From 08e1b97e18b23c0a447acdbf37f63fe281ade43f Mon Sep 17 00:00:00 2001 From: Ayushi <46610680+Ayushi141@users.noreply.github.com> Date: Fri, 11 Oct 2024 11:07:32 +0200 Subject: [PATCH] Initial Overleaf Import --- 8123123123123.png | Bin 0 -> 58255 bytes 9_1231231231234.png | Bin 0 -> 32685 bytes BA_Titelseite.sty | 74 ++ ShelahUnstable.png | Bin 0 -> 89060 bytes abgabe_arbeit.pdf | Bin 0 -> 50190 bytes defStableTheory.png | Bin 0 -> 32256 bytes image.png | Bin 0 -> 15070 bytes k-branchingTrees.png | Bin 0 -> 189372 bytes literature.bib | 241 +++++ main.tex | 1986 ++++++++++++++++++++++++++++++++++++++++++ marginTree2.png | Bin 0 -> 40612 bytes marginTree3.png | Bin 0 -> 48849 bytes marginTree4.png | Bin 0 -> 55435 bytes preamble.tex | 172 ++++ style/Zallman.sty | 14 + 15 files changed, 2487 insertions(+) create mode 100644 8123123123123.png create mode 100644 9_1231231231234.png create mode 100644 BA_Titelseite.sty create mode 100644 ShelahUnstable.png create mode 100644 abgabe_arbeit.pdf create mode 100644 defStableTheory.png create mode 100644 image.png create mode 100644 k-branchingTrees.png create mode 100644 literature.bib create mode 100644 main.tex create mode 100644 marginTree2.png create mode 100644 marginTree3.png create mode 100644 marginTree4.png create mode 100644 preamble.tex create mode 100644 style/Zallman.sty diff --git a/8123123123123.png b/8123123123123.png new file mode 100644 index 0000000000000000000000000000000000000000..a3569fc10134faad2d24ac4cf1a85c4a3f0dcded GIT binary patch literal 58255 zcmYg&2|Sc-_y1UvC`n-?OOe9VXd=lH5>d3-m$GFLg~*bol!z%IOUO=zgk+bZv6d~0 zY?U?pmL>5&*F8P&@Be&0@B4fnbKTc{Eob?j?>XlV)H`*YlO4~F!{Io!G}X`GaLlSW z9IF-^BmAXpQKSm~#o&78xGL`Dr|l!~AIz7Io;-@fH=$?!M_2WF+C%RdR6DlPC5hd@(2d z@Kl7#;9K(c?Y?b6Pu{Iuym7-!jtPgWIFLfDDTd+A&8I(_`CfB(PwQod(eWWP;ntp> z9`W6~#mGy4ZmvzP#l4;N=yy0RwJrYX(>W6cSOsSbpS3|o+mo1>uwb$HMuWYN^YRWX zS*V3^;Bb_CnpPoZ85tQ*GW%V4d3m`_EiAq?3E73hgHxPj4jFrAXWiCt(}}4mz2vul z+wDkcX=!ei{|2y=IdY$w5*%)a)?apXw42+ctE)RHPDs{*qp6UDCCA3Z#P}%fTdMu> z!!o0-h4V6fVt#lo^{-a_+}xa8^!k%Bu#+B9>QVpC_6JQwX*a&F8p!$hi}S;uogdMJ zB|BR~H+q}VAKe0LN^G;2CJ;{S4Q(89c6Pp2sZ0Nf3x2w2Wu=xEV)_ym_4)v*7G_w4 zo0(QPbf{@%XXLkU-&*ae|F=0&kE>S`qmL5`ii=+~6PkCyLHBKK;j79#^ZY9}(bd&8 zp0K%9w|GBPB)L%6Va z`9FZ4I(mBA=R_kFl$6@-lCbyi5nA}v2m1Tfw*;Af8aRMIiN_AE@)+Llx~Z92$6Q@~ zef?jZ?3JDLSprC`j|$(uEhx2gcbC0uyOsV|5L@E)8#e?61s|JQT3ROQXN>qWU>9~l zLeq+?)T>NMUVe{JRZUIJ>};MB-x2y_w@IuQ9rBIgOhT1mwI@=O1X^Ym7Y!wN`dQep zA*@swVq#*_IwlfXQdrnzSA0rWcYf>2Ep(5RTX4MP`S7X= z62gi;5aV+LE=C9ZO`YHZlhs=6NN}8UZU3HT5TPCoadLLP92f;keCvO=az+jBH}!g- z;>dYkcI+@lgsDd_*ylfy-u$y%6Gm^uE;WR)h3`&Evz?BvuC|w+)HWd@p=*9}*r94N zkU4HQ+vjiNhq<@iPmbMs&R`{{d^YT;Y7yL9Pz^`D}y=H^El zY8vRsRc>oq^~HsSZ4n$9a)DdJa|&VW)e@oJvUvIO<;+rP@C?`+rYGi0$Kz#dW8>pT zZ9xy*f=R49z`lVn%aq4QM+asP{%RGER=IQmR>&s`@A@%6f6dM99P7f*pFi`BPs&vd zScNsr&AH`ueEtX%4CBZgrA=_XyLa0dD$B^stgK`TSkC2W*}A%(EdZ;Nz?4GdE7#9B zsI0t?Y1v2VriVwmfap9qtl`6lyH3ck=xSQ+_i=D=I2_TaQ?Gz6`>!zdUC8+4};E)TliA4n(YcN76*R``talD z&t#{X{g{*#tK$96rfz_ZXU+M<^F!(^`Ym^jcV1an!ETIdv*mUFYzx`Q^pM!j%qA?Af#MY_f5d zt=~vrf7-zM&w1jfR%`UCX z&*wX-6k}%_4aWcF<;#~xp2Q`2fHwYBxEAe-x1xOgnN84y_LY3Ce6>%gchHylIx`T0F>+-O4vOJpbYUHog~th;wv_-BeY zPmPafIjKY`$<{VBG&BtY2oqJo`zad%Y-)BQcmOaveP;|T-tXUUoWLZqZ6kAhe)sOy z16S9gzkhE~MXz8Rk$6Pw%SJYpO)e7oOo=4S5e94`bNH5&l;mBUSXntzwq+U|zi0~?&1^eqoQEFf>Sj`8zu0>!@sEju;{Kb5aB<=#Z;&@t77menx zaZ484FTjnevB5#wVIgq)&w1V((B}}L2DXCyp6HYoDm#B*kj)%d0OG_P`M4L?ce$}Jmjw+5UBF1BJK@SlCoo;#Y`ye~npdtZVeyJ*c zOA3J9j9DXd^TF~%tWuNF$A|HPB ze-eb_!0x63HYM`>%P80;8K3Q-vcA6UoGQlHvXq3W>ow>>&n+vZ`0R6giy1UGV-v1} zqc8-eBU%wq0B~CP8YUHqJE`j{dwQO3xk;JMT@&yBNw*}}c1JfdAsFYBQE z*nZ~+n53?*?P&iOR5YztTwvo?6{b$tuANU-VZ%=Bxd?Sy)7xgFNABkBn7G=*i>JW} z?tN_CFDEZQqH(8~fo&a{LRc_`XbyN2Nz<6XzmP}84x46=FqOYtBl$bcQ>IUn9`Z1- zZNXj)TlLSRqg1_pbd<^}Y=|8`*a`mJxHu5Z0lE}1Vuqbhq9y9$VR`vx5pzO8etzm{ zVRmfzI}s}X6Of`3v$E3ChN+EoL&?ELZn$#f$PpfpqOTwSNs;;;Bwz?|t4%F0A3l6| zuUhf+^t5qSngC@OyB*eBB=O7hUN>A^&d^+U?%dhf*jUW)&t6_lAwG9eD*!LZUpp|n z1Wvyjr;dqih*V3|xvZ?L5n)24g0k`#2`&Zf)N(bgTJk`RD+^2~`ubFoRp^$JTOA)3 z3URk!$$-n~=qR2g7h6{dPfHXDq0t+|;9zK%YoxGAL^Z8gCqSJe0-~Qhu?*z1=EshG za|#h5IL9X0!-r4o#$i5VScu$!JBX)_jF9=CZ4LTRU46V8XN^T43A!-;2hCbrTU$oG zerPuQBW@hKBY?~N;U7Pq6pR~iNl#D5vrN&~t_-hDDzo+XZm3Ad1}g5PYV`~Zq;9Np zDFUNQWn847(`*uGiMn%s?_<@(3rxATdCvuK^l-h2sU>O`z|Y7NV*K|{o;p=tRyM+l zv%qXI;An9o=s+q#h7CmK+8(MC?w`pl(6kC|wj&J=4q7woOKt0Zr6UJ%0@`r`kO;Mg z0DIpV5Ij6RpP$CXUFENT|Nge`9eU`v$WGQ_ba!`m`}(*ZVp=kfiky9Z=kV||-;jR; zc*r_$Arie-@wgs<5)4>?K$4934FJm{^#G=*#Ssw^5(Dd&UjywTB!TfFivgrG4*+J! zr5PVMZ~(b9+%N`A62R&xzR=ImuU1x4GS6spW1_5La^$OyZw=B&zNlRV0vHj%5Q>4T z#T{fFgx*$GN;$H+G)E^UPRZdkH=^D338WCsOaM8YK2PxQ^#x)m5c7;aexx*oagTuR zFL;*yI85NPLuhW_$HsJypP>U%1`fC#w+e+6qOu(c5BrpH+`BCZ_Fc@Na$o6k=*12r z98M;PG^miJ??5JN(R7^HuHCqiC4ftr0E_beJtNwO^%io2$D22A+zP|%EghMTC;gstza%oEz{-V&QkrYej_$=#VuZh(MfqpM317!xWZ8)nk2)wi`qfzJ}` z(^K43br-!wM%0zuu(VXP@v=)%e*Qr!V*m?wRY%{nM1d8PjEj$tPyfsufcaSUeQM-} z+1c5ent)(3MCL}KtN|D{sgjl?>tyK*2nj_tHw+ICkB(+I;kYn@DZm7_t&vPTaA4<8 zSo7l4RDuAmDhRz>blXilK%j`o$je-=n6y+qK!3N~dJ~@qR{UqA=>+gt$+%o>Q%O9Y zcvm;Kl%0{LPC!&7<7BXNO5$JcaDYxMxuL#3sM{wlD(b>3M$ArGa$m&H{{Afsj8R4QXdcBi&3CcbyXLXl0Qu^$7NS(L-xCjiL%+}>J#HS9q{OU?hu z2N}%8RB}v=fIOKGi4>dW6uDtwU|?*_F;VYIa>&hP-L*Z*TsT4d$+RulBJcOLM*V(X zyNWnpSR!503*Voz>XN9ctKCi$!WCoi_>?#NLuYFfuS+}$d zz(9^k1tY(Nr5MtQ$B!SE=>${V@$Fk!HfZ;?12{MA9vQi>;12+qqeg`n0uQp}WoxSe zk7DeAFi&C{ao$TYzOnw$&vB2L{0*`(C;y7$hFOuc-Vyyw8UzTe!ROQ0*9TO$QKVrkp4T1^#@goVvX*<|tsL#*sm3hS{Akf<6{I##nn>%+( ze95QBMh2TNrUGf`#TzSa_UDr?n=F1P*Dn-)|4=d##n2}J4rroOWH%Q%a47&O{gKUQ@PMgy|MaI)IXQ38wpI5N_E0vq zjm}R`UzNZ1x}eHO9q~3wYE6J{f#9-@1^5b$2p3jBsmK+|{o{g9iO`3smI&q%SzFQ_s#HMM&! zfX;ir)WsAcL>@BgUm<aL#NSh26bof?wi{!q1|Q{_R!xWO+JqJZQlqKcx~Fl$FYjyXBa;6eG_WCY!DOJ5d#TA6;Zh zgISB?Tr)u+l--K!ZsMxy^qWtnhz(+1N0T~94$d!(jg7T?W(6VEj59EOBxd0Z*5-d_ zo>DnVO6zdk1~CA8X?eN*Yb$`;GtR(>!mu#bFaHgz7$wm(m>_h-|DuhIJYSg|7_i}F zsCjzyKVkA4yoS#!D%!IXCnw&dCkL*4AiiXCus_cFVSZI`aPZueX~8<|g6z!GiSA7K z1$8cRp|76223GGh&Zwn_+Z8Un`5ksQw`Sz1IhXc0N%V1ZQ{8Kw0@CDt82SR?UceMk z(=eCKTHQ;cwP%|`XsWjWn7033;XYWi0OSG`o8zLRN0yv4l`+9lSvhGncJzeu*<^Eb z^SVt}l~1bSWGcj@!6?j3>t?}OEyzGLKVXA7li~Pua>KW8F{YEVOFm`hU+fk@_E%yp za}I@j=ivM;Z{D;}`t#|E!wECiff@?;%;|&yTgw*U)s1=bq=k#3xzzga7I)QDlWZLvv|mmKHiUNBk^0l+CmaClJaGO`rp~}D$bvCW zvWnqXHae2rLZxyrv@XFzt^TUS^ zXAWqmhWg{Gl0a8IJPeY3vC~yrdQ2GF^!1hTTv1cpOq#6?=S^!qh< zn{RG>>nq0LTQ^<`u9;XWEx*^i@a7FE{2Acer6o85IHQCFcs*t=c3cmq?JB>%rU3FXGpl>*6o|M= z;(tolJtIc-^z?ibw)6`5AInEB67xax$=;^ww@zT`kwB#JB;oX)$Wfb}K;d zYFZiR_RdHGa6QN@EHN&Poa3YUA`G<+`Dj^z#Uy+K8cJ>!4Dp^ z10Bh=0U@s8SYEP@_ibWRVlB9-m54*XMsDfkMDTeO^XaYYZo=leSE^}6AQ1X*D=H{t zB)AlPD0W9i@^Ugv zMJYZBDE#-L#h$5FK8J7JkV}FQ;dY1*W$eosgWJR0VK1LA{=mV5Vg`WQ9XL5#fZSRs z273e3oN52hd}njWgV*3Gk_BhTAla3wFR_Y^z_2kSct?596& zF|ka*+RGZi1(+S=XBQZ?F5+w5`S-1!&un!bK$;H817h zamrqvo_n?h&AbB(C5a5auzv*Yt4ugz15Y#qZ@%(7e6$1S^PJs*A$AR5S{ug0f&G;Bwd4~*9;!Qbx=GrP!=~2Hx#w0L~x2w zi^|I*Bqu(94)^zeXO0q4Fxj&*G5>0|G8AKn7^!Jm$;!(1yC`(kKIndIZmyve?+j|n z5_11{1mBax%ZLRPj`0tn1yiZD`R>E5FMzVGkt}-q_6rx~9jG7j*&{zkj>e-~u|C^L zZm6vEGqpiB(*M%s%O}k_B7KBUBA4Bq9Jv$APsm7&lW6!+Gxo&9?^ip5N~0b>-U^5G z3RSUm$#)&qM7d8&rj`OVIxg<9cBVj`o!#}Z=8%#e2et}fU}KxP4+x`slM!npr9r_% z+rh}$i?;&wGi=T(=UrggZ}+;21EohOI$8&*dm`&yY~o^KTAN;Vv?ij||*Z83viv!g7y)PYS-*BM!H0Xkmf;BH|z3%i<4fa1)flp6ymQHI(&iFyF- zKTEKV3=AMhq0-f&ZAGiD9>DiM)=Xh>91k$ll@FT=v~*D3dmbg z8Hdk!YjbQMEa!(EUYQ;Lsl+$c??-%~LIioUy9(&Te7BL;rO*3y6~=L?B(OfF zA+WbK=iFYh1T!)ixe&-7WbR`!woJkdjGiA*F#wQV3g5g*OXPBNbgZdY0#Cz5*<=R_ zgH)M|b1xOh&+z*1P&VSPsz-<%uqinWeq`lEnV5LyrbFe39uYpoq-6ydx?dHNE0x7u zN=iy~l0t%lZCn&tFpY@hJGO`vo2ay)=L7Hu{*cQR z6R$@nv?%qR1VVk{r90qNJbQ@ZSr_NyYAV0s6<5&=J`vXV+2!TEUy6K`CRtVRoO*v^ zo9DgEl2vGi+6}-w{&92QF+!J8VWO2r+`W6ZOI*-}7nUXKJiWa$M1-~Bu;Cm?_s5VT z^ri1=ZJg`q4;g<4=L@y#OGgF=7R-*a=joYO)0*lKW*ufJNIH@3Wh?NB_2 zWDD80mzPm>3wx|tp3&r{jvPoD+$&Sl=IBH=ZR&(28HmznreBjr0t>ubq?YalUlB4l zww&TbYPqT@P6b~WscoEN7;JlWy-8iz^!D5Y{fv%}Y%pfee`9hsuhrGv_kVw>TM0-r zJfr9_ZH~hT(^YJ#O#znXfD1rSg;u>q$e;J0ED9odq-~Znwrs+Xg_5Q)^|^kA*Pi+T z2pu(&_bVw8CPxAHtEsrz1s*Lxd*Lu+1lh^qwwP{%7nSBC{J?OP>>LPXYCqrYJd7mt z!Z5d{6_AGg_-(zn7a+Gg158^xiCI0ROf2o(-t!sfyKyThi&b%DK88k$IcZX=T)x3D z^~|FJU|gSz2#dmfAS#UIuq)I>9B&jtZ%#?;B@Hew8^1IMf)0N_K)WULQi3@c%K%k? z_o(vemJ=AydJ$`EbTY)m+a^6M>?8>KYvbIqoDAPH^fN%3A6$n0<^cf>0C!y|l8KPp zzOAUjqsZyQ;ksS`=WftDJ^N(rUw{Nf6D)~cX73v{Ns~KU}X1xC@K zM>vdvxTkL51(cmiXb^5aDp&&YR76VNTkb!ED*NK%Mj*oDZn46hrv&2A8DEJ04l*;pH@2Kv zS^?fi0LRCz!N; z-b8MI$J@?cdw(NOKz2m=K@GshvZI^~J>EBN$=_yJQp;MpwVEWO*A_d9)S)LB!7D=>dKP&vIliG$J~hU*3)!_)ZTQR=(JMt$g+8 zx684*?4fQAHY%9{B%$6VzQ8$t_tNxMi;jRM8z(&DkvHJ`k4s4t`9zW4GR=76t+Iqa zL0Nf;_NU6q%6ISHL4_QoO#FR^$}fWhSTiCNK%J97(gnZw!(VETGTQ~-!U!FX_q*x) z3x$}-{k-mEdC_0uDIJ?8Fr_nTkUcoad_6FN?>fSC6~d*u5Ybk9Eqe>#if&qNSOIFQ zee_y4S0RFqXPqd|L@Jagm^8IHd{8P=`06A*c%v0E=rs=1PY4+kc+MUT`ek zYimD0_v^p{RO)~(&$K2*i;Vyx?m;n;Kh7CYP}4h>O-O9f0}T*|0_%n9##n?i(yl#7{`HJQiz%})&jJiBR`d89{p<52SR zaJB8Sa&qH+ZbFJwMhqB*1X#30K{l}H*)A97OyjINT@*L#Esp6{X>MLEEG!JEY)KSj zT}9+e(_4!cKFQ3R1utzHfiPNL`wsRz%;WPA51Yyv00WsP?nUr1qtukjny=P=$NfM7 z9sDe`M1HV(bJ0=t7Z!e0w$cH4REiiY1F}9%=@#4^CSzic9JI3Z!{Q-B{~~cp@yL;y znETJqZ2X=i#)^U2riZXlhWy29QZ}%~dwJMr$_<4CE5W|2B43?w2{vAP>e2SzJN1@M zPN#alw6#6lQOrk7|1H(IH{&`9~^MhqQF%I@SCz0$U1o)uQ{weJv+p96(3BQwS)iMvFE`uloY2jU8`6Krpo;LUBE?m+sd>b{()Fr62WOv z!ub^#PBy;M--$hoi`T;!*g}kuI2O-n;eP@HJ!;dxpinNTA6ay#`f24MKxM@uhao^| zetZ0S4ZAbwemK&7w~1L2&B)BGtzMHLM7wft#`HiMtO{>0^~{; zxv;-;o%`!5VK20)!_#W`pM}I$AhPOp=e%ZEJfb@~I%+@R8~|GMECSu-PkEOh#%k1R zuDSIAOJ{}yR9=$Utx;J8W%3bi4w6nCi!FmkaNM7jf@7kh5|UVr zki9@f31x7^VUnYm==B?(KKU=K3=u;cC|AX|mVl8j$}9$YdRNMgId@dWEbNUI>vJFK zCZM*`;(vNu9;30SoL!(LGH zCXyg9eoZErMiI(4xbOsu`@1=CHLNXBzQ7e11wd5iz&337hZ5Y$m!JlYw-ieIZE-5B z@PbhYy$MMu9|IBJ5&u&*36erF*8f5aR$SEsk~qVg(mCWxC>ud*Y99UE?=01n1pzBk z22LE8LQ530l$2D>);W}fsnFfAV+WM*Z;KL~0-DX8Tpa%|Y zi~42e&E9vj>ihNU1R)-Z3-OFt-mIEKny7;48VZyTYpH;7bGVeK2R0wi zQhvq9M`~R#fZrx%bU#oS9ZH1I${yl0;A#N5M>H zE)=%%>x;jJAdddmcgT=J1+h3k#D*`QpyUjrZ(9$yTG596Y-oM%A+%k|9gfD8YG7$3 zP+p6VcD{mwG_d0+J`9pvfPiK;rHs95_U7sUk82G7sI z&RWpU)E|<>wScQ}$w|4w_6dm5te_Jo=|wfdPANn!V?)D`AhCs&J}CmBZn~mxJs&$d zCQJAUK|IL;s1o)MIS-elgsiINF??7GP_;!mpAe{vR@dg}L-nS@`tX34w|AI>b)sH^ zlSm%CzZ6AE>VYKji|*eh5w@@4a|rxbwk$#Ujt=sN8a`})MkU0w?OeHl*$3fblX3p2 zdM$v1tn=RVwo5K<@Bx3ohVr(k{CHPchJ-5wh;9O+kjXo{_c2f{Q2K&L*P#d3k$XS4 zqr+(Fz0E<>jXwb+gT5r6#$812L={T?c9p2z^zk_Yg(nuh(5GXop7<~QgS(B0-8%tL z3^%^jrp^8uaGvGvd#JwalBV{p4ZIDvT)w$5xhe=cw;kym)GF_yv1bkq4tA|Q1@J}Fc2-nY?7I!R{ zY4>>O_w8Y>+6OS7a2P0YBFqD~cHQ8#cqWeQ?5wNC)&V5aSQ9imDu+QcgTE6K*M?C? z5-2ZfHRQgq)n>`3yv%nD4AKus)8JKKbzVyP6ZCd*!