_off = 0;
match3.best_len[s.wind_b] = DictBase::MaxMatchLen + 1;
} else {
if (match2.search(s, lb_pos, lb_len, best_pos, _storage->buffer) && s.wind_sz >= 3) {
for (uint32_t i = 0; i < match_count; ++i, match_pos = match3.chain[match_pos]) {
auto ref_ptr = _storage->buffer + s.wind_b;
auto match_ptr = _storage->buffer + match_pos;
auto mismatch = std::mismatch(ref_ptr, ref_ptr + s.wind_sz, match_ptr);
auto match_len = uint32_t(mismatch.first - ref_ptr);
if (match_len < 2)
continue;
if (match_len < MaxMatchByLengthLen && best_pos[match_len] == 0)
best_pos[match_len] = match_pos + 1;
if (match_len > lb_len) {
lb_len = match_len;
lb_pos = match_pos;
if (match_len == s.wind_sz || match_len > match3.best_len[match_pos])
break;
}
}
}
if (lb_len > best_len)
lb_off = s.pos2off(lb_pos);
match3.best_len[s.wind_b] = uint16_t(lb_len);
for (auto posit = std::begin(best_pos) + 2, offit = best_off + 2;
posit != std::end(best_pos); ++posit, ++offit) {
*offit = (*posit > 0) ? s.pos2off(*posit - 1) : 0;
}
}
reset_next_input_entry(s, match3, match2);
match2.add(uint16_t(s.wind_b), _storage->buffer);
s.get_byte(_storage->buffer);
if (best_char < 0) {
s.buf_sz = 0;
lb_len = 0;
/* Signal exit */
} else {
s.buf_sz = s.wind_sz + 1;
}
s.bufp = s.inp - s.buf_sz;
}
};
static void find_better_match(const uint32_t best_off[MaxMatchByLengthLen], uint32_t& lb_len, uint32_t& lb_off) {
if (lb_len <= M2MinLen || lb_off <= M2MaxOffset)
return;
if (lb_off > M2MaxOffset && lb_len >= M2MinLen + 1 && lb_len <= M2MaxLen + 1 &&
best_off[lb_len - 1] != 0 && best_off[lb_len - 1] <= M2MaxOffset) {
lb_len -= 1;
lb_off = best_off[lb_len];
} else if (lb_off > M3MaxOffset && lb_len >= M4MaxLen + 1 && lb_len <= M2MaxLen + 2 &&
best_off[lb_len - 2] && best_off[lb_len] <= M2MaxOffset) {
lb_len -= 2;
lb_off = best_off[lb_len];
} else if (lb_off > M3MaxOffset && lb_len >= M4MaxLen + 1 && lb_len <= M3MaxLen + 1 &&
best_off[lb_len - 1] != 0 && best_off[lb_len - 2] <= M3MaxOffset) {
lb_len -= 1;
lb_off = best_off[lb_len];
}
}
static EResult encode_literal_run(uint8_t*& outp, const uint8_t* outp_end, const uint8_t* dst, std::size_t& dst_size,
const uint8_t* lit_ptr, uint32_t lit_len) {
if (outp == dst && lit_len <= 238) {
NEEDS_OUT(1);
*outp++ = uint8_t(17 + lit_len);
} else if (lit_len <= 3) {
outp[-2] = uint8_t(outp[-2] | lit_len);
} else if (lit_len <= 18) {
NEEDS_OUT(1);
*outp++ = uint8_t(lit_len - 3);
} else {
NEEDS_OUT((lit_len - 18) / 255 + 2);
*outp++ = 0;
WRITE_ZERO_BYTE_LENGTH(lit_len - 18);
}
NEEDS_OUT(lit_len);
outp = std::copy_n(lit_ptr, lit_len, outp);
return EResult::Success;
}
static EResult encode_lookback_match(uint8_t*& outp, const uint8_t* outp_end, const uint8_t* dst, std::size_t& dst_size,
uint32_t lb_len, uint32_t lb_off, uint32_t last_lit_len) {