&1_j=U@;w=Xh^JB`VN;sKc0< zG-g&jGczMPjp8m5!|`i=;Gky?nyspY)B7rX8a`UA4p{uM#ZlJL=SPX2o39>BL0W}V zM5nd2HCM9R{LPas#VfZA0gruUGMv4++PK#I5l6YWlREOnV5`mhy<3!Q53vPE^PZL9 zfkl5zI~l3WMf7HMfK$NTL>3x4a|q7yvK1&A)c^Iu&o=L1%}-vr2RYwfyDc$o{!_5_ zySHw4wnyjbc%u*|iyq z)gYgXAk{#C`by$1@PR+Ie0&TMHp>?vlTwa|9W}P&e_V*;lAa|g=Wd5@U_9Lkp>*RS zTzS2r(#u^ycxLsoIY!AgM5lZQNe!a-N>V<=F_V@{9!l0CV_pg9Bzb7)Qjz}+ z3y|69n|rz5&o~uDc?{32OX`=|vSbHl$>AA-1AXgTqIN(_ZY|5$pZhX7d3if~$I6?y zN*6|8`!M{6tFJF1epEGaYGl?GL>-lzD?W*e3d#7gu+`=VINEZkI5$_D>PfHv@H)9( zC?NQcu*v-vrFY8;NZz5W-fQ|sebsRUC4rr@XY0vpdE~5d00f4ZGf#kusnPjj4P}J7 zI0VT$`#{=TBLa1cf|6FkJUEl5S`F$yl;#x|@9lL3ge8Kz=;9fa<S*c0bMx$P z9%r^~y5j&OyHb7ksVd}zI5t3mtJgCLS4Vxx^e`ia{p!8@cxN97ZgNv(xRqPm8n;8K z29Bdb4@y{vR#(kmo-sQgzCPpZvfF0v>p!XoEPHZd3engnkiF5JP9HT}MMXb+>@86f zZr9>hB&+VPRay6GWjW~~Y2LuWK z#{MSFSI-j^5DAtNNJ`tFf4Y4(r50q+SG6&91K+cakwKpKU{ZC0^N4*}JyujihU2<@ zK776_Ss9Aml)ob!Hl=kBZcq(mRkY+l+jpUr5-vkK$)j-<=Pae`9P3$aTM$M5r+#EzTw#d49(IN5)6Z z0MpogMoon(YnoO{a!nwX*H|i_$nO4$h6T5zC-^{imL+*AP9%=XVgtCytcc=r;!VM~*ML5iVfR6yK^0AQl-p45O?k@N4 z-aO&v96edH?<+c9Wl^eUc3F~RlUb*%Q9CdM{`;>7qT4$;1#QPr+#+2L_8+>xkkq(@-nu(~UqY8L=fw)v95@a**%`^gc=i;Oz)_;CX2N*L`gwMsh9j_ii%@Xy{T!|Y zfbvXBf$i9!tqkBnw8u?Eq9-q!8a~<|XNT9hY0kIC$q4e-|8; zsm9*7cfn$w1n=uEw6`hr6U43)B-KbkL>Ub7%1#d;=7ZG{iqU*`9&k*%aD}c+Axdjt z=ukH&2s=o5-_DjOWylESeY^0SssytQ$YH^fAF&BMNn*W_rjf*`nLBEwA7&;u#6#y+ z(FG1m`A6BGN3SiVI^F4Zls$N#fp3^D7%5T-a0y5*(8cMFZCr*DQ2#R*wYQ@pN;anb z!(d072R5ZVzfo3yC`}v1RnX^=><@rA^QpqX+@7;%3^6%Xu}7MMI5U(AL=?-j#B<^6 zBg<;Cfv0KX3XOOVuQZH&TOV?e`2xmg5UC3^iS4~H|-1_6YE6cVCV3?hzJWWtQbiP;;XPt z#sUA10a|1lEOPGWUd)o+4`rzPC<+UHA)Rn1j(gg$WSC~Sz{hWj3H9~bRE>M+4Ls<9 z=)-5DDu11IA9}jvxg~NC#y@@fv_CR!iH)r$9Lj%}!c%)&qfqTVx{|lW@w*LJo||#0JMJJd?Mk93R$1$EqOw7 zE9uUilp?xD`&sEWACRfu3I1(rBithG37pOr*^W=GtzrI61>tm6y`Tcz{y^o{kN-So zr;Q?YIx$JdP+%D{;r>l>CInO;q_!uiUWkub?n*r5gEtxI{5zNZ(4XP+OkxYFbU4vf zW1=>!3%D1hNKbAyTdfd|efqR+w`BQ0@rcSyCq6wFEl4|NXc4SRJSmI6bH}di%V$!QQQ$i3R|s0gXYyPJ1kBj}XC?y|A_VH+}ReE1-u4 z#%@B}P-0?kYFDn&o<~x!Uj#@iv21rHG$&zqr!+? z{-uBO1}yy*W@ECNfG&j^OvT#I^u?&qY@l2<`rS%2#}`72j$_+y69UvBY?M2G83IP8 zu>3ubDb_ZZ>1z?L&yAri!qQ)F@^pZFV{_Se0`Dv+WpHWKw{Ip;s&Pj4A6Ai(OeP24 z0|PEjDMytO#iTj9(hi@^Xv>vp&dj1adTV`+R=!PukRWy~-S3n>-*AtvhI6$_>injY zxu^%CCM`G(o!GbVI9X<_x~90ll5Ulkp_@#moDMIb4@bu;Gbz(hYWYo5KTv38vYd$m zPwB8QK?oH?O-Dn^2)PdxZ3#Q%M$x_=y9!acno`c62aqqst5zQ|qQlM}z*r?4uArt- ztl`Zl>;u*=@oCccO*7Q9*4HC$@Zb2+ne<((!}qg1ScmZ+P?9!8Fk0IR5^Vhq6XTSb-@oHESr9%xfU(g3$tknlw_!=eaVl|RQvYV!VJ-R*Q16LR4ecAnN z^bK~mACPfTl9|Y>^oleCQ>LO}ElHhz3mW5h&$;qy{L&jxKiO)zd}75zWX<3kG}wn7 zC{i{0c&n{8sN!uV)Z26Bu+c)9Yq>Odrtz}?$AxlwY}R1KTxE_>@PB%6sk8u!m1Yh@ z88~ArJ&!KkhjZX6W#}jkb}R znL@k>J`#xRncG0UknS`tmcoSX1CyS`EF3}9H%5~(C`A!)M!zNM)!w>TV6^uY8cNN~ ztqDBc$J_d8$9f>;q5Mp!tJX+K*t5N4I}UAV_ZD(6r;wS<7QGV}o_~R6bN{JZLjVi_ z&d!|azHoaflHxwm;P}xh(?cE=-UR5tmnbqMHjMr%1loJwA87DUTYQWGt^+TC%&=pt zaDEFPwWvMrH&0lH>W_)F>UgV%2jBnV&(GIW9U0P!N2BxJyb<5Gh?R5CZ;%UzTsi?)RYhYi8fcG)q|9sB{!%3Nwz zXBxQSS4uUBf4=Ve>CU`RkGmr_LlW=0FLN3SeC9y~9oXJ(u%mSppE`Z1R-^A~qMwGlGjhbylZF0A_x#F$9)Sy~YmYOFPeulha zg77I4CsEdgOF8R@fj}WKTR#+#G?@fuCPL#8iV2vd2T8QOb?6&MJi;Y3_+*Q{#H^$A zFSJ(!D1rOH%g!?4C7K6%<>T$$ihZera^+YIO^dq!@(4eS7A zMdsJtux3rqBy!eAUQF`gR` z38oTZs7-^k;DLvKP&b?iJesqVaQmf%E2iO+*xx^&7a4EA3i)jYrfq7JCl?0-VCgGd_uhtzqN-#SRVXp_vS z*)n1P7y|cG0p>sofRp8un60c&_Louo$EOK&tYFPGYQ~BLGBIF3H82z4>A)HoL$!`A z%b3qN-u|k`2GweC-GTPM#l3Y^aI>Y)qg?V{s=vY_H4jwIRN58o>FB8Q05qBd^}ep~ zn&1&lw7bg=ka$@(LgF?$%qSvCE=CL_!=uB{5R)7?Pf$a2!rF%jtaP+PHaC46g5c#R zpz<}his~(jV7P+55d+s%aPo-Ou5dk_3Ke3>5O{XTmXohIZV!3K@B0IdD^Z5n9;!n$ zGClZ_@GVNc0O8AqmIe~fW)qnY)RBYX{LSFwCZN)$=Un(bNnuc9H?SyE`sVm1<_x?`MeHTYhHcTn zFxt69Q6Q#U6#~92S|Q9{!WV%Mhiz^puGye4F_Sm3IbzdM~ z3!g%Kv5$t@bSL0;xl#YO`1|LoU<*({8d?y2ch`2K3t<{qNm4V|XlPi|waPsUeCEbh zsN3T_w)Y2I7!+W6#$c7gx7*5l#Kz69LSmz$i6x$9{UWIWbx|w`EIgB&0A<*Fx^N)Enu z>rx7+%d;<>coI+KFkPM0Df5Ipq;+c0NNQDoRHIj-|P z4Gz{{4Ejo;oZ-}y9Hq#`&p-&5jzY-|=LfM3^m|M62B~vI>(^tBrG4$o){{{0W$Aed zU0?!@L$lM}^9?mv#P%=&um%mp^MVB9DZq7(o}NZ((HFxuLz=}wVjDj~YNH;-2wifq zwU^vMhJTJFmSznRX(n_8dV3Vb`ddDF1cw4?_eUOre_x~pG(rvB_A)>ns8UhW=owkZ z7Gx2jtvfaxia>IFTxP@1?-o+#d7+l#n#N)+i~1aCww+`Mooy zUh*vLDDV79RMAf1LST=)6! zjs@EdcWp_MTDEOLPTwLrXPbZ&w4j(g!k2{^+&CFS_r^{>{K7b`H^e6n=ukzg+ zW<5Hjb&6LuGke%R1v=X=VxG{9oXg0RBDJWnaFKY6JX9{fGwVA9k~0x%j_l6)#uGL- z<11df_CnkFmIWp`csc@oUB=RAk{i*V!Yr$4#0j5E4x0nu;~F17euN5sAWmqLP*2mf zR?JY=&BFtKYPQhNg4GBB*Z@f3@u3y;1>!IGc2KS!^u%AYfOPaXYd7@8!XJM;!4(M4 zdx7bk=Ja4m2iZt~p0vUPeefxTr%NvKk*S4}0}FC4T@tSpqp$AlE8Nh~6=2arHq?Gw zvYnQ8&fS!8_OI#|LOfZSTlA$4_$r2+^mmyaf!V+sn|w8(f5$L}A;B5C*I;p8o%I8d zXgRE-Y5Ej>re|$zL93y>(MR=?K>#x4OId$cV@sZ1^Sv}NJY2Ik>(Zr5R^3^!NH&Ph zTZ*a9U0q!@S1oBYnreImD@7SP&m2$lq~H5=Iwq(CYlI0leJbvp2emFW&dBuM?&cc? zi;^5ip5*WD>};_!m8ym`f>Pc*0a|$uGW%SFnv@6IDlak#?}65{aj`Fo`_wNCeN;{4 zx+-_Ke!BlMYmTMgx6SRXy(V{G4-^pM16?L$Anv%my$7(iO!!a*AAI0({$+i0;Gc~< zDW9)L(!Ods+1tN}?-Yr7cpVB()S8RR${sK9se2Z0Wk*EHGw^Z-ezl>hx8&`%uW`o*pWfEB zGAR655}A;$Hn{K?>S-sPz-y{ebbue9L?wzPLhEfF$bV#2&q#qqj%z7+Z$GGd_ zfjsmHkQ(jv6GlM0JiPC6W2>Yn^t`ll^{q3Rba8VF2SG<)Y1;KEn?%!R8%dw2IRafb zSX-f<8!Dqw^m_WjNbxVADSt1Ul55b-t+qL5;1G9h|E-i)Jz~p{^`}_Fs{sntKR>DO zI(hbg#a_dP*#Se{JQD-8qhmLZg+m0U{Nn#H_1@`Uy)D}S@FNa0F2HGG<0s64$~_C zA?9@SiT?sfQoMVJs;6SnZ7=c`Y1)RsR#cf`!RH3fahMF1=dMfipJSe;;(HE`-S^47 z%Bq9S^PO4sV@)7XxcaVFXARb9G1%bjW?XcfpOh7OP6!8C8ht3K9jHbuJ?qi2_*f{y z-MiwTItpqf`l6=JF3cwhgP$GV{%f++yjSp%r%2Pw1Ab2%tui_UXbB!gZgC~$>GRtD zj?~X9fX;7S2<}M@{h?l~N0}AdlLN17mS=sf%CN{t_(bE-)gY=Q2&abk-u){gO2VkY z0B1|cSY#X9)o0K@7D)yj#$MX9vLzKqT5N0_XHA5($2M5nN6?b{m41Pa z#pz3hL%E?tA=c9Q)~WN7i>pi0HnJ?9&xtN_uC3VeM)wjbSqxwHp87miT?U=CRIc(X z%aZHPUdO$1ajzXXc;%T6oiy1J;ir8%*DmTKxSG;wt%b3pcL0!JJ514(L$9mm3}Y`T zws4oTmeEI9t!n4ZR1cr%?%(hLXT=n2zx$|k`?SSQiD%VZW$)Y~*f!zQ96wBp zmqXqQZy>jQ--ioV+})+Ka$cpD z)K2#HyejR3gBP2=t?OnY?+${;Hm$RTkl5g%Nroetx0U)>0(kD<4aV*BQZ&!A!6B$a z0@_7ebH1(Zu|KoeBkz#wYZFRogHiFa8;{f=k3`D(HyAkfuOQ1AsK9&v{zaUSph^Zd zH=lddJC6t^zLaEUx&WtYLMZe87f;&6soNnEJ7F9x>DcJ?608ZtTAGf#b-Cjr9UYxe zhayf&Yr3}}t=%m;8X-qp75o~iZd;jG2*$voZ&d+|e>~XS+>DRJG&+6)uwq>9N?iJ~w_4y&pI5B!W+{&8pfPeVnzD9#I2jGjUAQ26aw>Ftof# zj2<#Vsu*Z^>>SY zzWU-g8}IGpb-w7hAF+pE4EnVt>8lOdM!ustvK~&!(JO*}U@jkcjE%TLO|m@k*v8D3 zws_@_2V`U(nB2k>4&n*WEwltDvgRkf2Ok&^8#L3J4W@W25J&M+;X~LV#V5!)1HaLd z?kys@Tj?L=P!zpGN{LX3G6Ti8tHINeT!TvCKM$YO z<*1|98*AWUQTBM*_zMiJZ9OGW9s6WQO?Yy;U|QKrTIe>?5sE?wNlVLD;FIe~$m83F z1NC$u#rq&!ND^*4jdXPzn6F<&MS?qMSjvj>7649Cw30biJtZY~0r@aTO_wMx9N}O| zMQn8-1j^i)yqC>GnNm6ptOk}wWA-qu@$!Lf^|p;)5jhgtooJS>F)5*an<;Se=Oy_8 z+!H&l9(g$kV^lIWL`D+v6W0ZB#a0&MpcaB5=z9n;OJH~)V0x<+S-HpW;k^Fa8MdwL zh=f9SkkLQP!LrYKR2W*}H@ZRi11X+b`NPmUi@(!!*e$PMo-zaRI_sbzY2n$8 z8374ua6%=ZZG8{zr7gROo{`TWhSwG#v|8sO^$?${v#~^uWd?#<*SGA%-q{6%eUsDj zL?29QUt19r33zCRu!E+yJ4kkMqUOf_F&-m^O-Xo&q3+n|EYl>j#JuZKmN5b`#nQC4 z+)F6e3TA04puy_kRpwwhAoV<>^)|pE@!NazWP}Pb31?;IY@U9&uisx0O5hjF!oWtL ztXFmG(b02!dqMSd|AUmaVks9#5bclw6$u3hDbdSm?)f`@s?i2vcjzkUD8Bm|2UPckai| zWKxAxozIida#ICpXP=g2*cb;Z9ebhZc$YgkcoUSaa2dGu6GWrVGi==Th>bFT;df}N za~|QCQh2}6N}iy+vh=rPsd=uE3!hB|%H^6SjSM1SLrhlT7i7qhBv7VYc)PPo|6T1d zF?n%S6R~c%)7(iPDhN|B9g?1Qf`@lMCj%XJ*5H^@6l^seXhqv||76A_xY};Zg-hNZT2fG0_?4kD1_|X|oBCCA5h)A# zNNQpuFNQeKhJ?gDhDo352nARyuzn%LX9>BQ;h`@r8|MM(yvg z4C$boumE~`!N3m`3FYvJXI~6_QZ1JSd<4#Z)p?&ZQW{**m(2bPs(bIC2P*fd@&z!h z&0k|_enAays!MKW^|E|1e)Ome z@Gb2}{`5ycwd3Kj1ZH61#|=hDM@e-Xew#(qp+dRA)w{|`#-iz?>piTZ{n$E?cz^IE zgY)k|nc}0U3=Z7>_=8W};-#>U=LpTdQ}&nORy>zq4VBiOZ9*eRlxcw$pYoO*uaM zvm}Zoo=!w+f!?XT7jX}L_8Veq0u#0y_qx1-^ff&L4knQc{ntSmFJ7%vXQ(+Pw>+>M zwg=w6<31m`!h$=^=vzR@p6@^1+cfl34vgkXXd)b8_5-xrdWA5n=SHLothGTa@M{5& zZ`b$BA9t7SdSZaGo)Bf^=!jCJ0!$jHJLc8L5GEb3E0@Ox*l?H`1xaQVTfw9TGjY?V zP5dp5MandvSFrE4W!)WeU}s7nS87vHR@_P!$STVduL(21Pg+VUF|O14KL4P{zFV?| zNNJg~Th32bWj`$mycoJlOLP018#pB@2hT+rCo+2%>v1AAXG=wf6;neySEBci!gN`G~3GMi-gz84EZU6Q?q} zoYf6dgl>G#iL-0HGo0ysmVwM+3gr`1Dspvk6wS)B&o$x<*D34x<%X zUIm`jKljrC)ypiInDt22`ZCBhI8n=*d>@Ko8-PQ*Bzj7g$hw!~QAC|LPB|X!H~RhD zy}i@w9)XtA#~SN&M+Ml+mHr55l+4&uPi z8X>toFSDbJIpd2KMJLAG9@7{swf@d{dID^u*Wgb&$A-mVUAsU-SpgNI_AeK$w28=C zXX$Q_+Sd3iLR$P}k0(`B+!i|=C3ODb=jUg`isln0p~+SXUC<0yH@AEDQ#fa!(P=q( z&S_nzXB>|Uq3}+9J@-e0h*3yEAjOJKbPix*M#v$vr#>8ZEWwLKmtQe7pkw&nuYjm%PSmV!}x-GqXf6aea|;@5EWT(ALmj_i94h~(m=FS2Ew zy~=Wn&hi)JhiMB7oFMuZ|l-J9?p-uFMcE%sKFVt=?fy)C=Id3omxCK}&0 zHNPY&lK6sdsX)4P;E(+UPsoA~ZYIlFdS1VejoRMRbGP(hGUvEIwHp7#JPci;uO|J$XN4HkBX`@#kzX5WsPU!cW&)iKaVN3qv!4&j_T{$ zS@j9HLxE#{r^LQ}WfRt=%n)@p@$k@B>mkZ6bGq^M=_*pOBC6MUtS+A!>C5K*|J?xg zp`UNuf^s16!yoGf`xEV9AwZjVVN0>4~R8FG~dG7+Z2z zs;jr9Pi7_;Sr&m4vzs(Y=lf|)SA3}FH@eKX??>@EVX(Y4oD>CT5S4yGE zK@_N(g*ax;s7n`ct#v;OQ?zc*$}9nRi_<$lpO{Jb5Z--X{BC{sLd!C8enJM;vY8 z%F2^XC+Nrs8b6ASjo9Z>YhBWEMm4(jYanGtsP*O3=fCuG-M0mwOJWWB##qwbJXibK zkD^B&I^Kx*mTJ3*GLvF{bU*#AEL?A*k-rdMuc#D-SS1R_e!CYd4xB@k92p4l8K;7pe_eB6;eKiy0 z8NM?6ziqM}bLz7ioCs0AywMB^h)PE3Z+~VBV~-b0as)wmd3vJlXLPvId1h4;1!&Li zwivgqR_m~od?cwSFwkmz#l3DsrFET*b9P-nS3rz#6)a`tO&~l6z80klk>mRuffTPw zUs>k^U0lB^H(f|ah<_EfW+=(at7mTLKef4a705e_{Liw5SG=!>|J{Y|QOpwjHN}_= zJwI%G1L*eBS)RE2ZS#T~(Gy5Zkys#6t7b2?78){k zoBP^w=4tu&z;$#8gYOd4@pwNGkdj4ARjnSs+eHZ6QFOpCupR4|HZ9T;4H;&TiW;TWo-Cd{I_o7P!gN^_iDowy8EJ=BTh5@VBEC@;4vR&zI1+TRM_sKF-kMjjH^ zRK039kN(wsot3N*yZgsrc&g6N1}28T0V2zGAT)0u9+;F1;_2dXzsO$Y=mC$%so+@d z(0-=l*Oo%dY0B4Lx^Ix$pcNNI)T&Myf9c)+;3}4YNP*dRb+F^gohBR#4b-Uzqhww? zM#-c7%!_F?AiQRepoHjSC`S&lQj(rwA16f*M`6z2-$rdcw~}bPU~GMi);ZA}M}%QsD|ELmQMf_Se#4_vyJBmbp%JtF{kAU!SJM6W zo+o+ zCaDI!=@k^ak{wqqcO<)c!^*FO@*Ey+X~7HdY+}S&%8x^z4I(N)!PGpkV>wO+%dkI5 zAEdxWCv;Fq|yk9K$KZ831<-&fSwc#5QmJB~dxec?ml zhILCTC6rM-0st#$`z3_-ULUw`H`Ud|crsk5(Qpn5;~EW)Vy>>p+Ws4!ON1P6mZ;CO z*nnqR$*E~+1*g$6%&~`Mij@1Y_=DJbz!Ox&dA!!Gb$6xrzKPcse5K2DW?SLm>G zypT9dA(0TetN!HsN{IR{cSGdf7V1H=85l}IR9pxrVW=@h+h3QujUBe~yX0a;yq5(G zS4QnbThggu3+D;w%6vj|fYSE%=*PvYWj-Wq%+XMn({Pg6rhh}qU@4AGLn+F{U%*0)vnnje?d|72}m?=?hsZQ6_shorX(S1 zAYA3n*=Mv4<}{9U*sWFf%KZ4M!q+esW53Ms>gfq0R8>3hisrhxz?w5*lowSvdZi!H z9Edg?fo9?C)zN7yx?8%y1WU%BB>KizcX|`%&D0m<(5^E_EL}MHhZ4Nj? zA`Z#RAjVUu#P3uUZQvH?U=Uuv#c?|H>g=EMpY^D*S_ma`;7fmq-LokgPI)l)3xCi) zv7aLx*t#x)vhFD&VqhEWot(CNe`h^Lb4gZwTgt2@_$(y*>?5OXes~|n*xmA(>L45c z%x}$*nOSIn*b@T}4nXt&e4tAJdM#wL z^^+s>)D_^eCC((BrK*ss1u$wNClwgdR(?H+2h}A3;7gc}(K|ly#LvZ@+o~u}D6#uM zC4J#dZmv+`7#g-PJbTAse@ZR(sm14=NfJ9-9H|JiX56>h#H^Y1pKu!`&c(x7huXG& z{Q23ICxv&|)|0p|O@e3cq~++}yd{L$m~Wk(5%-%(dE_b6ei7=2 z@;iJ}V!!u4OA-ihoOQ33z2N)mFMz*pR3|!ypZpWFk!Rhu7gRX*T&g%6R_jVFZ*#X^-_h`nqn8Tf(msKK4Vozbh@l*{ho#?l>#Vo)e?I`Xp=LPXLFvNzT>Qs_=*atoR zQT{#W36eY*a?&K)J`p8&+m5AzIp|Ee`xIRziZ5k?E6*!M{TUx0AH4=WpGu%8w$S0ZNlg=w4B8?5q z`*$_m_QwgQg!j+h-uTqi;dwO;x*=8?*=w5_oH)}TG6|mqV|2%Co;_{lH?h3<4WjYK zaX3&V#QALl1=8T1GD*d))rHe25)X0fdPg14^Hui~y5s-*`AxI=(O-YcH+&+kZP1>e zoX@sW4`Jq{cnZ(uf(H*C;ApYWI}~;_w$~0hRcS{A4q#RbSm*v=XxG?TwFPUOxq2$< zcgfb1Vq`IG126SH%NN3^V$LP7M53a;>Ld^cL+Z0X$|OM7g9)K|pXq7E-3gC@>?^)( zQ@Gc0NLEOlxf-vGU)ZERukK_afC+A)h|^n6H@zu>tS4}f{UeqJg4OqgfC!Tmt#q9Iytcl-!|ns8!5TwBryZc;cc zdv&up1H&zYslf@Za2^zQ;7k0F$2p*JK!^PB#9Z=D>Lu==-wNk$cqe@9EzioTrW7@k8!`Cp0_A3&VV6lCfWq@9TSTJbD5V$; zcXujBEZ6NuIlTxRwJ#d^-wGC@+?l;HIYrJ0kg|fn%>+1VD+2JxLsP@SgGWe+A8P7H zKf9+q36nn$oC(BMYN(=&?W)k zz8E6c_R8$h(mbJQ`mE>;&m=shmq*#G{}{?oYY?jb;ZW#G5x;=?E5$N%^#ueT5`M3> zm0ImA)?_8=NcO=rL1LgRMQ08F%W(f{+RJu6ROum4^rs{JoD_B*N)mE_ z>irgK#aPNMGnL_z7tGu!w(_D43qqCySI~*)^1LnAwr$u9pz$Ib;6E-Q9Ar2DHMW6H zO6=~r4_5R${-8MXib{Oph6oLi;L~2mN*>rxiPV>QCGiy7iU`Abxg~4WcHdDyndxz> zgWh^Mej>|ZuBe_EoCt_rICP0>e2e9$z35+}5XU`W8>_OB06@F|#U=dGTJOykn|V6U zCf1@_4Qpk=H1XulDhkJ7aq~zUr9zT=bNvZ;*)UO#VW=Z>iaKK7Og0U(!P3t^i7QA6 z)0#dG*7eLQ8Opq=kQYP;v!fi?@LD*`~YdgA?jeh;y!sc)NTUP-uGs4RZ(+OuKfr zwi+MMe1BWqd_Ru-_G}WHyr`I(p6+kVA3m-)Q#zN3(gcYB`1 z4v8JSPmgfy+k)w`xBvYodr@WT@!Mzy2|uH}udlUtRT=&K{aZ6WCgYmK7fObQgodBL zKvH}(^he!!M&aBjhtdc)vb0@40+8On%<8p5)Vo{|u-2iCTi93csvi!2Ts!gzcRCc2 zGsnC0GYC*nCR4rckH_^Rrf-qm+Y%JlR==(iEWU+H49;oHTn&*t>6=y!{QY}2z5}tC z%z*=_HS24gOaxwG7E9C^D&?lw?&f8!{#<)oEV0$5%7i!Iwkv&edAa|V+lPczAzA3_ z+3*3{GV+RyBps@F-g7$u9kLOwSN@(o_#4&XdsdVgsJjpXM?(I+th8))^6u6c^$|A8 zWYYVDTMWM=GH8NfD}jog)?smAkvvANZLN;8Ou=W_<^VnpZ^|7I*5a`xzgsQLviH!8 z!U;6fYA&zAf76>Pk=os#62YUxU{phHx7A zYB!;RltF{Jfiv;_@Sd$7Yu7$S0W#NXAcN?b8Ztbf0A{g}oz<|l`O+`9 zAB=dIRM8`&CJIVAP|-S!>2EOkJ7^o$t0u(3z;d4@5^2xYRCH|RnCJlcs_+NV6XxOh z-wzM(+O&lWZ-d#M#Iad*%Y;lnS=+IJJ9y2{5a($4R{WVy3-a+ZlYqRy@Z1=|T z@bkc=;(($*K40PY-T0?_Ge4=u;q;-vm%gVBj;pQ8gfib{zft*$ZPp+yToj^#+dPq} zb5%r#6lPgBuA3`gd){kmc1S?rVfs~u+rMR4d=L_Zw9qNSb z9xG7Fj1A4>&(erpWv*Xkf{E0yTQQLdA8QT({atP1;mk=^BH2}gNTiZd=?NzvapRs5NYFOKf87nEH;a{6*W zi;xoTE|1s(y?xoi3^Vq9G(Ybi#Op!SDfIYY64X4Fv1_-oajaeY=7uVi!=p?@)q>t{cc|J{J5ywhOl!+Ul{o*q@cb$s z`mnQMyGb<##XWhBeavtf?3;dUcRm4KA=8}Tz`*ySnw$npo@pbuk8kL*<_NblK9J%3ax)gc{-CM(qecG9)@}}}4WQ5psu0x8 zpMskQ`XhR}y7#iOr9G{MPBn4I+<25Lay3+nvsHsMMCoY8Y2;rQwSOl;2HEab&aI(z zfy9t8+Ge8bjLtkcn?f^bfA4C0-wx@2DRehTjT6!?W7_BIEbwr}@t}SCYW-;01{FCT z3N+&4|Mc8+jpwat##Yr=kfab&9x>5!Hg3Ae+NPKF{!!K68YM8b2PZ1HH8g3@KY=KT zBu*ZS5pwbH`sgLq)A9{d$y||95Da!`;jZIhbW!X;l3SQWQ`ncAW%bQeAL}( z70EY~(4_RgfF``WmmN?Z3qqn>9*Kv$^+Nxltf;tFVnqK|)@d6l3iKM>eiWwKzNrJ0 zQjK97-Rzrp21!EV)rN}5zoh50t23*YqfjQGgj?(eOR7i0_I;%u2S$GZ-~)pbd_Hjw zBGGlZHRzf+YcwJDg<#)s++Js})P5VK6M$4ql@2J%tPDoEt!2f*mc=TFo)-QlG}#Yk z2opQbr%0T0oOOQIXr+Xs72D+c3&1bXDtO;wH3&w9h9m(dIOT|ceFTPp{&%}~a^p+o zc*O|s0h?8EV8k#eb)$l$qnYUE`xv(7=c7Cy8v>c}6Jl52A+}VZbAIfBqB06RYdYo%i zDbGDfPfSgy$?i1!Sw>}|0 z8*bgz_BaL|YNZ}U|9n@l(HU?PDn$B2Vj%rrsdi2HG7Z_LM?zHR%@PNDPb zr*~jTt`o36J#tk9Wg4)MleIPchrUqny$Bf=G(sDtL81>-^jWFpADv;Rr{op_mhA{1 z{X+199h`C)e`ofX=;%dv@3FCuF^d(;GhAt}UcrH=Xy0byka;P+&*_o6-0<=ObeXi} zhCzJcg3yN6+1nGh1jzDmd>j3wU87dZec@Qr8C1eNdCR>E^eN0F#M!2MEZUm>{{4$y zjLX|aY$337U&LE5i_0m0p`OXPrSdn+5X*52L!O|YVbapTf2-Hzv)EENqU3d%&C7vW zt6L@qB(N zDVJZRL^{IZ)=ASSdRR@b7C!C8a7@N9tTyAewWlc)AWE>>Hj;P1%);0>uFN=jJ{z3Y zMT@*P;IXzo>fb6-Fl5oMtqaClA;#c+zZziZkiSq%eavT(tR?^4TE6t`B-0Zo@dyJl9bCf^`{cQ-?5!{nTCao@2<9w@V?G9 zg`M8cynSe*1Pl@8ah8bM@2oor4z^7ybkpj?qhDKETBI6x zs78I?thMf|USlkS9_qMZMU<%rXn7}|x7j5GP|NCn^lE93+c?RS0keJC6v;LS)R9S& zZHU|xjcmu!R)%8-ckP+2TvX)Trm6db$^CK9l-gzKW(K`f9@*zI)&bVf4?51K=VTpl zFi=k9=@JCa2f>$55yQ4coD)_r1VP20a8OoOcH!<_^F43z>vGG*Jf2a<+147; zmqR1%o{XAD7j5T6FsT~+_v=PEr-A7_;_fe7-m$6y>M}V73d|h48{wO*wu69FP zUN*kTLV`8dtw>}{NZMe@qeTw$8y)|Yz7*6DkDA*zunQ%=1^`E&wM6=gjhW1*{@AYH+$-v+l;p7vt#`KU7Tx`H6*pbrOF1O7MH?c=%u=gk#ebY8 z9~1r?mW*J-RPsC7&U)AUvf7a6r}uNcl9_CJ^l{DB#D90}A|f@GaVz^&(1t zjEgfQ;&LIkSH8D;{#YO7je(hT@7p5Y3pe47p!e{f0|n0>4&QdMHGQHY z5Dq!s({5Dqz;TMd+DKl~=n)wxVsL71YU&fr?bakBi2k1q9NV{r8hp`X@|BPW3-W!A zMJMVz+c(}pq1f(LCU^0GBhR;0#pyY@5Qjt?w=y~TD!AaTvvh8TxlzFPsN#$ViNr4m zaw;D=xfqex21i@D_uiZ9Pif?a+qbE8RDDxC;CKT=ie}G$sFP*w5xq-$IF6RfJ6Sh% z8$OQ(+;f$w-=4HDTfEio>&RQo@U!D#Va0Hu=7!mHbS?hnKW;V>x8>mU!h%f&txW97 zI#=4dQWSe9g-EpgndQF(}YFI)LxMhTN@}e8X6frDseE%g?ekjuXUSw z0)9tTD-LJ)YHMrn2L^#7q|s`Wv(3A`x!=C^1Jcc2U&cB&U197s&3-aC&r~qK-{MzU z%-aC_K|iyx6khadQ#Co*uhulCyt@XF=1?wrePN4{EBq8XGq{C%!}P zXuzrnAQ2&$Dw|JtLh|d`vuE~s3sY0iJ0lphG``mI#vSf011m}vc>!d7V6XPxEvJ}y z-0l!$BC0aEy_%_i9C}Tmy>VxD*3YgvpQ~y@;W7Fvix1I26ir>tAl6CjO&> zmZm0cDa;*3@oS`o>vd^T)Fw~WF+K%BNT0+^b~zSHortms;M z?`gXq(n~sn=6Yp{*UV1fxFR`25 zhBo2#{jn#(1j_6LjDwN(;>K^O@wMp9Qf0g%&1G6j)EB40e!w%i$TNLJy!Rs&ZO=v^ z5V{Nq4Z!i5l3v$E1%X9+pICU2KvpU!J}9+b@$#xsTivz0fsH~AoLXod2Ve7$?Ie0R zFLabzi9QcSDb#@}yp$v49+P|tJ;Fh8KNr*@>nO2@7*m4fMO#{%QVp)X4hBe14q)#t z034YhhyFn0Nm(AeaTbCE_BtYLNY{$5eXhMD>H8Q56-6wTk(#z3RrDu zs#1UgTZ%4re9zX5jr^eOiDA@H<6dQmbR26a)%YfiKrk3}U>xj9FDfL`*c9VT_(wIs z*|@fpqZ@uo*FM}K8mA!i4z{P;8(FiiN1eGsTq(mk0=ZDu?Z6zIP*<-u*1!_=yQ!_j zZeT|NCLr|_94ck42rA2b&aRI)wR|~Wh={t7e9LKM3yA27X)Vf3x6l$0QDGNZJp&M? zzfDW&5-d(Dp9rX#v#nAH-7&3M*^ye~t|%qUK;}D`;nuuES5|e&;oS^~&Xi^isjj$- z8qoV9%i5SP()Wa-6lzQq`RLCn5dV0E^yChr4HUd^I7FnNhpmSa-i4?I&>jTqheKfs z42owfXde{$=%_FhB8SiuMV^dMe6`%MQN`T_f5B$LxQdb|Bln4{?e7d}R=8wfdeZxh zVmzfjEn0hzq+tt2cyGZ7GH=1P?XV&URD&r8(6V+pRnza&&Z=A)N+KXik&mrNC<<(L zc)e1j(}q8vNmP_ z_34Eq*FuSvRwtn)_ere4VYzvE&M0C}WR}Rq@Q72IwA{PM6U%=E=$Jc?TCNT8?SDp^ zugKG_+)Ouh>Av@bx@lWkTZ)c}^XQ!qJ>Xa`pDZ@7$+rXkk{j};bFsj?d8C5${GHUJ(AY@m z1teNgyo0%XvQE-|F-vZK-|Tg)>WgVY=q!sgwT6%?_75}4yjwl5|KFv=8uVmL*NAPy7DW?oVrOe-qVXgCBLQm z*2TP}q@yE?ok&1xgOaz{xjgUPPq@@Q21-#hKPQ;Zxhu7nAUISm?n>eybYhCZu-%){ z!?~X}Go?Rv2N&|N`3q&JljNO8vNafQ3H4j-RFTW*m?qW~n(d`my$nWP@#^(iwn8hZ z5~gNUF%0Jd!5}ZN9xo6~tg3v)XhB+P>d`)=zj$vxkhy9JK44RSZO<)Ak_t{t0uK9s zw@2eeu{zRe_~uE6*BKc+>)%(6IJP!(SvaO&$RgJ7t^3rBnXPTj;vV%zqP7dOgt`Ws zFhqd7hlgg7*9oV)@Yhl)YCo!6Pm0txG8Z<3^s)X&4eiQemCJI^u}z65U4F$mHhdcR zGqyH}`Tk`ny})|49+Z@P&NGv0n5L%`)&2l`fbbkB7Ctpaxa73-V~4)~IT6wVyY=pe zmkY!`m=BpV)qRVN|CYLzd^6c5TrG1Opo9zjXp*dpx8&l?HiE0aHE9}X>Zo~-$$U%f zCACyj=WhGG71h7w1o}%cnW3Skm*~3Y%#_?kCW)_^9TtMoS}h zmi2>$OnLd|%mf@}7lwD*0PL4SrEHEnKzc@&W4xKZb zB+bN%Nxe4RwIOhliNLzt&%GmuAEI~y)hAmgKbM`&U!bJ%!vG6neHH8en&-=3=>2jQ zT+F;Y?@#WbvO~u6qH-{O@JD$BT=c(%q~|zWkq|%-%aT|W zH<*?!1py4oS$6qf9FZyIiYy6;XAXV4BbM z#i^u9HE2(4&3^S8Qvn7i#li*Dv@7p52)aOm6eAL({J+bSLEy%+2LehtzAjnrr&Ipf z`2a$8Qn)yW@%hR(i?)XPQ>w^aGU9z{u3-dXTLP7%n`7DZ{+9d+=9qa-QpGa&&P7Ud z%D*SiyOkQ+T;{ewg0;)AXb~{LDD!)99Iy9mpfC(Gj`9F%c~pdO7A)i{cc?hd2E58? z-P)0dR2x^rtW7)H7Gf31aaTqA#C9+~&K8^NV1WZ*l9ag7)^AB70!_^RetB7xC|{%X z$@~!>vswiFM^awpWE9(e63(z!4VVZ1d+AZjn#o7r4LLT7g$Hg$hC-~ST@8N*acJA= zoO70g8DQ|}SILV5hmbxy_!3jJ8kWU47q(pqNCIYG#R!FZv>rsq@6LwICqizd{cVQy^rGBR(7RSI4m`u;bsfOxcw1G&5kl1t z8b}vOYpfx(ZCcquxjp?!92B*oh!94Q2P+p|?37Jp7C3^xuVM7}CD` z{U#7aj&R~>g>FUM(N5JpWwL|*9f}A1PF@F^m%u|0_fBAj=F_%U6ZnYBct~L8dh`tm zgk#iJrO?yBz}OJqgT<5y^d>Bn*;yZkr2!`damP^Qog>EDjC^Sb~y9F{qC z5Xxj5Vl#aIcb6JyrqLgxbrXyc@s53Vw_+`BVQlvJ7VHgK)q)Ld+zzPmH`B-@odH43 z>(u+Xa*Q=}%T`Y~tHJD(sRgIT=TpXdVzT^c5h7iF2Gu%^kg)6KSvufUjiCTErTz$P z*24V!Vv4#{bZc3gypETFmDJMjBGAgVa9UtpT%`M$Ay$t|M}~>< zje+sad}^3h@HUzL$Oa?svC|}NJ_Oq@?iY8g1caZ}F$<^i7gz?CVqn;o3VlUbh`s29 zbEpFqHZ#_HKTckGv>Ny}7a=*0s=9vD&tF*mKF0BxT_QPQJrKg1egKakPysllgt!Z) z8!ZW{iiv7$UB4VRkzo!vX}ryp3=g8zyK5xk1b&6mzW+9Q zI?|=C8!v!t14Wdbi;GZi2;ymmXQ0@4x7^PlR6$($_L<1Uxs$2Wfp~#J9Py?Kb6^~0}5G@h^f4t42HFCyxh zV4Vva^egmKvd?WyX3T;NVR3~KKXH6D-U3Tcn%ybEwK+RF^&A8`z%R3gz*_L%cub2m zooBiuFF2HB;=q8Tgl~ok%2}&P@P?d0z)mP&+$PlZY+D)>VY@pR|98Q9H&o#rF0TuaX4?e4Q!LauPk5GM>z!$@*L4V7l5fHX$^`Md5Vk= z*a(0!WLJnu1z^+@-V%o-SwIKz(c5hIf<|R}9@MX=nz6aYLonBsm2^4Xt1AYG_v?MG zZQ$Dmf6`N!3DaL{2Uq5IdewcRIOgjAecbnlH>r&AJ_q2mzqWtF8HU+wA^Uu~@t!@# z4+J}ccjhw4U9@ekHfs64VjNzPTyM)bfnyT*DQ}+(qqc!q_CtrO7{XYOYLYqi@=HF zLz<1mcOsbR>W>|OT1ncQZ(CX->9><)R9`ZH!99)NLv@}|f!_-Rcj7wf!|P|%8h>1F zCGe+Qd96do>5r`}t`}*b85DjyWUzE=?Te=;h_1&vS+Mn)zsQbe}FA*L=>+ zR+X3k<0Bb|gpk%`ekeJYnwb7w=vkS+Fg7|0xG)Jz_Z@U)Af-mnrx3ME^_Ur`DsA#7 zA=M0m5b*^H&7Ju#(p?&!dQX;2;p@D-9clOREvJ+@sQo@a^r7ZhrGbO7Us! zwNu$^*nBrZeEUiDvM^X=WFP+fv(3UmIOaU2>Ni)cMw%Zeu4IN0_4)X;&O8u!y-yf2 zr8sHSTUmb*xO#$<%qy?}W>TK0xLV2!R5K2xaz8!dicBVfh&uZSNOYeRS@&zP?$00# zDdtFbW#M)LE`s@*y9iaSrR{Mi;%czdq0>(7SEUt=9!ky3V%rD7@A#`q`esyR!#&*c zzq_d7;1IiL7au^n&es(J(b_T$=X06MU~T@tjs|+#(ALn%9vL34Z>A?XuR6TVl#c9w}+VGB;!|Mmqr^2Oa5KxUpC2@R1&!UqD{yG_=9T*}i6UAlX&#waSEr#%b zUZ~jH2)sb&Lxxr4lv!Dqz;0T^97uMA0fIM0x01-|(I;CovDuE@0EKE7HL!BH&9E?4 zQ^JITuK=?7?;_KUX5Fu7`eD@MAL8Ba9??41SJ&U^JHtr*D^vl18P+4X4{Y3Qzyi!Iv*Pw0CO_a)Ek7iEb&hbiP4M$XmwO z*9nO|_k5WTVN}xTq%e)ne8U*<&kw)rp92oD!sGYmW<=97UXQ7y^UQo2jezbk5m~e* zh)5M}ve2D)W=L{SBmo6`2d$CvE(+TO;ef*!gy7weNs=XuK}B|`{{2TfI|X`TRY zs4NW{*ESN!;>96@lDYLI1?sJZ4)v^e4AC-1?bEma)-o0FnH_w-D@c?(xpqpQ7ddjt zF@5nbOy*Pg-bs9KvGp5WTX}9iU%2L)rt0rEn(_J?EQRNNcx`)%Hum4PEOmxVwAl8@ z$Vf6Sa~Ni8gC&F$OPpT{4cR^Z*#L@8bat(ZAd)JJR!@$f*L(+=({8e zjHC%5z^2o!-*!36LI>_tYm$mpXCm>IH3>9%5J*E>>kE-l_i@{cBA34~3`c6t#qT;3 zc5C=6--jY~Lf|qUepFkDg)r6}w>7g`1KndGrNF%^LDZ)N`bcI%cW;CiU7cOg zOe(3ywdn))>uW8IKcCMS{lB|@g*b2^^}kgEwN@Xk`LWUh;^@lFn)yfu zQ|~*(3p5JFCfe4lcu5^P1_lqTOE^Cvg?1m{ieQsl!qn)AkNN%#1Y^?J+&*@HZxUfNRpRg> z`mzE&!@>3}MEfG6CqzQgPD?X9>BAHB&k@lnAM@u=tgdrqnzn`ofDCV!Xq@ab>7%)*j8j;`ldx{H4aY}qcnJ#Nj>^>p{R zj!H35U6W5?yQVEl{wvSTOh<$N31k!PS!{Q%bseqFsuih@jp|;S^?1)RRlWDqr>)y+ zA{=Up4j&u^rz}L%7F+kmz`a9BY!6@=4Ne3rL?7AY4^N~ zy_aQY&*Xd$%89Q#7_BDOrDtdu6BRXEU9wO;t~Rqc<{is_G{!@+;f`zxEv){orgFeB(PyAZq_+TGoqnwn}KeBpS{=%@&L zbCcB@m&y{sS(_rmlA@v@qtlECY`cFBSns>VHFBBNQj4LIRf5*=Fsh}vxR^@5aq;C{ z!M-&*agD#XJuWWJCDMC)o|)KqkdY3RYg_-A%6!g*Y%;BBI0vhf#|c;nd(8;u7QllR8miD_Q%|TYi9*MCf?(0Gm1vP*DZ1? zF#=nmA1t!%tJGyEn(3u#EwoLeP@Z2vuw!m$_{hnOQp@SQTnLM2wXk!`B6e^`Q(*RrU*H& z1-36eRUh0Ew2~jZ68M8pa+;-H#4B(+9*jmjHh#y$%WLT%w>2mI8V}5VmykV0$ce(S74jQI!jrln@=N2ed7Bbaq z=7FWiCqX+WQlwCc7Holr+>6xXpFW)kth}|Yn5F8EB)ZIYN1?i|LTKN@MY$LZNo|s7 zo%7GRSe&11MWx6;B_;0mZf$CbETg;G8$aB9tlGKeqmP7g?b(+(hut=%foa2Lrs%fm zZv0m&||J*XEVV1avO2 zK8v1}%XbP;hna@4czL5*`Te90YR$?Pk#pb7_=v4=e#}ojR`$c>&xY>vt{t?k`edCP z#X5029(3)nYFgA@F|mo^KMw>-X1}CE4kFy6i{+ak-=^Bcc zLk(2-wb^>FKpX7L1JC|#iRz3%(E&-whF=XGANMSU4U$}FiB!&STd zI=r6KOJD%~YN^y9mnvOglp1GVg*r~|L=^s(xmcg?WUpq{*=H=4L`|XI9M7?m4NmZA zwidj4;{p}0O_S_Sl>hy#L6EV!RcF*1G*FL)nK(bhSvtmVgwmdx^K5q04$Yko4hAAGfVT!RW-dvLIp826&xIajI+O!*w zlXNk|5bcW^oV3Qa-Ni!H%M`A*l}3%ESt-klb)bo`z-MGYb*Zp0hL}~<7%*j#%SvrB zUK8T-cCvOw@*5Z$eqlwdO^1*ftlY}dkPD?sN@VG2 zs9Sm)2c8Hd(K!5Id5vc?gSKuRvpie#*SzAQGpA2Kvv^dHH?~$ULXWQ`?oldR%L1Kc zHcWMpf92hmeUs}xUnVXH{s)D_;w8(+v?qft9{rveKlg2!!V@$a+Z}YHXSK7?I)?qJ zU+bAheV-T9}(&kjDfVLEIHqs<17oUxwI zJJ}#*NX(qUJkTu|wOOKQ5&mR|c-vrRR_nCy!Op9RqB!peJ?