if (lb_len == 2) {
lb_off -= 1;
NEEDS_OUT(2);
*outp++ = uint8_t(M1Marker | ((lb_off & 0x3) << 2));
*outp++ = uint8_t(lb_off >> 2);
} else if (lb_len <= M2MaxLen && lb_off <= M2MaxOffset) {
lb_off -= 1;
NEEDS_OUT(2);
*outp++ = uint8_t((lb_len - 1) << 5 | ((lb_off & 0x7) << 2));
*outp++ = uint8_t(lb_off >> 3);
} else if (lb_len == M2MinLen && lb_off <= M1MaxOffset + M2MaxOffset && last_lit_len >= 4) {
lb_off -= 1 + M2MaxOffset;
NEEDS_OUT(2);
*outp++ = uint8_t(M1Marker | ((lb_off & 0x3) << 2));
*outp++ = uint8_t(lb_off >> 2);
} else if (lb_off <= M3MaxOffset) {
lb_off -= 1;
if (lb_len <= M3MaxLen) {
NEEDS_OUT(1);
*outp++ = uint8_t(M3Marker | (lb_len - 2));
} else {
lb_len -= M3MaxLen;
NEEDS_OUT(lb_len / 255 + 2);
*outp++ = uint8_t(M3Marker);
WRITE_ZERO_BYTE_LENGTH(lb_len);
}
NEEDS_OUT(2);
*outp++ = uint8_t(lb_off << 2);
*outp++ = uint8_t(lb_off >> 6);
} else {
lb_off -= 0x4000;
if (lb_len <= M4MaxLen) {
NEEDS_OUT(1);
*outp++ = uint8_t(M4Marker | ((lb_off & 0x4000) >> 11) | (lb_len - 2));
} else {
lb_len -= M4MaxLen;
NEEDS_OUT(lb_len / 255 + 2);
*outp++ = uint8_t(M4Marker | ((lb_off & 0x4000) >> 11));
WRITE_ZERO_BYTE_LENGTH(lb_len);
}
NEEDS_OUT(2);
*outp++ = uint8_t(lb_off << 2);
*outp++ = uint8_t(lb_off >> 6);
}
return EResult::Success;
}
EResult compress(const uint8_t* src, std::size_t src_size,
uint8_t* dst, std::size_t init_dst_size,
std::size_t& dst_size, DictBase& dict) {
EResult err;
State s;
auto& d = static_cast<DictImpl&>(dict);
dst_size = init_dst_size;
uint8_t* outp = dst;
uint8_t* outp_end = dst + dst_size;
uint32_t lit_len = 0;
uint32_t lb_off, lb_len;
uint32_t best_off[MaxMatchByLengthLen];
d.init(s, src, src_size);
const uint8_t* lit_ptr = s.inp;
d.advance(s, lb_off, lb_len, best_off, false);
while (s.buf_sz > 0) {
if (lit_len == 0)
lit_ptr = s.bufp;
if (lb_len < 2 || (lb_len == 2 && (lb_off > M1MaxOffset || lit_len == 0 || lit_len >= 4)) ||
(lb_len == 2 && outp == dst) || (outp == dst && lit_len == 0)) {
lb_len = 0;
} else if (lb_len == M2MinLen && lb_off > M1MaxOffset + M2MaxOffset && lit_len >= 4) {
lb_len = 0;
}
if (lb_len == 0) {
++lit_len;
d.advance(s, lb_off, lb_len, best_off, false);
continue;
}
find_better_match(best_off, lb_len, lb_off);
if ((err = encode_literal_run(outp, outp_end, dst, dst_size, lit_ptr, lit_len)) < EResult::Success)
return err;
if ((err = encode_lookback_match(outp, outp_end, dst, dst_size, lb_len, lb_off, lit_len)) < EResult::Success)
return err;
lit_len = 0;
d.advance(s, lb_off, lb_len, best_off, true);
}
if ((err = encode_literal_run(outp, outp_end, dst, dst_size, lit_ptr, lit_len)) < EResult::Success)
return err;
/* Terminating M4 */
NEEDS_OUT(3);
*outp++ = M4Marker | 1;
*outp++ = 0;
*outp++ = 0;
dst_size = outp - dst;
return EResult::Success;
}
}