~$T3ERfKzZ?=LS4*X&Dp;EALC0SA%K_aP2Vw8#I|x!5ZakKU z7vD8;RNa(^NWvvl5?$jIN-)r+ufj#$^vL=)=Dzix+wlP9uKxaYg0A@7p=X}TT|#=w zbLONiWt2VOQA{YH1esv(lb~x&dRS~(Y=Wg@TH{h#H^_n2F03?0TSq7F;D%&*focP5 z%!heSxqVr`7$7tnhUX(tbK0Jp%c!m zvD4+r;+$<*_de!hc`SrBQnF^!MrrEa4xF>#N9)1v8^kE=y{^NHe6V!znxZT>zI%Lw zLJ9BpVE&w`M>JG-yTVcAQ3r2}+Fu|v*(2n>6e~Ke_rQSKgef;(&+e~!B9%lXUw98+ zxSDNekZHxJO4-LS6FgMs9Y#nUG^$YI)vx36J=p&Zo;(kW6T_hH1->uQ(o7qPbWyK% z+fWfC@bCTY?d?j>$E*BPabB(Zr{ie0)@}>LI+qb1{lyJ_lpcG!Hx4#8TfJ(4n+hme z${M?HcsE|=k9}}_FA#&%MlQg@>okX~dImbG5UJ7K%fx;M>bPcFBU*1-3n1RKWlme* z+~<6$t~L#zNa=tR^LtX{N%F>K>@+g+lW1&@I)IgNA5QG0`q3T7!stBVe@~0tN$!RU z=8wHk1Io1yd@k62#tP>mrzEl1&8fqyE5nJ`t& zhx`E}poC*S$UTxbi2WXnB96_DIT2Xi)ru+sv+{M*M+Z7NAE9|F8@4C1yHE#|5&+p2| zMeUJo(LDY8`zhFBNc+ogqE&ig>Ego4!O4jOAZ2U;h2ubI%a>B|kI7B+;0O;Ysj7<0 zICr*8bhqT58oQl6jM<%Px>#mi?B;(W(;!Qw*_7riPl-8STE?4N@@IYCN{IP&WJEP! zzru|Y4BR%1dbehhSNEgA#w*#QO+Rg>bC!To^*GsgzV>58sx*&C*CZN6(5wP0#d}*FZyWU`wgn&;i4tZs}*nAX-+TzJScsz`5CF|tv z@Iw6hM-XFH`2!vX_^z}uP+LaO6!DO4tqcgY>tP+gA9_<)X@dYdgaCJ3wDxICymwSL z%_7cuaSCQzP$9EYP^p8OBSaFURvf@?irn7U^yU-L9vSjIx|4gDGv3Rz7onqIqxn^& zJmFsUQ_SQMlav(7tJz{1)8rAmSWoyp!sY-k>#3_-(Gfn|wgzdGW12)wBr*XV^!?_N zS;DlD%g_cIw1ID_*dyPk?5-|{fRQDZ43{%!L}iqZ+SvTHIH_e-#oJ?#9?6OZ-?%()hlhxKB zsz-jAjl8L!cZu*MJ2Nd=rz9DAcJc@YZrJos!>j$s*BGeI!;U{jl_nhhKD3pzR{rSj z&hMNFUn2||>I~~&={GHF#BV^iq1G`?;fDUkb;wF+<1|RiG;nj|ehpjAd97Q;J_d7V zlm>lHp*;~nVWMA}fjrTQR>!pV;jp~r=fB75+)ZgK>#l}64#(zu^s5dNdD;tCR^lRLK1Cl<%( zz!r^N0gV}%BXAVxHpTp3{=&c5X?J(Y#WTQxArZ))l))lifH;Mn>p@>hX$>#ILK|e? z+6*w4dxO<$7Rz8S6ZOx+e(pVhY+KFMY*R?I!y?PTBvC~{)dQZQLEr%b%mvr;f$aoH zkr2cZhC6eehK4lXT{u&k$Flb__HP>+_IWIM-Q;K}{hwRZL)ZD~$Iauro5JGiya1Y5 zb4{>=<4V|s+@2oCfXLjbSEz?RmLDDJwGFWPTUGc;R+f|u z-@_WV?10ST%g7$Xw*+IYX=JTm!RTapg9*fZ5;c449A4ydfQPGU3%X^=u& z4C5!Hr0VdM0n})WtmBLzRVe)Ltuv8C=4r0otWa_>KR=(7qx|<{{reE0!;e|%=~vk` zajY>|P+}OQiasOyfv%}3vBqYmG#vL`M28*Hu7I^0f}hb8j#Vg0eL1^v&E#IQl={4D zlYMi5`H)LF2Jjouc2?8%qbfK6%^xX9?lpAyBYlNxIT6op=J8k3H_Q0UmSi0dQId4n zrGbn-+*c%%Zgq`92}2 z=A4JG30OsZ4O6c;Pk^yj%&PE;mxa0cEXASs@Am{)l_iUxi~?PL#XVabVQI1u-;n+XY;7PeKXF_M;3qM^<;b z_WOWRbXjTqS%}5gU*9TP&qzr~Tr)8O-*~x?z;MZHqV}`D2lIW+^Am18)3e)h-9x_V z&_<)1doE@`1|Xw{3jYO;%5#7DP^dQDDv28>FLw~KP-qy?{s9S*3%n~tg~S% zu)m^ca8*P-_4)G!R*mp8xD7nq1|B}0iu8{@{?XIpTZmrI#WEgt@KYHtr-ifi-G-wg zBMWB9i(!?8`g@sy3`U{6Q`Y(6d6CP)jY&lh5rU;gvSvZA$!15C8hcv6(aUN%&A*bQ|oe*O$+qmk2II4~H!i zF~Yf4F{1ldz9GJ9&ENmeKi8_F!~gbCCJViK`SN8Y^HpV^v^Syl` z;LA@IXGTEGw}UaPtgP!t-<@GK_3Oa|=Q9&vBWEkx+Hg{0Ehmf*L7;_UVQ@}CLE>E0 zpz?l!xU?^9xaYjmjl@*(fPvq}Lz214j9Ob0%gs90{K=Wkh@e`}63=%f0r<~s#jk$C z(l+Zf@9rwZ+kt=Q2*ZEJ%lWKCYzFTcNtKWgQ2csqrvoTmjfiaMo=Y+kJL#DFuU@@^ zr^5bd99nQ)#K`6BS+Qm*xRx6BTbCyw-BCh$<7%s1DviCCcJaXZu_0Q9y4BP6TT@TU zf++O0w0#ZFRSfBvyAsDy?g`*~m;UVDbC5JEB}bv8lf?X-Ih)kg1FLd2xv6j$IEeJ& za@9Ri`>{P9sb6Eu-ge#qFwssjE=eS1)<=$LiM0Tc6>TQd6ybYahqrISTFw^|zb2kF zvgF2bkI~;J-2KRkv{T-$q07rb$bW|4y(_dm4=F13jbhIMx4ti5{)+$isuTQ5$UWj$ zR*ZciaQ}9aYW92l=<{TRQD&aUqw}r zpFTO-A~$&+7NRc+!MKwSyS%LIlAEsf`^E9Bu>-yQDmmU*tbIM(1w(wX;X7B8qvPx6 z2Q-xbWkGVC17?zqKn)=t!6-uC~Eox*;Fwi9zp;GpDRz^Ftm3?B`V zklS7`lt1it^5opeu-2bnftqseFB?$QPU%Kirxr`%Wgac40TYFronc?5qXY&chCYnq zXinF|HlMbr0S`|=tj(Pd;pTuR|CFx~q(?3FY?O5hpxSF9@@16RUyqiprFtvts~UO) zPwc2Rh0m039`9q)46)3}x9N@(>Z1nO2P55FHW>wV2@Qwg;kdMKGl{yU2 zf~1ieB&&|`Mxtm_%P@+G%Cw3euelp-UHPhVc{|rIeFN^XcyEY^Sl*%184_4 zR6BO?_y+i98-+N=M@7ICt9{uPq6-6qTSiJV|ko+cLe#WEPtcWIFWNjvu0+@8<$ z7oTSQ7u)w{hlxOkTAiRwOVxvP1&{9SrMJFL1rmT*yQjqcDF<+G?o)06uqUqjBlI5tS@iyD z1NAJ2nlKh!ce{R-lVW~K1{|Sy?iY@|p9nq>E`XzhTF+wtPr;QG z7@%B*U+_g#d*I#1e0Y`Ei^lGLapkLce^ig3;|mM+mY;9mzTM$0*LzwkICApy@82rg zac)TMtwJ4Md<2$p>jccB7!lJO%pd|ieiR5f1dD|VZ%FVl<%8X>tm2t)Y*3Uz0Ye+i z?r@h}j_!Gh$j_vnrLUN&TKVbI{s83)e8Du3u@;J1Bf60h{0aNQHhZ0FjZHZ9y|{hr zwR>q{hLVDyr66dD5sWOdH~eS>cD)tLYm9zt^t{^t1He)Ov3bXwJv_u?$_(6w<$iWi zc`iejIXZWDVIL%#Oc0J@&mhb$9M!5>R_hA95IJ7x>bip0A2Gb#a+L}-C?HoDR;g&%HXgDAiDv+0} zUh9*MV)lQpCLnK9-EijADUq5xn3B^Pj0#8LEcu1&`6v@_*G$$TjdEXsmD@0-;e%S= zG`0(CLH={1_V3@1(P9WqNHUa|tfHc_ZN51QFD8%SwDRK%D3lgV8=LQ-xk~~lgz<5B zcFrSLmSvLJHlbI@i;n*HJ{$$WFL{t8LT7EmG#1iFK3H$e69jv&0}AbF1hJ0B-c9kO8>vDZv`WJ<|I%fs`2 zMrC_XZl^{P4@^b>jv2s_X}tc37`>ffO+i8g%Gk!3pJ+$~uyYd5P*> zFDONOpj&!LmTa^w(!T$qR9s$1El z%r#4XI*6JT^E|JGq=|3Qu4}_Q%&qT(VlyBKIc`kXq0LCRBZo+`*;j^7U&;N=oxB#r z_MBva)9vRVXo=hxInSZv8M)7_EG+y@CK}p>FC$dQ8N6|F2yKMYk$r&qY?*Xu!BY5L zj;FoEgsbXZfO?UA1bqHQIx@D#p71dLm`7!*DT3d_F$qm{B! z>KtY?PdHB97)RPD3I++bYqAwI*Mig3Oj_2xOt2?(%lw#&sio5XC{cO$b-A*zpGmL> z`ebWi3@!viAC0YGajfkyY<6DEmw#{l_~FAWnNip%s_0%;(;TChrb)oj!g+_mPtA1n zN~{wPgo%dj1NXFlW5deNmTaRffB$&q4wvrxZM3~KjLO5kdxh+{9hwO;ca$;E=z$ZR zMbD)Em05YX&-CrAA_RjJe|%0{f`nH(qtV!(m7Y0!4z1K(7V+m0f`uSPw-~ zrKEQ8^&(n=UEX_OnY8SrVQ$;*UhM;DYI@6(_lKY5)ROAr^tMpYPwOQ>8or*Z!NI|? z)oM=;t{OIT_8AqZ;D0&L0)YZ7PvKXv+>FGddt68qhtMI&y8R)QK!V)+YCr~Mm^yA^@WFK--HATlC@U? zMxZ8RjEb7`>ISD}2f|(N<*r%{P}UzM6K`JqG&ZT0cmAoC3knH|+HNDpg^y5W`Q4NF zVy{-+%*JjMzJ)n<#HiS!iT@c9gM$9SDXnNi&QJw!-(owe{y_n#*I zNZ7M?Z(gWJ>+GZp^+Xn{K75(n&2Hb?-RFn42TJr2k8}QQU+$jVWF4l_c9*QVCZY6z z3VIAWqAVwZ+z91%R;!2b&M)Xx{51L$8Dvkwo`;!FMC?&A3OdH6EHW5s4593~mrIkj z1D{N3Oz@ep{_udf6omGwA$9f=F$5!Kd*}5pQv%XQmYfqyZD^I)CGQ z(Ae79HK!G3R+#(WR3yn_1d7y!vx*RNLn#`Ld+j!nQc+emEgDy9!PpRi3V>HMZOvUo zYx(c)I*jxI;g{eiI+}%0Zv1jL><5c@;mUC z&%)B60fRz`JA|9iQbJ*(JP@QqZgRj)Qsky20F5{k!e+W1>P!@-B@&pO9V9N&d`T`h zAgT5hKaC2l%#ud%Bl<_zfJY(?4v5B^iUJL#qzB1*elpgWJ>F<+OJwna zA*7u$aRjlMOZX)a=M;#OBOO;Cs0Rv*ArYjEwZb8(gdf1a_mS@#vqsADJgnc&9wfX8 z8d2z~It|$q-?M#%vF=sG^Q0b2Ys9$8=V5SZoC|oYJ)yZPDgyUjqimRdQ={!7p>`8$ zJc(y@)M;<9N#bh0?60Hx@}II(8dsgq{x>}a)VENQ&$0*`Bf{cs4NVD zfe9J>+2S{S>PlT*ov{TNqziwkix!dXymo=)Js*)M$ghS8Sc+jPbBd7z>Ut-Gz}|iO z4-Ag1(u+Xz7cH~?1i_4^+g&9;*^Bh@j6HHs?E{(T2G_LVV^z391?0=`H7VK0q~LP{ z$mfQrq8w<66Fbhp0eL|p?e36A)BI8`W)?ySlnD`HP>ZfK^?E*<|LG=_L^*LPe)C=(i9MY&B!r5 zDM#anbr5EN-xTIM6nYcoNyIi1iOl}wGbBBbQh;-mxKPIyY)HReHHc22OSe4-%?{-# zKo-26k8)YpAL?fmpOKy}=C}uF<#apL){#HAwpz=}5fpgj0zmAOrGE91JU&E7+DX@9 ziC#?Al`3JZ$oHR*kQSI|%Cc&n~OR_JMRi zNXe<|U<4N;sd^&waY|^b`&hKQ-j~E^ia3^)p+=)rI+3@K6KRf$f@(C+=PtX;ZP$zm z3lcB4palR^=TeZI=HX9b*LFaGG+ryBrVCmC(inIY{r>Gbgg%v}GDHkM!?Xg~=v;~- z1kIB;fMeW0gW=m|W5{h_)qEH&lQS!FvD7{KT-XayL6vS1&p3By_MT_8DVKMFE_ zhD5&q8U>b^C{0*KdI6U1CQmFvD7SqaGYtOM-<}|&f$1Cgdik8ie}0^+pJ2>|wRn*b zC?3dqJIj3;`C@Y*LigN(zEd+bUvD{q$Vod#fxInO90)-ES8j&?1QB1)38FuLuGtVx zlSK5Z-cTOW+$vz?!Iwd_WWjFqP(F&;8!FfBy7`lJoGIHyl{UkQ$lHS5uVu0uju&+1 zqXjn46C#y@A`^wb6R1jmAbdt%#Qgsd&l{-3_7?N~`vXiAiRA+FO_{MyU0ren+pV_- zcpyM8nnfh<7QC3T%E}x1q$c$5ty-aL#&1PMF-(3EGe;CeEA)9-n4x(Y%hG3kr8k-WhdGwoUlQ0p3K1~+^eu%@>E2Mv@RdWGshCZpUreZfU%SXIv(Or zVe?|PU{3$r0wN%*8GLLeb4nwr`t zw-pH7(%7&!b34;AV)mag9lO8tjgEKIvr|Np9?(Xowo$Hxy5f zI-S4!pfR4jWDt4kwwR3@H(oKBBwZ;^BZ`xKiXaB!J4#c=S;ogmh?b#$V~ zE&G~?k~~%%^mNucsfBOw z)rWfpveL+?g}B$@5R7fHAKi93lQ@gE3LsY7{KTZBdf*FZ=mR#U^d(dsxg?GeRN^wx zhJ@~P)K9ks;wUrNk!WTaF-|~w(o6Sw<`bwcU?k_86(J>DSd6=eOSKq7FtQ#;M)(!pJU>?^+KIfLqo8!W2LNkuBE!4nO#!OvnKo{+Ni>+~{#0!?c#J6z5NvU>v|1I+JdJ=|A-((Rp z03e$auHiYdKqi_bH%nMx)yl1eRcG1kdo5fZaxcUHsd!-_bmKGL6dzH4TqV!;WvMhN z51_9U0eAle#6r~et*@hyb%BK>ohnKMKwmi%O%pcE`J~1kj7cShvpNALQ;P2Y2`R;j znpR|!G+3r0U+?}>23f>4(kXH)rwuJqeYU76sts|$FLbiw8fdtEK5>;L3_Oza`PYkw zGf6isB~?E2N*fn&`igAfY+Ief8PYMLNt%x|I{-ginuA%%;xQRd)1^m9tgeiqc7Ecv zPP4h~AVHf*a8j^XTDox7XY@Bxif%$JDy7xDCiF#y=!+=g73)vj>fRlU02Qhz(i*=<`bU;1kTxm4 zaU_~1??_4Fu$`q?KXFiY+qhAPbtNXeO4i(I{Pan%BGD=ZOhBhHrRWlbROw3;LK%|@ zNl8i3pL$!leswu&J$@pSq~h17sD2a)L*+kM0cV748>$qRnLw5kz7TO8*>r(FV;U9p zJ7BYdM0vz2Uc|iBr@=}UjKCdfYr)C%llUPc3&4ufdyHJaW?};8f;}n}O3Dv}CxZO| z9{`HMv17{#1#P6H)YG}>OvB%=OS9ci@8nqEJ3rqbvA)R!R58GR*^fSHaq*F{;nM-$ zVT3vLsK_l;EkkC3_Ti&X0aK9fAUY+J`<4~z!I;DE5P;c{;E7euzxqefAYpMz2L#(C z{7(ZRKW8oZEC)FHZGrm`!ieO^kX1d5xP4n-eFwx{o5J8e6`}^1OIC9EuoEdg{<-Zt zNxXN{xW?9fG3ZRa^K z-hO8IaoaO=a3J#RJx1{&0nCUaDo4oOZ{CQ4Nyny!UIm^kqJJZajopvY^>eYW4rddh z283eAz`z-2pSEo5cv6OyaO$nYiEZl-aXTtCv$0(DIAJf^SY@A%Kj=8kwZA|c>)k*hV9Bn5Qp|881Gl1uxu!Y?WT~QrNfdNYak4kdiH3N z2Pk6eW2r6qV#X?9S*0!H&4ux2zmLaWR1#^tL>MCtQbY-45c5r6&J{k(b~@pndf4OX zINkP2)oF;zWtKQP7DPy*(7zvnchlGQ`p-WBVm+QW^^D!N-d?}x(<#w~B#i1M!D7|v zeP(=r2xcyvHiV80U)C+OPftAt8Eccw@DlBc7k~_UN@j;$7=;u^7gj%$#ZJk>&U8}f zvP8+3%0sAGfqnwwb~LuYAlD=SyKCKrUutZV{W53?BM0)<>oes#K4S6tF>%PixnX J$J-8G{2#`A9IF5T literal 0 HcmV?d00001 diff --git a/9_1231231231234.png b/9_1231231231234.png new file mode 100644 index 0000000000000000000000000000000000000000..addee4ee7c240c463b65cf851fdb55c46e4a79c6 GIT binary patch literal 32685 zcmb@u`9IWc`#(N~B$bdEl_*5nB|=#$lP!r1lXar9XD?YxS0y7tmMjrj$C|P4MI}2? z5lVI;d-m^fPS7wec9s74+FqmEHYAU)I3>^{v zd%Ara{Dq&t)d~J@i;J%6Sxj~_*BJbR-tvsr84M;bn0f6g1N@uGQSFKg2D7^s{kJ7t zc=rJe#`mnc${9U()5%_z4-wZZ4{g{s%a0UunFLBZRudWSpXS_mtCchP|YJ zijid4wKtVB`EiPU;;WDV`4}CEH(Vcl_9b1rcH!Ll^V1T$lTJOZEB=&dC&t8dXY~4l z<2MDTm4%9msiK}D1Mkh#zEdM5N<4e2KF4%lyWPC*UFn-W?X^%qkHJ*GTE}m2V=#Bs zLrGgO7^*)#GX|4@=Z7g`M0snrVlY;$Ojry?nXHxze==0@gDJK0vWdVW*pUB!A94MV zemS+h;InB=mdA^PRz25BlD`{mn_$W2O!_$Ar0Snu^~ePilFg(65pGrYp;c z?0~_{GjfQG-WAR%KkogzhH=@o(26xszs71GJtmpRXi<-}ahO!W|L#Yzlr)_h7wXJlDnS8!a#5rYcvbcz1^=D{QXKEzj?o zgWamo@?)@Hh$zls;UOC{BU;&hw7(v%@x!kC`5D|%Xx}qC*7&QF81;TDW|Rdc_VN+8M_RG5Y^HI^ z@m)K2?w$F2$@@lb0)BC_$DmO+d^h*$D6E)ql(vNhH}l_xC#x)E?49)a`R@nNietZ2 zc;4R6#U(Ou>~hMhM?5~o{(^7NoTfubXPEUU21|XO4$&taOck{PY0GtO8?(SMwilvE3k_)eFZ#*m}ox^k0x0Jd~1Qf?j zl}=<+Z%uZ4tvo~%UXi%Z@Y8jEwC#lN#+vKO{Mf+S%0x~ofuhghREAF;|0tZpWtypT z9j)=IUM?wC=H@rqSYuI>QmREg!Cx*D+2yBOD(HK?f;E0l{`5C`3hkGlwf_uOdXdz8 zrP%Q$`c8BxsYdqn><7NOp*M$x4Cv_S@ZYTS@@V$89#!Kf37d4`v#F;&tM>EbN7l!* zeT6dAd(F{jec-c!=8GA7jp)jr8#B;m#s^P)DX=xrso4?IdV1~mTl_cs;XDjx9Ph_~ z+aqPrIZkL)YKl229$(smw%Z#%!ThDv&9-!|`4pMvSV_T(8u>Sxgqq#1qOWl4<$gas zP)X5>k%9G8TCUf&iTw9thid%hzP!HP;7B;iMp>BnjB`5p99gO&6E^m3YwIPC@$}T$ zW66v>Ub$ARnNqZ+I8x*1@}>Nai@eX8JL`L0vYM$!O^(k3MJLj+R^*Bo9VWqBq~xxS zin%nbdtv~GhrLcMyx?he<;uAE!%U$Y1p|JA4Ps>?z6_YV`nolKIx4oL=f-t*myJcf zX^Nc)mOefM0YjRfC~;P#!2QPq9E?Df$NPj9EML6G`;y_j#L|MRZy%zt5)Ssa-D!j% zM>!!O@wCr#x`KBKKT^gs@wsYaA&rR>gJFlQ3rL$%Ijb8mC={A$daLqI=6yz%pwc~b zn7fbLc(-!|pPp3<(lsowA+!h@{P3D17JYLjqn*XV;Orb7B}_ag3-DZ026^`4pj$M6>zOi`xKK`fo@=&B@lPSKzSV_R32JNb+dahNueNSQX zxktM>W&-y~wZCOiGOk_!xDM7h$ybxumS~>u^z$9~s-V)cdbFI&4aJ2Vv-NR7WEBf~xmKBwO7b%dSQP(|EJ7)N z|IAN3p|6+2Tfajms{}#_xmcYxkqGRW{bPS-ep*j`D|t(ZE}j#bs22AxRy!Rsi&OFhac?gUnX(hC`KBOnV zdt8TgDsklG8MXA~tv z(V{<=ypQMm)m1xo6jnx)@Qn|U$8hp6VZBA!?vDTJ)b^PT)HiNf+pf%cNLPW~v+tH^&m4efY^|)0HpQJP`lEOn^41twu&DVvaUp#OJ_|+N zTP^e_zSrEh?km5uER4Z4CF7q~F0gF=W_eprC|^^h9AL-I5w%axs3>~BMeA@`{v8h=P{8*HLnZcO_A>N-CQ^4rmQK5p;<&X z@5FkKgs5`w^O@n{^l6w)VcGHc;z2+wDF4Gd{cZqmEN9;kPA<8hvS=9AjOFBY=S1B`)Uo3pOti4On!0B_l$?aZ3t*aT;8iFdN&ifi)@12pj zB-%HX;hO=4)mAJb3LAfZCRH|eD1c4h6$mA@g_(Z9vW^p1q~Yp>f-uPII-F)MVt>*@LYVwv+?^8c-jr*X?ZW= z`p^!K-WGzZHsKb%rEZ}V?rXF^!8_gn5bA)Gaj6#VAu?~)4o~Dx>lgg+lXc8Xe{p6n zM0*5bmQ}=$!#w7NrHG&UB1Dba6_&nTu5B}4{JUp8v?tXV$cCr9S6sV`oh%fST{qX4 zG_zO!0i#IZQO`{)5RCUaeo)D$+&@Y5cdF95HERbC?J?Lu`#Q}-?Bk zP;y9!2m33OvHS8=#-Y!+HZN3Rs$zduTwotspHUo}h|SoSJPU-2L~rDtZ5+=uttj;$ z)7Hr=g$=9f#B$~vGO}=Aa2al_H`{_q6BqUSq?>tNJdE;y8K;rGzZ$J4i(YP8T(HuH ztclO^&|C3O(-ljm`#Cv}ny>V0o$P%^TYZ#;5Il|tgrE+qqi2@Omlr@!9!5Sqf1C+h z@YGWDXgHhSpozBf1R>(5cT>G(9Sfh$%xd$3 z6uMr&_qY|^fJS1=PyBSgvDXWV0=(B}liSHC)8H?-pa9_Ugr02pe*k3sQ#uXV(*Vec z7_?N8uv8NRb$2>aw3b~{)-|2+_2{LV{6yE@{{c&#aCdk+nNuUgHMnaxXJ-~8xBDTO zRjD@lkck_-)paa6@^3jH_`;p{uOp?=HhwFINa^@<%NP4DW+#eD2ysY6r`@bvn{B9j zSRZ2U<3O#2bk_kNYkJHs*#7TUf@{E5%0?z@Mq*p))sUr^J|(qD=Y8Qd4LtYlw%hxI zxA#iMYEz$P6Z3fEE0MjX(Mb_q@l=3!vgH-O5*3CbnuZ=u5PEFkHR0V*j#D{>1)^X=uiNA0LUIQGQjJ*%-l`g;)i zJ6QMewb?SSY=Y?7thH{(8DvE}O<-y2RYng8r zc(}pVa@;mMLy5KJww>;)sQbo)Q5J;V<14(`Yna)x8~J0r*Q|Q9w5`6=Lw&ja(_K&n zO531ds3An8ntZ!m@V9~hCrTd-D3paeCX4!S!s=O_V#3-NU2lkR9sCf&`$E#2F>mj`fD@H7YOfRGXe(*Hja=yQEARcoNFx;^Qln|zPArvXR|f#X z#6W?V3MHjjyspQ>ATbuadz4L*$vR zemk(D(z3EdJthsEeMGdAXO_@Tc7qdZiW(JWTGj2ylm0yvX(nc##*Bu33LxQgld@aM zF*i%o{eMoqgvuz5*s|LVRf$$ODI!&+JWby+2kPLP^&ADLuCc-~VMX%*M!Jr+zT|xY zRg}k{ACJhK<3cyG&)YHvj_WVH-3qX#mG{FdWYEQWe*gf~Ew`!iXay@Q5?Rm1p)nb1 zF_6`JP?_K?4Y`o&v%bRnu$26qVz#;RxvufMT2a5xYT9EQrg~W|H|iOHN-Bb;@|PSLvdKk9I17Z69mdM*d0 zCMv8Fdm#;4j-%8shJ9#Cn->EUmfac5$h-tU_E_)*=R)0H4+N)4ui-mtB85lIWFkeb zgaSe&)V5BbEepH4jqJ4g{XR>;mGE{*9FdUCW|=(V(L;%Pxtv8%mmgJ4cW--U+~$BD zU_Vl0ZoG|=@vl)d{^FSDgI%arQOo6wv{?`;+$LsRED@iui2~}ohMic8|G|7G>P7GQ zHdO@L>h`UKqc5C>FN9e=^7wv_5sDf3yn!>GkM`s_zq%;9p2Do+RiO(pGNKA#RQR1V zgw83DnQ};>T*lTGOnnpyq z0s-}ZVH`b&NHfBi_TAKD;3Ba7M+{ErdsY7iz9t5S-mLCdcW3>r(%QL@YY+Zcm%mJp z5H~aRYL!56`H&UsU~J+p8$kYbJN4axKI%Al`$MOS6YwBw;E>>J{#QhCj&#Z{ z>bbJ1|HGCz5#m$eGh}US_ny%4!mut`Jdp`rXg)Q)H(U&paEG55D5U?oC0@z5xOWWl zjy6RXU31b7~j-Pb@Ce!Cv}yTg+A>(b08U6e6IU*J%DN7@1ZyY{(T}$e@(HF8s_mu|~n~#>gCMc495R=3YG)q?;FN;>~2C4~U~IK7tc!LQ%Oz5PNE?3WdgR=Z9D>owdQXXM3WKBeKukoE66QGUFD zn*PV24H)MbaC2hjq**kQIknvVBBoP`3b}iw_z*=Vn1I+H<$U=2FF*=HSmS?+FS!Fy z!|$XM3&2=JEP{hV{L-K~j?+CJs${ zC5)bOc;NaZR4DbS&k#v?!lAF+YilV=JM%p7l{}P_S`?P{(&}ue&-JLsw)7%nSRwDw zr;Anembd>_EE%u6Qm^g9TjCduTyP!l*NM?qTps+bX;|J!BPZ{9&@Pl}Ib@Zog?$VyC&}N_nA3Sv{lXz1n0Lx#` z@hK9mj5k}RA`pxgHF$sK2h+trgLt=%BSHm03 zk2bf%B3L0p8>4(sEqCQYqa6)Aav9N?dCk=EZu6kc?jQ{2wcA9O>qy*fETTuqnh!=0 zIdZS>2CTow{e78=tl}myGWH*7dk2Yao)yAyE97_Yfd@EKHPs-lV*?QU0#|sq%@-E) z2xpsc)&og$iN}zBwHk5f$&se=r{k~wKDhEZ&*FW+olJJYi-S3_@EWK7xU83$Rudtj z_xHc>(R}w$8v3VOw}jk12HCec)j@^)J*%j1B@1BWs0fpOFgY^)U%&x?wF8)sS*B4{ zVf{=srPZ%3vttKzdIMmg6Fm8e3SwBJox65%%#`1mYp+=9Gpbeg^<0~Ik0M0b?-yRP z^$;QCn|A86obs5ridORVk%tn+Dd<$rz?5*pKIDMwX{3eRCkIaM7Bqlp^vw9oTjcjE zA*6*gpoWqmw*#k#N~EB>0?0Lh86DRFM(e}xx`Qz^jAPBtx4tpPnNT9Zb>N!y5W^>lB(*i0Cf?n=fujBTMJC4@9j;Z=XcG%2A zU`}4uuk+kM*r?5d4a5Xgmp2F|j3HiZW3qokG`<;apFH~L*Z)zIs4@W78E>>lnfM=9 zwz*)o>9#WByD`Fx*o3=_mutpZo%%adv|=Dp0!M7*%&?OzQ+>Q-2k>k4Z3tT{ud3&I zsFaHwlyiRNZ`l|X!VT$`ciZ+;x2GC)G#Vns#SQ&?VN!8|HRD@=As$OleF5f!D)hbT zSY>OV^W`+Go1&%bmZsp7%~JO}=}?aNF@%MpMFZhm$@>g@5=*_I;=npJUh!W1YH1Dd zz3wX*R_hfZqV(;xKQsUG(=1ABxq~}oHSJhLfY0A4Xi!7Di7hjl+*NJGx)azp;Rqv) zUd3X!t=vkALat3+00#;N=cwDeh}8AQc%`a8ujFb|TP2HkU&<(CJnwd@n@%;REl^1{ z8y?D+*%dMHX10w@0z+EU%e4{ddL3Ec2_^gygX$u^9=ar5w`>MkNtcBQKx3JUHSMT; zK$KfxJUu0a22#y`=z6``DFL-;1<+44o-{)Y0d|s-GQd8hyEE&(U;5RU(- ztYlEKKMLM;&>P9QSvFb7MWfBEc#P<6Z$K;>ONqHDG~mtzWpr@B!Y>S=jhhp<{ZX2+ z_r~(b&q_X^y&#cz0~d3nfCd_%tcZ=@q5q_OeX(Z@dN}o|dUm^>8E;8S7c27DSW*!? zbQ1PCE7gy{E_r()esj+E;^wUQrfw|y-{b4ko9k5_nOE`yq?9|4L>lYzpZx(CgQvrf z+*ZuPj4^~PBCt`lIlXz{V)mO(12fT*t>-!FFFiNLdw#!G7znk|-L6nlXZ2V|YRi6o zmXT7Cy$PiXj*!0CZCEm$(aeMBDcj6j%MB}bZ2t6J3+CDqYd_K)_t(7SqPbA0+Rv7` zKh0WkYbx%lHz~vn+x5g zfahuBjK{NJc*w28_-e*qkEgcHymqbQFc`e7vAQ(f!dm@&vHEz;W0kb<$$JE_MA861 z(PVEpCCdJ2UELc46E}ilI%$h#Po9M;(Bc&yZkj!Gs_1p>@VZ2+g~$6c_lO^#c|7mO z!2Hla%*b`iv-8cieO_}-ayBe5V+l#NOtFlcEFxwR1IYq6@-$W#CmUE>uj$BvbqDF2 z*hr(BeBh?XxG)=7gVkpd0M_|p=9(mg5q2(xLB4 zgQGlR^&yGu-{{|lQOhmm?WVKnb@s1YuqFV!v;32Gy^p0kVYEQ^yukMJa9TbB zm}Ga6pIh!az!N0c)w-wd{)^RZiX4TbTes^R93Nb)p4(^7Ev$GbqfnMkxdXO^G&uAo z$%zNMCu1(UjhndsJNdv1_kqXrP$hHJ)4-_Da)a4$)m98Wll~)ogV`P53&1sG-{K*Q z-M!Sy{bg(jJHl2^;J<>(FH~i32%(uB#7^Ezc2_@UnRWj4=vElTxZ7^1Y8zNFmkii4 zcORH^{?SHs-2&m@=ebBLR(j01mS5)?$c=Io1xFZXh)C((8=er(oImvr0Z;rzJy+fe zwgn7z=wtW@#4ZBP#ESi&8|kJadrAvl97Ke+KI44D!AYoTY9*>p~F6Wj8D;W4^zE0l$XK#1&T(C3PcLj9)PimHVu! zWtT+CFf08Z7OOic1|!=sX{X>ddg3_lmfTV~5vvz}lvC_jj7wduqZK@FvC?4{AcEhu z+7*bckpQC1yrzyw=%H`AdPXX6L7oxXXYid%-d6$^tAQXM?06t*S}v<<$tImpg%@_b z6L)Uy%1ebk7!NW%g)U>_>*vfXVM%#;qg$h||8-FkNf}LrlSw}Yud8Rz5{OHg$%V_w zhBMsLjK?v`OX|7ZnWZ*zhTiWwxQVdv(T5cS!6MIVIw{Gzjq8;{Nbk5^wc1OCZqx|? z+?zW9QNrs8J>CKykx%fr)}5WV2GVY+c9!wjbyL%cr+8vm!6ajWrPSv)!L$bR6YclL zt3--=ORBO?L0LJ zC740PC^>dQjCVS9@?Mg6F%`hnzyZws0T_jf@P&e2%j37dsw`0KI0C*taJJsos+8et znhA^+Gy_HBJ^JTbl$6GmwDs~5qXE;Z_;m_MI_xppJZrZ#*2F18VC#hiNgwE6(zYT(x*ow91ceM~%MDyXpZ@xlA{jlbiQD(MG z8LRgh*I{Xt@c7cTX*ss1M8~$40lHKgOIpe5g4%nU2xoyjVqSnrpIp~)ra-|FV2oV! zX?Si^Z$#Q+(S|yHv8rTss!TOb>xt55MD)V?$M6$H3!%sK;|Xy_-JZI=FaY-07f8H_ zq>UbKcg3oe&Ybh>b50Erq7Ya|t=TfMwj;FBRQ>8LJBi>uLM&}d5P92nFOO4lAju?5 ztK}LVMShg{3DP2=6Oa2FF)0v5Cf7_AXF!UFCEbwwd|KZvf&=66n4a<=BmR8R#C6!vc7g2`lx}X$ z17{hxZ3`%Vd_LyA&5++A%qTxBg$n){*7#XsZ|cDe7b4?st`DrOwx%9q$y{+?xn-|^ zeCB2IBI^Ch`m}HS6qF(ZONR{^
BX0Rop2qwW_XbJ<;j1)U~bI7(}T;L3D_c;fo z3~8~sXA6b(cMh?%qkRZ>e@e?dcpi@ zaS*Qhq+cuKsz)-@DYL`C5%Iy*3-hpK&TyO}`N`l*X)<;$4pr(I7ZyPG_RPtMm4`%{2<;hx; zJ2U-u{$w{wrxjFrYPkZ3yXlsudW}#6V^WRgNNC+(uH3tDs_4m9OfO$e^gmffMZ=>P zJins~B7GezZW^2POc5IXTwB~Y!YMYId6V}rt?~TCu+}Gw)w%@*Rv^BS+X~!Wj`=oW zD;D~@8%JuQ6ZlkvcD5+uhcdz@@4fWE=^M)!_q}EKba{bpUxTQC15iJ-QV__Sv3rc% zoGF7^9iMUG&8=CoAzw%2Pdo%s^%RjcW%G-uFE@_db|W!SccW+@ z0XKOsi`91nA1bXYQdK+@VYGHE9>`YybF`|p;{D*>e@drPg_61kG+e>~zD-aZ=P9+Cs7 zt*i9BXRHIa?ay~lK<@wog#GueDkz1Ku5*8p#{wx&e{8YZ&D6zNKKoHvF2l@|gtq19hY-H8 z`z(q_2cUqrVfhsbLFXsWW)uoKiCR*M{`<4s_5dyI=e9*>7l6vH1+fG0Ztjep^9Gqj z;2F=}Zj6?uq+MH|sM@eay%MKwcW;G}OsY|T3*H$Z8yZzwz!;H17W=zf9mZliF--zB zrFX|g@Ns4l8MZ$~OYctkcU8Z}8vsf;5k^08I?mL$6xa;aZYilf>$-9f7t=;nP|Qqx-ALy@QL40=nbXaHbs6k^#v3us4d0X5-WEZ zO(crmcCX;YST*RlgOq8!lj5T10KRz}0t!ZhEmKFu^LwP3&y`w;z0&~sLLt!JL6vm~ znxQM)0EWw_TCw!{S{s9F7eG1aeek9%0nL#N*;1TFKSQ8ty|JtMAGO@`{3ajY8()CI9ZswwpZMO$UHN4 z$F1#w5SFT~S7veSqW=}G$$J%|*@K+cP>}a)lw-bo@e?_q0G-==I71l}I-&!nKNUqr z1INp6w}g!QRaaC0z&1zVG6Bc-!Yf$a6dOOGbG&N?;?qD20sKMnz((^Y=kgC)xB| zN|4r+yqouwbRANYTDC`lf&|n6lWwSGU`jO+`(}0n$PrWT1p8{>HXCwnH?T9UWMR|=KstSx>B zxaVh$X3|Lb1yqC!J;w5cVoi6Uy;0E0bjK*3j0J9zj&b+k_NX)~mOzfl!-f#(4>d`4 z1N^ZN#{6?$kk}@3n-*{XTI&?9^Xs15S8E0d!hI1&CqSvS4w0Luk|@6sh`1gyCq{#& zt-TowdfUA*32%VAi+SO@vCKOq2*Okz?hl~VX(6kyaaIAD_-fjF+VkxakN0f7VA9P< zI!ts{8%Ji`soTS8zK=R7giP<%#i8w-kVZtpD9~@#$j02&k(Q}}^w#3&`Tf_|d@?S@ z2i%GJ5UMAV$o?1-!7M^Q$22Z!!=jDh0x&ZAMRf~v@%upNbmDkTfK2@OuC;Y9RA5Nl zX}f3)rAx+1Otsbi=cGEpwwcGS{?ZNW6wf6ZGNg1;;#N-itVR$Dbg^c9 z?3v>Yy6j>*vh?%Jr4=M@&D5wY_iGueOgUc#*VrFPsyp(sbMl@Rr+$w9XyetIKTwwY zm(3cxVKA}UKiM*S%WkvuGjmMd>ja!^Snlo=WXJZ;jK^fbXXjT?bQR~mJ3{P?Ozyc^ zCaSvLWI~jXg!p8D`f(V{NP8N+a5o*LhwgKhQDo8vHoO$Iubf0mj!tiGZFYbF2!-kL z>`*t|mb=V0dVU=BgsO9LVeZaZU+{xTfU-A2%%nSQ zv6|Gz5U361mo2DHK@O@=*?>14S! z(87$a5~bnlVzqeH+H3zL1xFx}@!w8#%G9i{E{$yGOqcgfhQ;9wKF?3=)J~#Rq{B4S z040!YBviV){6IpQ_kAk_z!gRGCJ?nDL7T=;2nQgcW~Ko1^_3C@B6LnlrFJe7qk*&x zIQ|>Wu~%xf_GZCWZ??9!{!X2*J~_}5s2e8ShpDce_x2;KLyJmRLo-68K4dkQ^s2&h zDFvV%*2#+#mC2krl^1i(IqsB8Jg{P++I&r9mW>BLoEh1Msdk@t^DA%}Y352s?t2~} z8uoA5#+kli`7q!lMuOEljzo*=uWd@ek^{vudWRUk&0GcEe=8=?pkIKPSN-zBA#>)a z#cC-CXKhc)jfs$s;6bo<@f}ajEEKmqL|5|bQrgDj_Z9WtG717EUaAATNDp006AZ`b zTR86a@Po8jF_7r`Z^68yh_h!}c?t_l>6El{yBCfpGP@9ePl6BKeLUVkKk*mG5gMR% zcrruOk4+?6tefsOk}P2dFkm~8Oi&)ZX=pD3Dwtw*e+STM8jp4#6f(C;1jQ1{hlVNB zY?)TOL{9#MGFznhdr!thw`gfXea2_GZ%*$ILMadx^+G#$U@BUb`wl{FH5iJrruPUXXQE5&x;`UbZT`0J(rs{K9n`HMb4K%rQfMN8k*1i)-8_oM;8X0K zE*zQehXXV^AMQHvF4p)#RGz<07pTc-8gzr01{0#=qT6mrbWN;a4-0yJ3uLpk#6Q$! zn&i(?=<@AeH-nWX2cIxS;AiKd6aOkqP#YVs^8WKcPF?UZyzZ^l$s%06epub~V?6G} zb6DqugB}2xrYl#QH3H1p`|?{9V-$fRo~M|t3uS@8-Q?ES>$Kv+nQXQ6IH%5x%)_oE z<8$#?XaSOq#7EaBGDq7XYV8s8VX^*f)9PIq2_1zHl6_yfT*dD<%z#j4hZ@K`Iw48E zKcUT`B;aGW7OPgOk=MMA^h>G3d82*;kQy^gw_vh#SLubP((a%p`&eUaEqsEYm;O%J zr+Ff$>cteq@U`$~sOf@85-*#Galu6~t`zk|=K`qcy^ez%nR+p+X!|>x1)`NspDom2 zYS}3lp6kX63iOICv6qa#m(=Dg{C>*MIFl%367v zhW(o!4<(YL&g75!`J_P5u`22oAa-6$4Q~)VpHWF7gp~@whNie9rt(?4eNk@&ALedX zy1gHMgy?#Pz4npJ^@*7e%bK9hfj@G9?s6a~BlstQ#gnsP#9j*NZxGwox&!2Vf7_iXvo>CQzpO81zcq~#S;Uhd5& zwh*Mc(+ipOiB&%9zwIvBt(HNn#HjG@50F@JnL4scsX>3rk@Y0OZ5VWj-EE;vy_Wzk z2)Uh_?xe${x%qL#%P4`%F1y~qP5^9=at%e&dcdDZrj1hvZ`T|_te>opFGM~wJ=|9m z7`wB&nDqT`y+E@3c-?MLxRyetE$~T<^YJ;ont{(p@wVR)X3}mNRuoxjLe1%K+?+hT z#m1ay&jpD;^4@c6qCzKCDm)XNH?jx*?LuefAITYuk(PL0{UIUKLWH=y-oR#PLBq+5 z*fA)liAj*Eoa_ATZ0s3gMQh48`!hf0(+TK`_y76&JMk%N&z7G?RK_}?MQ0<@vEj1B zbqOC4%UX{`=<#zn>E%OPiCEi85v!PQ|8b=Ox=p=)AP$`L5USasQ-LB`Ww^u>0zWB) zNDwxUWwnn4xFdrPycebD*J!OD>6e;UnuKc`m zfmNJ{G$2Uk&tD?XNERCv1ZEQfnTum3JM;;eY{7+vzyt2BSI%?}b~r3Vm=R@rc;II7 zOJd6}hKV=kOloqe*g0$L-Bt>e$_^C^`bpw!j2QXURCW==X=r&LHIz7~w_*x1AKr(i zx^aTBz-X-e%5P~j+KM^Y<|67x{Ymcvq4O2{_kyGl zEUz>aKcHJeR#|%1uPzM&>gV$Lc1=K#h|-0_EFw(Uqzs>xDiA$zol&S`_=-j>|CA(| z5mgg#CDRdfWI*2Q)m~DCvW(mG-Eq)|P#u4~;oXKAJps=Ki24B~JDi)A9|C+L#ufCG zEAXzM}j8;8Z zu|W3|(+h7chj}(<^w2q=HtQCQYcM@|?)9i&DWXoDHVO3}w=fC2`H8UxPz7VpjK2cB z>N?hb0?|=0EdeI%2*hp3H^Ku50}|-c=zu=BD-TmK%^T&7V0;GrU?kt@3$=MhM#i~g z$$uL*31$35FGm*p_Z}qRNy_h`J10`&ANk!8sqT?-_~BzX%b*%md8Z5EVg4&e&;zAm5cWoF zSwyUVByuDk2Wr%~#QA!Vo(5O}FND43&)mfSr)y90G7r&!D!$<|$bb!MUzUyzu=xHt z2PhWKE!4@yqgySzsKF+bHD8f5c}hkh5of3uLk#Sy0;*(b8#IWDl#tG zh11m(@>dd&G(p@xi7NaZ<))FyO2!`^19i*C)^~Iv9CK@JfY%2j)j`r|dfp%_U zdu5$_ZEPP5>%P!2Oe-@#ac2zldeaIW>UIJ+j&1q={rm64fa0{$(xXGhBBdBwFuTfb zk2+xz+^25+`kl`|9yN>^xeRdlYJlBz5vs42bQ*Uwb{U|L2?&I zI69Dy=#<~kt&YFMfaJ_3u5EZcm(u27eVFyfXUFRHX+#=3tLMGq1-kYWqK@#V^=AU> z^0BBMHCNvTku8nX7P?ryhb$&m_Ukoo5FTe(%n3aqIJyn}9BUFO!T)_yXkLQ>kR|EA zEyz&FedSGdd3Fb?SadHVc{YcpNQ;@6RlCB)#T%000Rnn#=<8u9if=x!L@n+3o!2wYRwGt)Iz71ge8% z`vHgYkfg4bmGn^93}`KG}r-wgorvKbfdICol8%P|0mHW7O4uiUf(t2(i zsP%kxFp*i*xT!1qnooV`5jkjaVm>{hr`$WQzt`|9tY0CM%@3QxTSw+P;Yc|Ox*)a$ zrLT=8bVN%>-$WD*+gKhq^L~e76r8@1zH|ygS$ENPTI@57Z!}8Tiun{mPq``&M7{Yo zTi9tl7g_9LoIIiS1SAoMI#3HhD}+V7lym=nXqI5o7-0Qf6BQ&>X7$BNw`UNWT!8qc zLc@(W=vvvq`f`n9XnQjsjzLpho!KBC^xIOZ$B=T*AjS~fACqts7O6dbvAUhZz&M1D zEEb&>-I#MFUqChMdK)BbczD~G9z49N?@~8ZHRQ2ztAKGELHFMW>k);BcL7{XDZVBT zeNL+A+ulMt9(WDwqQoFO!{=L6a|S|EQq~;P+J%6 zrqc%Hd9CDu&MD|ayLD-EfDjgh6Y&!_U>RaaE}yP;wIp|8Q1^7j_#}*yRtebMnXqho zQG~b^4Qp5rIh!g_1fYci6@_IqOr0QkXwW6F3%!)+_XgAkkWxTe-I zkV#-oAi*B48Mkn=LIG&LD$TggkE|;QP03ffJ7}H~-1!n5?g6C=SUSBRKuM;+JK?{n z(;hukGk)34ngu!&ZT%VbUV@QEdNfZ257X{Uh7@4m-(BQj7BtFe=Cgd=W3K7sT)Jnc zE*j@<7-z;sP*`LzUk^nM1XsXj(CdO@Si8l=V4G}?q=%sZ3H{a1N8?>6Vz^Vx7m$p5 zFwGMth_)71-#hIl{KKekMH^B1jHW=f$&Ck1`);lR-2(@^8(A^RBcPIQb?{y7;p$9M z$i3EJvcSn$ zJ(^!XY7k~a?-z_Tl(g{J6!sBH3@qzEfBKCpUv(H| z7;LG{mqF^1amD}lE)jz8&J1Ejy2tYcg!lD$gpx6+86+#+h*xieCkFEc=`Xi z@B%pIO%u>?WWy_v<)NoC4Im0HX7ybLzGg53mipyNAZ_SyHs#R*sA+OX6PJ)ORxZQW zljMJd3z#*4zwPMdeE&YLNn`tk^m_@EWSx@naGP|9f2|-(;_hsKR6QQph{CeULAVSN zw)3SaZ8raRy&(sWTj&D)Ck2_gJctUDJSr3<+?OYJ@llf9`nicHCemK`i3Rcjl=W}J zi{Jp5`7YUod~kiP1=E60Xhd-SQX!28)&Y=eH~j=nggxG5la3M=n5@SoC4jma;#F9a zPuiKSJm_~#OtT{NE!S!NdH9`#r=*1_ADSQQIF#L*6f&GRo1?EuA?W7&V3fkv%0yzpb;l(?B_ZEPgIRODD^-~NWD)_c|U)dwrrKWtYDgNKZXmtd@>p^AB0W6 zbc_L=z3V);k_Fz^hF5@MA`%>r|80dvG8pz=CViH%A{762Ptb7dXrXC^vHJ;Hs6&g> z4JS}&55FqCqy*GS#ik94-{V>+s-=1%wm)h=+3jopYTr^oM3xoH8gMo%DSjNAcIY=! zSl`#>3TnR)fwSR27LG0UIEW9xJs`C*tF0KHAM3CNIQv#K7=ao%Y-uAzR7m9Mx*o5& zmj7%{K}YVfmV@hOTKGtI?REPM{r~@LMOE+f^(B~hdbhynP*GW8_Z$>6!#Bz0w?>clvFX8EWVnIycA?V9GL*Yhy5=;wiJC)vM1|aXC2@AS%^zkCzb$Agg+4PFciQC;|L7W&+w9LT5@eBm!DTRCfjVdl!|m zg;jtl!r8^Vswg963D#t!ry%i3co^yo``_w8r1eS>vO935i?r5ria;V^!n1$XR0nkd zfg#D1gm!|wV;dgF;UvN*duR6AjHmJ{P?2yhGeEYR4zakrQwB5ronS0vxvJmL!Pz_K z3*SrdBb?Ksp?B9l8rs{SiQ0hgT-=ZB3eFT$ZqV>)4=fdEMB*;@a&y*uT^{bG`2yaLAO*Z!3f1<>iCHLn z&MQyAPe&=JHrc2?*_R0iI)RJ*{qYq1+LM5$AAt{UZT;r~T@v(_hS>blh9OsTL%Z1G zrN(8I+MUn4XNvIJ@} zwt#j4@(H(2mbJ&f>8KMHGeN=86>CC$k23SKc8ENH-;ksjV# ztiL2-Df;x-09l;dbl~?`YJ3Li`i!R(u!g)rr=l;uIQ@0hMpGCDhz>W@&Uh{_kHoWx zdst<-zZCx^`IO`Rs4UlU%KsftD$PxN5La+Y5$$L(l9LH#? z>tp}AB03@fMIcT;iI`&LZYk-yjApl{xH-rDPLhmLQ3ms6VM z4E#^A zK+c-U%k#2Sy%i=UvG4EWw?N%bGkQMQmUOYwOGg+m0&nqeP4-OQ6T@+rr5Ucnc_n+0 zrhkv$TpQuNVRv59A>MoO3ew)Qy1YX_ivfLP!&;qQGV>$o>YZhvFvE9)@whOl**jsz z-Z5yEC~!nT+4K7!qN}9bi=sTq2}U@(Oiy`h#}dnVn?vh@UiN7R3(#_4T6ch4zk^#= z5`a97FUGOehmY9XA+Iq!NYw<_gi=Cd0dsjOnJEG8Po(8arypDtaLPy#$|7;($mIzpUQaA*p4+*tTgwZ?{9#I zypWwJ&sS0^0a>&98k_=9E9)8*K{B##`uA_T#C2!6;;B`7 zrlJF_dpwel^nvOFFs=}i8$|p1{895?!0eNmUG6Vd=egjp7>O(Jd|S5k9S~MT?tX+c zs^Wa#dv5*u5&{R1%4gnjIUSyB86Uli1eAA*L;P7@h z-@7;eZszV*?l1DDKH`}O*4^t|jVsO_pN_nugdvr~DS!lpT(=C(?eH5TN`w9x{Tqu# za<9Lc^P*KnyKO)0{G&_Wb@Wmx$i>OBK0H5{!tza=>yMz{=)imZ{(god(1J`bi;TvimV~VzL7r z*@x4%VLu$4f^rN-%m+s5$kU=l-;NIt21-RQ&K_V|hO=G1T_1m^UBDliKUuY`rE~RI ze1ZQ@+nLW9;T3;MPWHN9Mn5AlYaq)*+aDP8UA1fqJNz6|tajiqI=KaM4qt=Xnf?(}142VamIu_*fnGnJ z;Ci96=wnQ#=T-L{3{h>iVJ-g|bc&{#*N$z0KB_Ub;end0B8-!F>ZDFdz_s$dOkVt9 zKecL;&caVL6=BuSjls`15SrwJt+LAh43NRxtDt*%1?jFpwwpTHQ-l-GNVZyCU2gIH z|9U&uKq}L(|L;muG974aiE0wcIh`qo3=tWT?R+*xB%y<($P5W-git9d#da*@l%$~& zIh5T&NfAm(l1L8EciqhI|NFmu-aPYS-q`JX?|onQx~{d>_xoArjoQ|JnK~3#HoQG5 z$IDR!WwkwrcI*=RSg?9f*+pVldA`DM=(w@BBP6(exXHrVxKU|K0Ol!(otCN1&_h}J*XomFtBqQphIJOaJ-EKWO{m3_5-znGhZDxTMv37jSO?9*0(JjF zDdAwQMbn&Wu{-FIuDo*MFGIHQ`9cHv3e_)#dkPnsUdSKp4EuiF%zln|<}t4TYZd#q z2gT@|eA_q8;Y7m=&$2{7$}%h(zPyzM{zp|;rklz>=M3_S9>yzQ3T@LV+`{&=?Y9g+ zm}a)reDQhvx);GZLDq^!#|IAXKcxLM+PmWzV#tGjn`ymQzfY2j>o zc#=o^ouk}mZ1XR7)~}&=JmZl6!BPMlk0sg@k+oTh&~9ylbiDnr_QeH#<`-?tc57fy zqF{IF)e{`D@qSmDB<5wt@B%bgtR+y-rw;85C{di8rMNSdE**tK(?T_?iqeeXPX6wj zdz<>!tm*B!baSozljmp6r?6^u@%FrfvHMFa%wOc){2bX#rSeAD;hcPI(-QeF@wtD5 zR+<$N%jX`!RkA>bes`pmJG>R>??T_G(yGNB+f5qWORqR1od?@ato3g6%P#$96}iDv z#3Zr*2OYurSf4#0M(1Yb9l=?_r_qWR_kMq7P>(K8!E*#@^iT%X>s$@o^W&E^;V`a# z@Rj1_MJ@Fc%Ox5z0yEwuvRpqRDvV($j? zXq8$z>pRH9k}xOJ6rd?zXirX#4W4`tnZf<5$B&z3+7GvipwEXImH(47yYF6UVcTl! zyvI?r_Ug)93*+{4yBNJlYl2*5%Rjicv@JR>MwoGJDM8?ZhZ~~sY*&$Up?Vp~D~t)U zXe{MCJmk@!6WV#v>fy`(mX26%aPM`GN!Ev&y%@g=ZH9MS*V`XfxEEo3^EIJYcLGZE zUCza-k)$EHA#duWI@U@ki@}{?znM(v1_AgKIx)lFZ^#VSWlQ5W?&-2jVzDhV7k>T(DOFDkgK}sTWMq5?%(vi_gtQHA4 zZS<}uOU%i%=0F*5wDy&+bMIk!`_R8+j_i_TMg5IO`;uM;H`A`y8C0QtRXj;soY5+u zlW%1?BXc;92r_n|HndYtD8=H#!m*5Ye}|e~IxB<+Y$|V5cLm>hLqHDopZ^w* zXu+9N^<3)04Zfc<|c& zKe9$VAgR$w7Upl%*50mkJ|COr+JN9*uG!oroBI#(vm*ZZ$z4c7W{4s`sr>R_@b{A1 ztZYA5qX!rru>15(Mf724?D1~YaQdcnJ|Vt(ew|ZTYQ!dqG0@cXrb|2NuB?Exudiqpq>Cg7xpt zX}TNSw{Mp_pFha%3#6#ld$XvMySjD2AJ9r_?=_%_uvH3dKO2IciQL|#)vE+Mx6aR* zLW|s5Kx6%%jdXNUIija8@7Kb^&Ra?ade;LFk+15>XL>EBp;*>Kz&;lXRY4}~UM(L+V< zg0FcNE4ISF9Pat@yQ#+;lgi`;w4`fw0O$)3-)}&yn@^Hl#l_Fc0sMUv;f_?8M>j<+5BFJf8XmMj&2o%?s5B7CH@8FyJSD;xsx+Qe}I>m=q zpp~1u!!WWoRdF#|)aza6^0797Il7eiV=#URqjx+DdI7JUy{(lh*Z&IqhActuU-1V+ zjy(UB6d>eoyDuu|p0~50YlW~v5KFV_lz`vw^6bG^1GnN(Q8hl-0&Za*P-hZ~=&YAi z`nRBZp+LVVJ5A)bCNL3ERYe_g|O9xd#*>heuY z0Yx7l-80&Vx`$rB`R7>ppjL9q9uxp|#H*(x@3*XZsF_~jZ@Y;jL-;Z4ZC9g}#p%JqRq>}KTI6)2=N z@$Fnoi~Cmq6|p9wkV-;u1dVRH>oAf!rU2}^;NMrEw`VnU2d9L`5Wa=^O5oA>&%b8! z%c}foA@L`Vt0bWLaj#XtHO2StmERMsD&VZyOuXoyS*xJnvVszWQScjXxjASSHz##@ zy<61nF(NNu6NF_I_H@Er=I258p4&9VrS80KMYLnX)b9ONQgLW-Gr%2|X0%>TY6|0z zj`pP1!p4%3ma!iJ==S@u7{FCyEvPe(sKc_ZDeFm=t#w5-YUbVFG{!o|fGffOhc7_D zWeB9)e&pwbG2Zd;Osr8f$_3qfi8F%03v|QSSEDi08llOohxAHd=JKJ&$1BARU!kbe zk>i?z=j81>F~&N~usGee|8eLwq`hH<94E(32y$|z*o;+%Ld;BAt_$(iR=`P)-uL&$ z`6$XW)rc*2{Z>a$ZI>l48xWCni;Uf=?a1lo3gkV&cRt4)=OD%j;2R)clqAFO##lXeHAR z)2feN&b#6+?{K}W2VExXQ8f4czCBq2fOx+(!b+0Qr92~FPE6zUctIJ1j72Ch2)Ff$VB5d2K0mJym%t8A{gIM zCxqM(ywlA6EtY2U#a!ruF)-H|eWw9OWl`Su^eA3B75-=e6z_obFvFb=V{TW5gaaHh(h(;B@PJQ0IqK!G1XW|~|0)dHpwBf0M+j`5r<=UKd^9DC7 zbzSnHu^!^y$`xZTGI4Z};P#mVJ!u=ciE0#d+aiCEYrNQIP*-EfI8qhr1?lACji0rE zl^$P1du{T}7Z9)&4`$+chjgp$-fID4qvGX7&>OlAen0W#wt!k$%h>3E&t)`E4G~}3 z#w$>ax9XDxB{?^TSF8b2UD8~{&66iFoq4)0{eN21OP_N73hd?9+9$fJ9paeobdEBB z*gzlQLLD}jhT~ccxfRRj)uNNn20j zVaRsa4f6{jg7BaJW0*rlC}8e%bn#>)QXBow?O<(hVFSfG6j43f5ad{^AXbY+ZO>ap zGm)BhV`_MlGhKe)gyqcMx_(3u58MGauxtFD{?LN39VG7K?;KRHauaD<#U|Y^q{<5d)0KqqV|`sEGl=kFtu!Kh41W% zCt70{TgA!S%u^_u(OXs}G`Tj#sx-{S_h!}jx7Zk@^8$^!4>w*WKfoWiU+*(dfy1uj zek=xZWP<^Uk^?s`_legi_YeL_ohzPyPe%i?VF}kcl=op@4B?Um@Mn72C$}c{~Rtw z!%Kd#!z$+V9P?=Qk;;8%YEJhe}u+VYSe)gslZ+Z-J( zcOBzn9^wj)Tnc@04Scd41gYYp>xAHz8pgMbo8X8tq>Gg9Txz(|it-Q?$%PI9jXcs~ z8J8lQ@$Pr=Vq~^`+1X0>ht`yW(}bIs`EPRw zocd?m+&i*^C}3Mo!bQEQOX$>S~A^>&x(-HWU7f)B_e;n$O_!k2EQ!)zdhix$#T` zEMzm3W){V7PZ==XEfl=Yr#n>sRDn}RVW{)!0c2+Q#Gy}ahbtDl77B^gdFAon(C-&L zi~H9bk?-`|VpjcOEFn`HMVl_@gdF%M8JEgNr^lDNZTA*#6$OINPVnA}nb7HdoefMX z4!y$-Cy&HjdgaW&F_-f+w*bmvy(a7!c*I>3@Q6RP(tYum*-u3*wd!~A1VXI$jq&ut zMU-ld^{GsYGo2mOaNEg^eQBljQ>P*WFLpf-(CKMw?NhwpC)TAjb80gNf}&}}q)F!V zoKalU3AlMm+x{6q7?pvNosJ+V>A(@fu7&BX#O5s;mC0K0M75$oi7T2ocLL zed>*{>);hjMn`4=lIJC<&I=gmek+P_C{gZY!mU<7oNit_{-R5ddFdwoqPbh9vivUK z3J~-XS%$9AhH7lBu}ep`KF=_iKIq}`1>}YFfl&^&IlUr@IS3Ld>juJIMN8f#hlj1> z`XEjESQ4RpJ9#_q;Y(_eS(vOU+}Q0bQA2tVk_q(cIa% z9@rib4MH@%z#vPjMp4lsCn?mqAq3yu?<`+9|9JLhMG4fHbh8 zX)t}ry5>1YF1mRzCkaki2siLlkCw3S@!n>~Mz?0#RhE6g4%5D^lQxY2 zXsl^9qjW{6$M8bBTFWcAip2N1jLQD!CCo9_MNwq;WL(F*pfj7)V>Gqqu9Uhhy6z0( ztIPBBoUd1j34*T9FJ3i*`*Y`ipnFEj@77yMbT;vti%>x?^F43SE3cbwS3uVQ7iC@? zNu!pffCschcce}zX!I+pQk~0EKroZmZH8Q%d7qkp0YT^Jx!oARHOnc^f1SMQizq|z z1@T3J;;gS}?lAu%qE6 zMEKQtDH-(#cJ0#mll-)nx}K;=D~>L(gEsX&8n=}wvyAqA9^ST=*8M;lF2NKgO^Um3 zyzp+6huc8ygOpA1#RHZ8+Y)TZh03nte8$nT2h!?|Xn>zxhbLJ2*&@hlqAz{&oGo4j zNi>EURZi_jLNWMw^x0(*F}|}8@H;YbHdP(rodO!xgb0&?rzTV@aOD@jJKXEIao<$G zU2`(#GJiKvT$k-DT1x$aHRV*I+GL(XFEfrR1p+j@FjBypg7piyPqM)pLfD+S)7x8^ zUc&4DxG&vq>cnL_w;y_4faUZ8i}$I=D3>1JS5lCFBTs8e8{eC9@%IwATaTFOr0y2u zGoV#vDG-#!9<4-2Q3axySZ6Ne+ z!M+P+vXv{@xfX8#h4_6uvui|XFiu?Og)YBJMR*ULF?N~KFp@s=_ft!k2QW!!B^XMJ z%biRi(#bj=sRH}AOYWMI0kV56Q1iT^geDh9AOl?oDD(dKWDpd4uYTOLG9v zKvW~&2nCEan%Zs>pQc{hwSy`Ur{=W= zeTZK?h1F#+HQW*T9=3M9tak#QWh46|{nGuw;>T<*Qb|*d3cl#egMW>|?N@DY_#UH7 zDxVU@s`Xxs`-_WDu_+yTGYa)0>Ulu623YZlEo(Y)W7qRjL@B1^cbL}~zFmZ=pi{M* zyX(Xpu`Y7%IBk-C(nKA|x`5!_;k=Ky)xDpm@%^WDKM)4I(iJprFzhP569!-y+%(nF z99GvL_k2vg=n0=R;?-sFRj;5?ndkeaO|17v;RG<9s)WOwu3x$4I51@HFFkD&3`MN4 zJS$a$-|V*vgAN4HxZP+A<_e|H8!AI?{n!&o>93s{V?`FMIV}>A+28`J)2ybkcPp#3 z{m(3Hc~Ji2iZy8OkvCaSAC7OGFyEcO^h)Tsqvh&IomIV#(^y;W@k9K2DxGF#xI9eO zenh?5t0;&F|M^u!NMQLwzjqf2q7OSWGM_UT&7z?2r+v7gCzDw`yY+4~$1h$Z;K)Qm zwmh_?*{^}x#+LW%tH;Dy^?b4xGd}~UGnj#qNL&jic-ap`$P~@MN%D6Z(1FfG$rtll z`TK=P$`x)8TIGl3lY6eg(70PBI^DPSkjI}6u|JU69)KM4C1yD6c~a9zW3kAV$j?b^ zmFhPy8{+r@rqO3^f-J<`4{(gWv?6?MBl$%#m1P&~vhoyZm#aFrh}C!wiqp!U@-52k z!YtFxb`^#fWn9372Xr0)f_()0ZeLmg{%IZAZp0@9Zfg_z5Nb#n95twYO4w;DAfgvA zmkhkcr6E0?$G3|pU*P>=7x=-2xc77$=2>I>ffLY;Ho+3zhi|7As&fbIN0`0cb7ki=GVk!N zZhB?TQ{+9c=j!*uThKu` zg^JC#icGdgs8`kQP|G-Szj)29tTB>IFs`COX``}r7Vv zRa}+p{`iGTfJv!!s(-IL*Eiv$+r_us5>#pIS{AM|$)CAeap)&j7x2DUX{g?%l?vOs zO$@n`?8c26wf3=G{?jUW0G2}i%>~n8%}rZw+5Y|>{^mLS0sH=RE~~MR9WQX0GH!#z zTvZ=TIf%ame2omH3M!bA(5d_>P@uO(vt-BYl1dH>&%IEFdOnr1Qkc^~YCn^uf6Myw z*tNmto+EKg7d7hAs4{l@RX7|=L{?|KuuS}kCA|qBv$g%Yji%s*t^(&@N9!;C=EAu* z)Ej*Im5|7;IObH^KklAmZPmbKgawvT-wlfNe?n%exFzDD_4GY@7pM9fhXxKd5toNj z{qA?{J?7?NtcbL%^Iogn6}{{FpoITH7HM_Em!us4pO=Otf@iL<_+YjVGR8OueNo-mOd6(qizP9z!GhPi}`AMr~XGy8VrIQ0~sQu8cue(l3jokx z*`E`)mY!7TnEb;wKZqB({u8t(6ON;~-GRN{H_+&4-S!!pn%T2!?)`LUkR2OOHtlB* zp7eN_XZ{km9Dadz9r1xb4-dV+sbnfgw+^>l`J>-lpJHH&@|#^xp+Pz7f^FCDXF6}v- z9eQ<3!YOr7mgsqJg-hH})jR5FS;eqt5tVn*nG7(4djhKck7 z#`uUSEgb)jwfGowV#0k1T#n~y*)30Q!0^3*EgGY}D0FfU(i4HIPV+^4gk5AJBixU8 zT-!p`y{VxI@r7etP?e>j?ATGSZ(KE*RcwG+tXmKBk7Ce+cZD|g4< z$OiAXdh~{vA3Dq8{{fHVL%V(|XDTQ~PKJkJzvSP*+8f6wpz84EPO!?OyQ@X7-CxXI zwb(4zJiz|!F0x|j?_@x%tm2K#B`29V#uvg++{IhVDEcK zKwIWLE0V*jRA^8Zz;WtD4ut?jw$2Fr_2@KaO&lYIW0Z}~DdASFW@;ZQyO?%1NPcG3 zs|m@!gGEgGYSY40zkUzij5NN5%#XXksiE?%sff)mZGVC(Zo#ILXS1677#DofLmc)@ zYO1wYr=LrBa|gCwbTC1@V2JC?Xs>mMM}D7*Iv=%GhKIYIX6qB}lfCs2ECBkX=n~ZR z_WS(092%-rF@+$_Zf1!R%cb!wpFpZwpE+{qdWq?cRyAxIv&XEfTZ63veeNtx53JC9 zvrIdfZ%w`NFV5g! z>e8PokebwS3ysOugq1GrUd-TB9bXiQi_0gw$#9katsbXL6=46OEOO(I zs#DlE!HfaT<5Wx0?&q5(sB`E~(#C#ChfM6~X4N2s48KHD|KkGOpa2958 z?tKYUFby6HF!L6UO)L3SEH~1zwoFDS2%G2SK`^QmMy-k#C{@&z0wVv221}G_@o3KA z5`-YwZ{(9Mq0o4XK+JC}xzFYd!d!6$`|~QyDMR4GU`eh5J@L16#O=e&*y9|bM|V$% zJx1~9yiv@*xLa2JZoHRsvUfk2gl``wbO)kxy|8ZsXE+|+eIJSUvPcdLrQH8w;I>o9 zwG|i{nvnjC&%z1}WK!UTN&Va=tkFr+Y-j{8wo84q{Yt(Z|Du?or;oU1f=uLxrT3&f z+q@~Y7=7d00atO9jp4USjd9MBC~Zu>a`Lmn)5Phu^&5;Qf>Hp2-6;^Hra zb#0U5%J#b7#Db~ZR6fVLkElix(wnnbNwD*3zNl0)r3Y9&9dgmPUM*}Z? z-Xs45zq8)bitp$Rdcv(p@OJM^|1-X4UF=(~!soCuKbIO&WNQeS4rdR-uJw4>uS~h! z9e*;+tej8~+w{o?4BMK^=A6JAVKdAo&b-Y;fmh9a32+WPOq$j+XU=S2CM+_oz+l%L zdGu>Gz^;)fRX(|i3$2-VQKjCs#2iV$%!)DHw!TxM>O}bY0??EJNY4xB6L3w3N&)2} zR7%=Y`*BEfTb=&CbpS>uMSU6!^BCVLx@^Y8Yu$qOp@J`-Z&#G8rk8U|uuP=g-%7HO z9mtGR4ZJ~ZMNswsOCn}MGeIM#ld(V2WQd|NADK;X-L9dpG-`|B3EMtY==?)~gR3zN z_(zb~XA_iH;DP8{5{Huj7NJIHUsFV@$o!>R>;b#{nQ0--%0!(6jD~40Jy}urwYBxTi3G&**%(!Dgi7JJif_#DBFoWDfWOE%@xnb*WG&Mu% ztK-x-pG$Frf$Fk|;_s+q2n z{EK_@5=A9}$b`&ibLK(yB>N4jCjjrFY${jGtW{XE&JLO>9r3g5alxvlI~G?~XcrHO z_CV%eJ2NCEg;(fXzkWv2?SINzFhFrbIv4(+5cb9-IVb54m@ZOj^Te0EO}oDxS@=O3 zG$Co;W~x{m+R~Hy^JE$oF?DY$8!#4 zNq3NSTW)*N^#v?fwee~11lIpQ9Q_VM%KvJ>{PCF4fTpDCP(#+fUs?EXv(E3@Sy~Q3 F{{xER&m;f< literal 0 HcmV?d00001 diff --git a/BA_Titelseite.sty b/BA_Titelseite.sty new file mode 100644 index 0000000..444d4ec --- /dev/null +++ b/BA_Titelseite.sty @@ -0,0 +1,74 @@ +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{BA_Titelseite}[2010/04/25] + +%%%%%%%%%%%%%%%% +% Titelseite: +%%%%%%%%%%%%%%%% +\newcommand*{\betreuer}[1]{\def\@betreuer{#1}} +\betreuer{} +\newcommand*{\zweitgutachter}[1]{\def\@zweitgutachter{#1}} +\zweitgutachter{} +\newcommand*{\ausarbeitungstyp}[1]{\def\@ausarbeitungstyp{#1}} +\ausarbeitungstyp{} +\newcommand*{\geburtsdatum}[1]{\def\@geburtsdatum{#1}} +\geburtsdatum{} +\newcommand*{\geburtsort}[1]{\def\@geburtsort{#1}} +\geburtsort{} +\newcommand*{\institut}[1]{\def\@institut{#1}} +\institut{} + +\renewcommand\maketitle{\begin{titlepage}% + \let\footnotesize\small + \let\footnoterule\relax + \let \footnote \thanks + \null\vfil + +\begin{center}% + +\parbox{10cm}{\centering\huge\bfseries \@title \par}\\ +\vspace{1em} +{\Large +\vspace{1em} +\@author}\\ +\vspace{1em} +Geboren am \@geburtsdatum \ in \@geburtsort\\ +\vspace{1em} +{\large \@date} +\vspace{10em} + +{\large \@ausarbeitungstyp}\\ +\vspace{1em} +{\large \@betreuer}\\ +\vspace{1em} +{\large \@zweitgutachter}\\ +\vspace{1em} +\centerline{{\large\scshape \@institut}} +\vspace{10em} + +\centerline{{\large\scshape Mathematisch-Naturwissenschaftliche Fakult\"at der}} +\vspace{1em} +\centerline{{\large\scshape Rheinischen Friedrich-Wilhelms-Universit\"at Bonn}} + +\end{center} + +\vfil\null +\clearpage +\thispagestyle{empty}\mbox{} +\clearpage +\pagenumbering{arabic} + +\end{titlepage}% + + \setcounter{footnote}{0}% + \global\let\maketitle\relax + \global\let\@author\@empty + \global\let\@date\@empty + \global\let\@title\@empty + \global\let\title\relax + \global\let\author\relax + \global\let\date\relax + \global\let\and\relax +} +% END Titelseite + +\endinput diff --git a/ShelahUnstable.png b/ShelahUnstable.png new file mode 100644 index 0000000000000000000000000000000000000000..c37e8d85c5f06d5a069e96da7bdfac023adb88ce GIT binary patch literal 89060 zcmdSBXEdB&^glY=H5S{2fIzg1^ zj9y2tcfP;>{ol3jTKCPp@9v9dt#fA0oaZ^8efG1qoqng%1jCX04UVep6LMq z1iiQmPK=NHgs)c~Hv!;z=&33Kehl5;#7zk86kaF*06*i&uC0i0a}rlIV-Em;vg5xC zug9hE4FGVLul`Iy-^Y9>bJv%%>1P$|2PG+XN!rN8=l9!b`bd_-m#OA!=_mLZSiUWh zOC|9X?Xme&kjARy9tuCmpSzj8BV!MzQY2T-7F}d_x%NR^%ToqT#-(No)F8E_9am5Uz>jAYkcWPPK{2c6%?B63lGF~H@6c@692M$Nt9(fcd{%d*Z`Ak1kxXj~W z_Eyc=$+nLm7psc1lm*r)=m`20f~n6t@UoZHzwkd|VsM0z+F98am*ausZu)7Q9|9Qthx+1%He&1$_S$=i3{dr4?_u-P!+*_T(aFv0f??n16%YZfKhC{R(FDX z+U0XmcIZLnkDoDpR;!{PX`p-;AccMVd?h+C55(f_74#>itQ^-|*a7-ddS)wa-TpUJ zx)X@D40tvmV=vy;_A?yZ{+^845mu5QNb<-BAA7HWa>hy{@pjfqb=9K>$O9Sk zn@%(FOW%EbX(c;buBzYW^n*xe3UPht!zLx`Bj{PNpZdC}J>+yy&ld}MkB~(7ZH$KY z7RnogX$ijB6_}XJPJe8$dkq8%usE&hcUjssZrH~y5l;jGxEq{=3C0gmk~e)52N_{{ zAfr^69@MbQ(s2$y%EmMI1iwnWHv<$$gyQsBEU9j`?|AZYmo1Hg)=x6Rj;>W54$X=6 zd{#B(mX{ZLM54hwV*aOgpu^s?_FeJv!-*+--^CK&eV->U!w##YoJGvH0Lahiwb<#8 zI^5W_!y1p>MlwqSF9}hZD@WT4g?Dx-0&l;lAugbr>D63}ugO}&kd>en?$c42M+V44 z63LxWA(cN;JXoO9MCq+{>&k8P zGBuL{zBz}v2oFGyRcO=gCDr~M%^jV)+tX}2eOK-h5kY^ z)|l8hc_t1Rx+i@yZ`3e>+8vet^Zf{x9s;KGXpd!gV z(4b~h+{Gp3%zfvdl|iC}eiB zE)R!Czy+t-5;;={UDk^%U||{W!qiwBlpaP9->JHEIcY{Lx2z7|(fb}Y?ExppnAjxo zW9vJ6h&5PI(bGYa=Id4ukAT-n>xuj;auxW-ni@|7lvxh}Bd_7)GaIdA@$p2-((Ep# zDRYrhQtcka)P?Waa_w5ZkeNw9{is*`2{QIEcu2>{`E~H_Gh>ki;)|`rfkIHR#xsEa2ND;y&!jQgx6(RJ(xnt*H%5t16PN)P# zPR=K+ay(ljZ=63{VXX9@{S?S`Nc?g^n$wI9P`aE{d?V1aJlw82%8@sXg`=FPBx;%!gN*V?owQ%?2OD!E}QI$PmqWKb4HO4V>VuTWdML*w+| zAmx8@O=8fYH8cG=)Wg@@K|Yw~MG*=kE)#^>1ck=ak-V*%Y%V{SLmg0mqBJu@(vEMg znuav^K7#CXry!GjgDqRN{{1czjfOacFm2nUM*1OjwpG!Y@GnRZ1ol@IHWKvm$AZ7e zbL&|l9zBrsQ(_CS%qdF0gPU9wY26$TOX-X~v&gF=9W`ch6cDYU&Hiy#M4q2VKR^U)+Jq zJO~Q4BY;%(qzJ!c=X$Xd^Vuh(zrL_RLA~4HnmGNh0&o9$=-HF1r^u|er>x1ImU(gU z{r>!Kb;f*YNyKI3d;t5SUh-Eq13~S{o~$Mpi&ovXHSQaiM|AW-Bf(A zRY~kklZzI9g7TSRR;UYF)1bV{x|sicF7zz0j=9q>OWI@U2`DEgHEs`|r;9&1EB{l| zX0Y>4R3I%fwSuM2PV~4IzmRmr$)df7nCDW0NB{iNBChr)9m$C|o^@#pqE$<<-#!z~ znEXb+tF^43(ouFPTGj26F=Z4M^KwMb*r5(7kRG_oHUe(lxR$Pn@GCoNy=g^_vy2xD zp%iWX7heB5X>wMZuRbiRjS zVh1>#onnjo2zc@9KQJxomUjh^Qr}&K#Zyy0Ue10P2Dd!Ej=Y)g-x#&H88_;?I>!XP zQ)YR3M)s50CBEt*!K)GWx3YfD+q%M)y>_)$vr<}${wT?8%mgX(S>q&)>VTI*5q8%KC6;+Q^SH;I#fD4Uf|XLcazzsO6NCS7!M$PB5~_ z>C=?d__t+Ne;st_Be=wr#`YNaa=G@g9s>7*j)~@}vC%JC8{O=uv|Jngs8iBTL8v|# zDj`i+dB?Dh&-1!4BDRLf9%9?~uGN(P@g`8Q6bS6$fShur1xG`~=|ZvxS2Cxg!(pSW zpI!53=);_Br!)pqR&daZ%6F`(u{0nqcxEE;Ru>#oMj@M@|2OumRN^00G4*Esql-}z zw!cbiZ+_<1_&)j5##et76zZ4wBtjV`LZDB4k}7a#9sH#6bewX+{L2TBEZOC{Fjunn zWDcEI&J1gx=SX9sRFcZJ{wW-y!w%z|G1gqIU;Dywh^bn45ZwG2ES4MYazZ&O0=PmO zEg|A+kLK|%onPiA$g77X8Ss(9n&|A^aKLK`W3N{$E7*toug{G{|85m`Jus;vMs=0v zRVz~KTa9oeYj2f0Grho)={Rvl;B%K`Hpvc<>jqi!yBv^rHCo;|{n zIAyi4#cJ0-vIW)3wIhZxpg+@?UpsN5jbEkPa;f-ptp&_}P6cRy^wE}8?4p>HzXy=` z0ivn+)Ma{`s?YH=x{rRh*(-c@{k}u_hog-TFZz)+Q}Aai$C$hrV5JS*DNM~fj!wB^ zfZOqKr@G&MEi$=55mp=!e>Gh(9eO6DyfKe4JW+teHR*njEV8AU7nHx={nP$bu9U7Y znl6h?XDb#V>qDPUX;}j`N@H5wA!bb8Bt3=s{lczj6iYvq2~u>osQa>}*?>pziuuic zy&^-^Ljg6~V(SkG0U)%J{V`6_*9v8`RE+<*-bH0xO#faT6S21af}zOSc`IKCm`e6s zsImEN7Q&6-XK2}+qu_tRn=SS;Cc4_S%UVY7rZvCa&Mw$v>wLCd)$Pp_z^~cp|3`q|^3&}3 z0PNe?Y@Bv|pT?>jEF0xb-__m_Ed*Heg z`&9P1So%Sb`s_^q^*|}wx+^HiWS4w-IyF}+sawmmb>8aFHR>e>FWA~f@1d$~5h}gRP|sxN2Q18>FHvvMl5H!;8`Mvz1*O;%1wkO=-1^&*|cbh-j;DSJB1S0#DE;8$nhJsx5wCK9v? zGD6}R-J%B^T5x38M9x6QhYL~8&TP@&4Bv6a# zzu6ghtTj+?P_H?PA2&>rjiRl(jOzZBFfPDnkPu|K?3k50XOhtL_&w2D?V|jp#BOm8^@Ym3| zmwuMsGO06QWyy$^1(nkbH5rakH62T4Vt3&`N*&SeukR80!$DYT5gikdDl1fWf5!h| z)gheM|1lu~0FLQg`TKlSWZ?F4ThIV+0zW>XftEQW)Bf$j?|>I&tuM(n=DxoOF6wUU zC_L#G>r_^;_f81Q)p6=CtRt>_@C+McBO&+*Kn0)bB?x6q8|AMs2p$w$hi%ESqHckQX{r!HUNi_{Pi&o&8&pqL(NvMgt{IT_Q1 zB>}T!<(65F;@9cvtm3nFZK?!@^bAMb9h?6R4`n>f;{A6})7$c0erMGR#3nQKDcT2< zQt#mV#4G2740Vn|B>txh_*PYOCUg=|BqJ@Y=piHK)n=92YIa}z)6MNpPU@Wo(lDEv z_Xp%CPN!M4WY~~=o=xyG?GbmMkru&wm`+sW6&m z*Aim9&Ls@^C|=?BN0A}B9Jk-VQ=u?EdOY;vi(D0G-`8}!4X0l;Ea@l*W4>X4Yy)2(^-^`B8ZaFL_}?QdZ{saypXq;S~TYEp>dlgRBl0%|!1|yzh1fA_`1y#M6R(6P`qzh1L9+l5xI9v)da) zC}7LM?Y4aPpEBb&ywq1683dAKk71UT7o%@Od+N2t7gL5!;8E+}SdWBn=3YUA#xRtYvp~tTRpGPjR}uo5sB3^LP41SHErl1Pp-Ni1JK? zut}C}4X?d3fYHR%tH|+qr97Q8`raA{`H7c5b7Zair+zK+{{61z+R_>Ctxsskj{mzz z%BAPOFHSwx!(7AWSXdB5l1%i&1pI$ zlRN?EnRveTty-E^9aoVp6WxM!+f;#99v-a-OYYhA0}I3{(9neS8s^z3lzvzTN?i;B zJzhNJdVz~V^FEaZV6T-W8i!e^9ga{-4tARa@Cb3Mf-q&;Eg2c#{N6 zwtX?w9^&0P*(w`SdL65oPZ~cW-RUaC6Mg^WQ0??E>=>o3OoZWAKO~pj(3M)qc@E;5 zc1T^xqg+hAV9)Ypd#nD7uY4Sj?yQ8#*l%PieEWxmkTG4Mz^uHHC{C0 zb{Av`4DfWm^9$bt`S7*ZXu5bn1Kzbl5KfB!((MR#I)OC~uij%yIKH8OEv=7nR~l&} z!?Xeaft*SIWhzy_fFH<3q0{MfX#AyW1$6&D5d+A;!8GETrrlog1vgwm$5dzR*=&YL z0p>%h!WUi^(2f3y<>?A12VB^`+M^o)=4Vb8MJZ}9qkO#Q+YBB;lMokp^A0fPa67%9 zQvZc$h0&q3Y>C&Ebz<~?Q#gH1{Tyueu0}M7)0em@F)W23Rx$Sreu6{@s7qUj^qa4^ccJ*73_T~e8lOgs$s9+g ztt4P`k9zuJT=r$F6BrZ9$+Zz>8-l=+5^~B0o7Bq|6Mq#a^^xc6+Hu~Dt!wT=1gaD8 z3TWD^W!52+fb$NHHw3=vD@E-9$b%uiKmMtzyVFVn*fL0yK@gO@t;UH+G(IMJm{4mG zy#q`6wG;eEfGB?t7wRYNxgpcaQ!D=Sk!fBi!S^rm()9JV2n|Wvi;rYYWIZefMQiTPZ}?bm3Opj;hQT%NBT7YY#pqCUngwF(V0x^W%nn->2u>*>T?^ z?|a|8q6#)T{ZJ#x*=ODHeGACN1Q%XJw<>*3sOEpC91)pRW9R}0*Ent54}Qn$5e?$+ z*eF%fjqcfcj`ElQ&)Xze{H}Q|96z7$P@Lxr|60S;$wix^G zZz`RN4Ilyu=4-eY3*n7}_8}2}VXcSlCnQ+yRW+N=_=b7-yqfy2^9?F;W#uko4CT>w zzx(O?LfbPBv^g&BmtI*Ckq1Oiax?g)JEDG4T@dzvm5<=$+RJ`C$YMHpD({%vC($Jf zaM^w>Rl$o8zVaiWox?)I%uUByz2g5EQid>{Na1XeZGtUe*u8FotSGw8BKRg>Y{a4Z zo}_d%VZ#oQw6%bLcqmA2HkdNBV9^xU+49d45aoMb-&t%__ck z;hI}nanM9O2thaN(h-zp`g2zp$K}T|=y!#i4$XcnNARz_#cqfbYiHlvX+k8}hFHVN z7tu`mU7o}UhX)sM3HvO&Q_g8CUo&aQ??h+{F7yO20ey7BVe$GQM=Mfi!a2X8>GD5X zomNCDye6lvP#ygJ=}ebx-s#hN9cA^di4 zTHcot#pK1FSzXK2>zQt9y1?|xca*CJ1QS6&Borg6PRjG1yPzyCr%iBafyQ3vqF<=b z4zB4h4HpxbLL~l9BkYyiPs2E<1CE${T3XkW`LPQofy|!|gYSQ1Cx?6)eTt8w5m*MIaZ91IFCLhZ zOo%_oryLRUd;3#1zw0?xc#W7vwBJ=d@@9N}R=8WvR{tX|q*-FePh4b?^j`8AX$Z{b9qzu3#>v10bR)%7E+}-rw~JVx5vL zJSUS?k>i+;r2;zog}mGTeeVF3dK6J`Sst$l(F&vdu*?oaLd& zQVoa7C+2=KfoDz(1?o=w0sF~!7EeP`!zGm0q|Tr^Zpr34WAC7Q6s`_?IlmuvsVtL`bn!2`QWZhf8V>MXgmu5&qJNx7R6g8InSCZQnMfY zx$=fIgP~cIb;Fem16O6eKRvK}kmhSW2r%JLWAzQ6uYtOQ^uvarFxV3+Dt=+&NT&Iu*n46 zs&)2H;qjJX?sq^pS+K}yPqId?%`aFx6IYu zJg-EGiA2gsvkg2RI>eoD85*67)b^bDSX3~bEHQ2lPX87`BQC;?=s}iFZwds*+p${L zz1@usopE-NO#ohk!FS(vFXQF*GyOU77@8{n(b+$T9?m;&NZ>n(2-;f7 z=CMTsA3nA@gjQYUGgCtt*;O&6^V^yZXulTI+^|zRb*xP)#iBEdeNO*i+sR~O^^R3< z<({$0B_WJ6&$yl4N&c(LK(6D(q1#1FGENw-4^2>sdm|ifjSPBpvskhC%z@K}q<46R zHqu6Z-v7ZlH|hHs)P?@0(lii1o9sDk5Cn_tk~xxXQ+)`(Z3=Y zBFap-`D2+SWA{$^iuZZ%>}{b%DAN`3-2pWIOe#)QO*14iiL%4MV}L3}I;7Vm1e5=+ z+-uac@9#$ml_-qSFa+$Sm$X!UCGvE3$Nv$$DLVDy?Ikr5P(3iw%yjtg>FrXGM`N^A z+_cqo&bU9yu*Z97!*_E*L`b!FrnEOS$7H75ds@&GcW4d@d$q`s9kumFk(HL!0)Op^ zmj*9}cgseq_lt)VxgQoNNKzVne!^n}Z47EU7kF^pSeLbs;BEYD{(uCr`9Uq6^_ZGD z`S`I<2H>UAjq1?o`j^jM#5msfmMmB_-jVHxaic%ptCkO~yQ#mI#7x)}0Tic?|0t*< zKlJ#n639y`|1WBo=hmhru$YBWaN36YUDfC6=1|ztZu2@*^5x@I>znLVYgQbi9Ilw6 z9NDr(#oTXpGk04W!_+b^4!bP-$Ig2^kKY=J$0LImS^0l{75{xng9j6wVb2)jaF;Z* zR~`HGk`cj1pw?X5oUnuVkD$J0xYP8ib6?vY2%NF73W(ZaVav4h)cqnIihfEe_`kQ& zA1r?Bcy>_Q*46aLivyYYf=dh+1^^=OgBtmFjTxrz)Ukz={z{&D2;`6F(z zg}C=EMk`Nm&RXs=Q(|uJ9*KtU$L;;$VAy60yVZ>14HlB*ot|@niOdFfxE;vtOOpBj z{1vkh=}z)3HmzoqCX@EME)yW4X6L@eOp*F6RGg;d|+56C9OH595Pc1zjl zQj+B-*NB#8%;GaQj}PX^i(GFt)oCfLBoZh-_}n5VGXzbKvtY2b0oj^I`aHoyej46X zwQJt(1JAih+m#b*`jM6{_2GT#2sJPp zU(~|SEeD}7)lOrSq)UgG<(2yY`hwvLe!V1e2yQ?oc)ubHHCJN`MT&4`s>+4prKn!{ zg?|%lT3iP!AKg*zKN`Hczpkz5^5uQ+#bZWsqaRo_OY*T&kpiU;5>QzZrZ=zwGjL;vW(6D2)e7PCD@f?j$gN9yDaPA54})|GS7hhZGP!J(w3ZgQhBI( zt-3FEijQE3;0*ArY6uTa(poONPMS~JzqekdTyQoiZ71O4ClN@7a1pj>%0ea??3ca2 zH9BdQ5$fqwsHx#Y@VlQUR0JV{DbVHp?lKWfwj@>4hhXk3d9xRiU#|{i03mkLc%bzs z0h|Frv#G996N6-ic=4y4aS`q}?T+Wa0;o=&BWUM8l}d=U=?<729KZ7mz81jv9=yUx z%Q5Dj`Zu+}{6UvzG=y*U`qbdhSH;CwK09r5^?f$%heUf|vJ<`whJxD1-~@_C+rKybykT1izaj+5JKQB0>JSCCy;a1Fx z(g$Pmy-C%AL#%0czei77J`bxA(*>VOrh|Nc99f>8j-og*q{(kk2HZkf)aG#V+h@L( zH&hnI*b>&f8SUagDY7Ute>0sFnlk07@z85Ys;+;WUmfJ8Ohn2Sn=Bt}-S8jF!#IYt z{>HCH4*$5efm{tG)o_&f<+%4MdPGwo!uH+UDGyU=@ikF9$}hc zS1TQJLg{n-DZ?%brwMeWiR5Y>YJ}w@rm5T_HbsAq2?~iPJZHiesePtqb8P>NxMKXb z9M;S$Ov>d471B+VTQ37$Im4@c>LCbsV{9nxCZH`IlK)|^t`SITtBv9z0^4}rtD1;j z_FEBw*q2uWJCS>!=b6KNXCN=2FISUn8^^O< zu7BLwM3_nX>LvR6G4kcGyEvwA6!lPP0ZWoM%D^>}G+{;+Z8{?IUA=S_q=V<&!Fh|8 zygQouFy9^OdX{!J749u2FSNGo+`7uEILv)uoX+XuK`NxM7n_Vrz-VF@WuM-)t}Aa_ znWs`Zhs2XPuU&uow(f+Bl6>?l568kd+LY9bv9TzrjB?T{6I%8LwzSYvXjBDD@|)>L zFll5;Jw0lQHblt&pLuvVyg&y?6_XL>D=T4-p&sJIKN|iQ9d^48?Eug0?eilQ6q`tE zY%w?O>-4)y2seW{fbei7$pb`}RgE=0^PF3ncB@_c&jI5TA`j^LmE-q8ev{qd6KX0u z7HWIrv=xTId;ErFcCV%W$`|MO$}>2Ri+afIEqLgSSxuo!wJnsL8)=IzbwJuBOWKQ` z=23F>g>g3sEj# zyroz|^M3EODw0zEib#Mw6Jtz1)`!#_K&XYfY*yj(A>yznLzzd|X9EzHw0<~z!Giwh z?K%TG?feSJk^W1VF5aRy=!Z@BIN3LW)JQ3Dlcc1*%5fEtGIq>?WkW6StyU;E9&rAz zLV(#G(|KB|)%6u8zUi$gjJiIaXoTeedc_zRNBqHxPKQRJiIl|=sQdf7%?i7-?1Lab zPOMMpPXC6G$AEx84&c=e1q)}fMXj(;^BZ)ZxWpdM+(_fa9>Sx6IEG+ZcP;_IoH6+BLCpkjElp?A#E~%p=eT z$X3(vqc}F-1Ln{7bY#5LwInha zW(QIO9Tp0zO;r`WI(+%=Lc<*6;oFSIyTNc^Tz$0CREZ}2^OaI)n33o+PByE~?}`sA z7&!a|k~n<^`jX<0zxGPS)2`RAVCC*EhJ965t>o6t`gsA>|MEkW_2sV-^)odMCD3sMtdSa8;ofPJlcK7RQLlV%9k@He59ZOw_zVw&5)dRhs{5^ z(h+A7<{H(NnhN(eLJ(E#*r<)3^p|)AN7H`U#D$CIPwhSiL5oA+RK?KbNzUlzN7Jj4 zN0T!SjlCcDnWtB>^Hk3@TwP3!r9WI9*I@r0`c5mIG3GRsmiv5kF%~ zUkJY&n(kS8j0;D{#Q-#cVh!eTd|8%*Pe;_)UCRq0UA8Z$5& z1O|x1g)P5^D8Qd*$g0Q!38$ll4w}8)hJOgO41?tzYEkkK7NlU!E(Nj6~r3`+j-sD{adRn5J?fF?6Lw%qgei z)oDAqM@KX1yyaKDls;B36fz7CY`QRT^5{Iji5Nsnxf@wGTm%Hf9BbqB;tX@sFw_(? z({g)B2JS!M6g3AGlTr3B3pGDt-55weU==%8lWUew6&FPUy}s{m#ss>qAhuB7^p&Z|THs)%yasbC#JSj7hc1_F z(UC=e&N)A}?WR^WGOPbmXsm}yn-8?t*1+ZNc{YV6oOH%ed7E!|ymZEv zGG4ma54uhq)^7m^;`d+9WLV41qKTrcib6`+?YRU^spFBHUM>Q>T4@GcA8^h|^N&NDRUrUWK90q*_Wsq^r86*xr(6XwT`E9C{$hJN{`sZoKIwyl; zk7{X+CX|J%Da0R3tjUb()fHN29(8|#Mxcn%dk@#zL-fl0IZs~gVtqcsWGD}KB-W7!gZRl93nr>I7i@6j0JaW2_5 zxzU>eFW?3CQ(qX3B>HpiRp#MEGqR@n_}rJdHLE!qC`X@YB~os-WfJ%qU@PrCcgTKV z%s*OXdlB3F63!6B65DeD&iPM-CXSj*ul{Y3NvoEgAGY$M3okg%{UDBT zFk~3t-uXA9Uu@vJ2wvNe>L>+AQxA%NALog)YzP*a^p_ad?CY%eOBqU^EH@3;&*d=3 zm}{7nroKEh>{o?-^0fUr9CN2OWK0&fkB_0~C^{+?aEgl`t&HVpdTVChFJzlf3Uq39 zJ+PpaGW|p^r)>LCC$(q`kIrSn&zG``e1Yq*obJd(Z)#vXB5* z((+MiPS5DsKIx}E>blG!ch{@7q{GGR$NcZQo)c9$8*Ghizb#)wmZylbn%03t+g2-x zF;ZNx{b<6%-RV-IfRLk4^O_X{`WN23OICbCT;DX#<@(+3glv7(s4K(eir-Z$Ms52& z5?xfogA`IB%aZtAHkiM_w}i)KKJT%i-t!76mFD30%W}9>ahu3F^IwgC?MtCRJ-SJm z17mkipx}LT|~#i(!9wbKT&*b zhmnrO;BUZ(L64=^3W-gQHup^KT|RRPsfL)EE^XEJv0RbakB5{d^C?yuPDSrNh%O%_ zTHh$Cb*z6N13o-<8}%2j_s&F1BJFcF*Tn%Qu7%2gEmp_07tI+sOGa$+LxXkpdlt~_ z!_h+H=r`fyDhj8M{ce_POtlx5pU9R}D| zvhl*`yH==q#s8lC)51Aj@mzBUC%Hdm;I*G>iJ#;fbuo%+z>mF(OP{434r@5 zhaVTmt!7jM6!hLYet*36>PAmWMg>U(6EQ5Yq08p*NBN8+Mv{aeos-KC=QVC%|19L^ zr}{*c`u2zrKUwXh%;R6mY-4fQgO-kE81EXTv-M9-ljYu+6N*@TJLVeh+A$WuRecif zOuRW&$xN>Le6}~-Jd$~n8|qX&rwCih%Zn9QZvxZ?)9_X(q_f5nTV3Hj3XCkC|PJ}!@zB;@yAKT;iFOw8QAN$O!A4O-I`aNJW{Q% zIR)A$bBCj@F1{SXhh$lX5Nszuf`q+WK?baCf%kk>TDVe&1^nahhKWHjpb-`2hhKpF z`0>V^M?WP3#t;73f;6Tx-(;<&KAr1|#B6tZA#b!X$G@;|%UQ&>Gtg@>m!4TSge&Js znQc3WIhn&}1I;o2nP1DAV%OK3rCY#equN%&w#q`pED|&K9cQQQB*JEJ)uX1$kWXhv z%UhQZsMzsW0={~7{Oxwn3y0uhJ2$B@bXHt1j+tQXK9l^Hvk^T^L?;xl?_+xSZ|Kz? z|M0-1Tg!lXzZC7+0*B}D;A}@BlwhOkgv_WIGRp(4?Qcei;A^CrJg%YtbR|XEUVQrJ zE$5xU>!I5ylW-nAq$&GbQ{Unvd59XeMa*$1BY#p5*X=<$;WGlYZ>&@F9oT5#r_8k< zB{HklycoQ>i;)#hTSV_&@4PMo|8z;T-w z$@W4yfFHB=NI}DQOg;RAouUm8Zm;Nab#s&uG0eNrV>b58xTJ=w!FEE+Ck1c^Ih9b1 z4Dx@hcjmT~>J&>0_r%fP@0?hTEV>v~b;n+wUvk6U2*|P;j>v6A6g3w(k1ZnnH+-cS zsH#^2YNe^(=Khf{Mb+7LFCr)%e`}RCQoF!$e$uX(H=*dA$Pqj%avv0|imP18=#eV! zH}FBVb4)YKOdn|*X&Gf<3GC}{GDN8EA;v~YpfWicpixIz*z9p~TYnNoU23nW_~H?@U*dGGt4gRD21JAcdk<9usCs=q1k@@ruce^ja3LmK@h zp(BGey5?O?X?hRi9rF@o)I~~2p0F}14-b}@^=j7C5m=bw9e5|}lO<;*mP2+-?0uON z8@w*cXRR5mBt(i~>bV^{K!#l{yVqJT$T_O3TYwD7d}LX$g%-a>OqPi8oqkA=`7B@i z%B~;bs1snBKde8sm2un&b@bYG)>pcDRxFcdlGj(xIQe?DneEE`c=Tfu6~Km{K>!b z%lmLYU<2~i*OImO#V$iM!WQnrCoW{C*nPt{RbwUWF%{pYT4?poobMxiFq+cCLjk|< zT!M;)3G(s|tjyfKBV0%evd(3ezhVU%dygLJteu^!f9D98mFf7~B6Xa`!0?Xu6|E2r zSCi~;SBU`}29~`a(DYN#PR^tWmSX7bNr9&F9u4x{>)@U@cWQnv`H1>buo1rEsRC1w zi9@Y+%ttQ&En2vC+k4;c3-VJ43EM{3 z&U|H*!4PC+|Kf_ZO1>*B|LOIA?pVGqlKYtnA$t{ zcFw=tjD%upgCnT(*4{qEaiKWlg2=W*4NZ2kyaA#pE-NhGkN8b z{&#fJ#9Ub0&HG1-gR`a9w4hO3!&dVwsNF@?##d*I>|7Jylu-j0p!%j|ey)b;VbXUh zHwe$KU!Pu?m!za*|JB}i&G2S!#By1g3qW?=1wzq5azX7~%rplFktes+BV#Hl-}b%K zyFL&s@GKULk^xr)HjR(dpyxT#j=^+W46iM2d5P`V_#HdouJo;3hI*xMd|y+WEnC>V z!hZBpWKE`xJA`us4vep^=Plag?h%t0pgRgse*lfx%R?`%>qp{$?@czd%PoaZjJ0V! zdArHireVfBjW<-pocu&`+R$ zArr#&>VkPY7TmJLUF^N-X+=7;61CgG8trbrtetrM2UJrKNMf+-|X@yb~u^1~qKBm~2RQ z*3aTp6ZNIuz>$&P*f+|Oor2A5xA^mmIq*NcQc#xY(%Lz^K}P71>QIV^D^u3 z^?=A4YWMyU&Hdj~^!DycPB4%^NW1gS%`BbC2he;PGRf#Q#M$6@73b%u`QXV(!IFmrA@eJPPM988#TIq7343R(QpTz>b?Z`|Be$Tfn1S0|?nfFVU}v!7aR9JMwOsD1-{eCpttr-*G@gQTl=I#YhlpH{eAC)NHruqImET(E zd0l|FhP1j^^HOnPEVUJn&!_>bwIe4p&6uH=@xpo}>hpIYk}4#Dd_u`l(*q-As9}_X zF8o9t)0?uh`bVTgHzUn)Smf_LBb6>jlYNn60QAezPStb7B`u6}(W7a&y7Gchz&#Sk z*xP6pYT%TfSaXz;D%T!li%BRnTxwoeOS8J3?gR5CvlKoKiJm$%*y>ip72SQjE6vDg z7g?0WzpxmBIo_4TY`Ur*P1IaKBg(8Ub*p^j1Q)>GcVM*ey{WqT;=i;cEL+uyqYt z2-}|W!}kL~L{tp7L=m{S2iNE5|6gWE`a`naOh{%ku4hx{_!=-1#p=Ri(1m^v6^%gA z9WDWwkwii0n`69~n+80~ubpyk|5#8Pd@pl-@ckYf6vfpw7&&dza4^>}sK`=yUjw!X z6A9{)f}u)FA`r&ae^}89!K11 zEO6mhb)WpP*T{&Vkt-bOqwErrxWCwB@ibj~CGkAN51M5UeJ23Npmw0P^x>kkE4Px?Fi*5i zWh&d4_}~kR9JR35PzWhb2o1hyCTEaN#Ex4VU1XoszRy(#I&Zh8FS(|b{#~8YgQLP@ znR(KrBo}rFkR|SN@?fo2yV}9%jo~7|`Dcbm9tF@IDTP+rYyK1TnS!v%{+cq|%&!@d z%jMJ6$|2^CYAy$!zcCUoHqk5he{GMYCHUFHkv3#_*W9+V8K~)s4g=P>du+OH8O)u= z@G8t^&+Kq)l1=H(L5!4fyRvu#?CEqmm5?6)zvwm6Ih7>|dj;g%kY)chiN#4fd~_l$ z+AeU!N)$#`6jl;MBOS`i7Kvg{c!M4PHp3pFXJy|v;@oP0M{bcZkazIpDKjjd+N!|z z){Z%RfbnAPVktGdI&D$|_Lb>0Y)$rkF)yc9TlF*`glRs{QXOWP#j)`1Ylhpj(RDJo zW&9Nwf)`h{2CrS!$Sg5&A58^L34YshH%g^g_~`BMZV7ow6EM5>Op3*~;I1hvwE4c7 zoX%qRS!2(l!Ovg~v^#eB^lQxr-AynXCGT@se_ylFW4d%NVA_&;Tbp)Y=X+KsRfLoV zy@Zhgs^lg?7VRjAls^AmkaRYi{vbY`y05*lZ=^Xod>%w zf6xpKtO`2W6afAl+!{Vc(fqdEXx6O8XZ#ZDQA0p#$Q1pA>XH1^bXq)ee?`d-^g(qP zpRD@g5VA;>i6z+#OFLwGgjVidwxOzA!{a1|dWBaLNUl6{C?Me5b*}q%;u4{wuE|o1 zx#{3IlYKehWbDcV1n;W!3gPkILRgwi(JNy*8mCLV-QU*pqi);@axvxlzx{+Hq^~lLbSP754#;$lMAt0Jok>2)wzz0C@353CD zp#^80@!le_=t)LCh>*o!GhDng$^aW5r*x)`d8GA1FM)?ZQJR%LsB5=7Ck;r{Dw6Fv zrf(&SH?3_xw$39;HM5#^WnbM!&+m&NVyhk?0bf%p^%e1~ zu!lin)!T-bTAa%|U(27KzQ7YEzVpPb+NJJ0{|74l^SkViG}WU%m!Ch#wFg&@(E1D; z#qub@)_$(;7bInrKEe#UzaOS_{&*$hzbJqUWfwAK>oAlFc5?4!y%UY|^PLVxC)@e@ zGGA|tB#;-fsACX^VsRA`uGtP_Y6l<)E>*`p$#3|XWMK{%x)d?5 zr9_skjoEc_^?w_8P#vR=LNp(U`c-_a?g#A`KM50?p87_sqV-}lTmg7HlTR6*-|b@z zoe-Ib_c4@C8Le<*J$G<+OIOt=1KfwSeDrrCbuJxxC@lqjs3d(UY(H`OpLSwRg*6@s z!r527L&27dK5%g)C3o>CT7aRj$luK&rOpE_s4+vyom=Zow}C)t_wCLYFCZovnLbD z7^u`|mG%NX&~?h$S13##YXj+OxJ)@4;?11|^i#b0YZoh#2z=3Nz$QqpAUkBTp31^H3xq!YV)@K=>&)?D2 zN3N27L1+y@a+PPSAJ0SXAXx3qdb51nL$;epKZ@muP!1fq4S!}=)(oGh5FNZRlSeR6 zn(!6LgjHJ>^G=|7yR{ZXt$G^Wi!!aPl5iz6?$QuGl7&ObW z12qoJbFCED1v8yrA0$er+7x5x&zT)5ozeg4s+r4_bS|0iQ6?%n8uhKjM`L(7$8MX6 z{=sklWgS0lKaB2?9*xh-y=mk;PvTl8VW8W!arJM4z(L$L-@Ce0?Dldyz}m>$fdo7z zFwuO~xFJwnpuj9(<6DR=d*LF-o!s=`{X#!z$W?HNU$N=?nc)fKa=mJE*D?87X8vc% z)tyg2$rnHSqX%IHAk1gAPWKK3t+J9tMQi4MbhS`?u>s-1v(cmX(Sc9QcTeU#=F6ktKEmiXI?CeOg&yolbFUyIy9}y+`*=ePsH@UEZllHpWb0 zk8_vee9+1A5ZW0DYXOp4Zn$0016qs?b}7X3b9a$B%BdIftz=P!g4kAt=0I{^`4)Y2 zf3Cr(ghY2Vh)GuUe0m^SLsd(0I#Z|O z>OeIUWl-m#2%kjdG3XkG9{uw4P9>C$TX@*P*Us?yw{4pWl!*y?ww+ML(B2PEP3zQ% zAtZ-8I+)M!ShYZF%M&-f?c&o4z|Nkw)-hV5`h-6-NpLT~(Pq!r@l>7$Ju(rob8n$X zBb?IFzom4{zL6e7=>Sd;?{l~8^X*g4Vz1HHy3A>|N5cq%3ID39WN(}3H|A9-FJU6T zv_DPF>*Qhti+4B?Qx;si5s@$HX68M8T5%(xR*heq##f^EV&l8C%F_wl$)Hx5IkGot zV;^O4Ha{ZSh2KuSjjEU_E0W6*NY6H#HQJ?6J?L@b-hM%-NOJyIqttBsFCiuGTqecs zHiMoXmkFIbd-{r#?S4^q_oBZHNg$y>bjDCNmHa8Qy{bl3 z_Lndx90h})dLFoj5SPPnAjFZB=p-Iu+DC1N7vJ#48$QeusG`Z|;PSDHck7Ne za$eV|DF^0^P*#lNW)pPSFai$#wrzBm_Zl?7=fL(=7m29$H z`s+9REd7M&%Q!P-%Zh0`+9<@gdYP)R<1GTb;}gILrgvIE+%+1V^LGAEg9a%?VAv$i z)}5qku1*q!V5*}2BpZ&IoLLXF4edWtt-6P?s(Z>(g;&fVj`%K+-q!SU5rX`2|@UUJa3>2hN!JI19ANX+w?-*EwAv5XdwtP1kee=wJgiUiLnvdZIpj!1hp z8m`}2DJCKB2W`#Nu2v64P4RV*_~>qG!cW)c*RBFRPvXdrBP8BO@+2R4;8eK1f(9puP`joU$klP)p`yM~i>0(5{fEfcv8!HJc5Mi& zzZ*{|n%V4ePg^SC4?iQ%8_<=UO~)X>Un=ww!|SAVYYzu9m^gI;IeE(+7Y&bN?N(Xu;Zl{@)wg$$}PAh^;_IzfSGZtHcgRzDM(l-f>|WK_dJMTPIhti$6R5 zf_6n&3!wfXY-@bPI4`SA7e3tFm3i@E6ahNpbN*GlH#)m2KloE*JkOKLP~IhS$Q!GG zB^jB!xE>-Dg5lj~biO3ofgkb<5Se<&1+~0oy9uq_>xuKildbzJz~dtOx{YSt9>g2Q zBGVu!WgW1@+AaS{ZM%W5`B6Q6hJ3Tbu^GJ*Eo%$w{re{xu5Xksper+TC@C*HFDi`z zEiQ$?#uH@K7jR_8s|5@k%@3j{=1_*hsr%V=?^^g@UdY;U9AS?~|75w2E&r(5!#1hG zXpT{r2MiUJRivqCZxeb8673@r`_yeYOyNa$tD#W$B=&)l%aZHqkh`{|=T?pUk(3`} zTY+evn2|KzMZMhG7=82e&zlB9Ij(oU$K}QBzPEt=yN-g_$!}8=!Vai}%D+YlzM*r@ zs;NbP+vsa4yw_*Cil}=%DAX<3yDsm(&m*E_slQ~}$^?H+xY4u$Zy2J>AQ+9hYnT#! zCfm@=lMWT?@xl_L5!ZJxLNam>$Qja!_6fB8E-15t@ROlc_-EU`tAtz|McwT~=_(~J z+71k?bk!G_qJvjZ@5Q>9Z$*ENKKdXY$Wf`$Ot0kfYoet6UnXM72Ybzng)XRF_Z%#L zX?OY7y@DNzjsMQG{stI;q=Ta1(pM3HTjxIyiYxg4!I3L(%V~zrvXXyNK-;N_B3Gex z>ng_;30J5i_99B^)|vK}&-Z3c{>pmeitwv)Vmla1xoqaEwJ0QG0jp`p4|A;TWvL2a zB+~CRGPIz(6|4*iXRSqG$gMsvEQf+KK97Y6N{3RlsWjg}Fy-^GqX`KSj*A69#oHEt zMhh`Ngv(c~-?v4jrPv6RKNEIMNQU7;iL~C93_72A{qi)h@Z;8I;c|eDXY)iSvt=1? z(}Scp9=Gy)|MyutKOx%ZN|`M@%4K5BVT%$u*NE$hG~T9%6Xx)8{m@xBKcBu;=)|hiyI_w+3p;i9E{2MzeC4sl7 zA$O+sxmX6>yIHy5>)#S}Z`Bia##boTQ=X$BDjC?{r61}^XkbNHb-x%0{uO{v$%3K*qQfTN+PD zz(8;K`?by#{-ONws^#hRJ#1%v?w6kSL-7uQ7o&X%4Jw)l80@*#&dtTy8XMB^J4)W$ zrbs$OR=TXx{nKl6^^UFv&z%}%TL*lhx#BjXgSJ4!GxqEZ^aCSq>r{hMdvn4`ggMgq@U~x#k-&^L8 z91~rG(^puj_{Z7rWyx2>*<~0kJZVJ%=Pv*Fkm(O?~=yMxkLr5XrY$B>8dEnx71Gtc}si9f(!>vek)GplAQJM#f#l~iaP3rwQln8 z@9(h%MG6bth96>e^j1B>#8A8JlsUP+jJIA>jygl4Dqr40Z1FlN>#dZMpbMgJx^aQD z=YPGq2bl|aVAu%*FTTP#6(y_!@Aw&PK98U|mG=z^GHsS1O8@1C+PyDxx-wD9aDW{$ zrzXlSK3!pdxk+BCuzow#u^=vHhpW~y%?_w8iVqcB`%KEDNKSdRzAkn3+XecTo$5uA zsBLEE;_Bn#zA~Is*bOk3?ctK}gcw>x4Rz8y@RcSCZ%M4r^A;(5i*fRvv?vD>kb{Rz zYxf5~pjWA=j{@HWqpQd+* zX1rmSZwu)$ffUkHjs~sT4<^=d3ri@rJk>sG>3r|3KWE8KZG7P(h=+aS_5-Ofm}8z@ z4QaEk9&!cc&Ej##Le+M3i!C&$!2FFU>AIMq7WqIIZH6i_#HCu<=Vko59wb=`+%s z7}%Vxoq4Po!*F9!42lJXrTeokPP|bM{ctI*i+pqhuCgb(mXWT2@T+cicu+)&LK0 z(-D*V;nF0hH+Ua)=Rr->0(tu|_%_Db8W`7 zvq z7`$ahFQdCD#je(_Sl`U|K@XU}#;(#^a;}#MX}^~)WM$BirbQHyOzHnm_m6s`R#?{j zeFxStVEqQjZUL15Jf^jFY;gbiN~uD%+|6b-F9e1zh88@0m1AjPH^Td@X_zJJJxOOf zX|mlTzoqm|+&7O5ziPf1-7y`-z?y`OE*9(-0LY)2l9n%7-Q7#=31NlRcml=wh$=Et zT0J#G>=)@+kw=-Gq8XBl5=^TBpUIVvUesh=w?q09M*c)WEJ>cq;f9A>uB&jyUt6Yk zbpubf&GaEpkESUlq3k#4u01a~r4z+8oOlYtUX#XW4dFc>P@Tm>5o`~t{rEJm3i5&j6hds7S<#4H9& zH~30x;P%|*mG7#at6qd*k>R{dMcl`Gk8%daQTz_dVF@2@Qu0%=Mc~cIg^BQXlfWRf zvfDD#ezJ4WTX5ttpd6`AKH4~+I@47LFhsjqxp`QLvilN5j5jlchj}XVy`_2{6C>(w ze?yaH6QKZb@9cqn2}=dw`2ike^TmsYy=2<(Mnf1p32z zU+DU@hNn={zTC2PvZ)@Q*bLLjBiiCKRp7n|hO(5|U2R6zAzD-;y>w0KHHV;(Q<6OL zESwMl4i>d!_F5yC`=;)%0R2zQ0sCX7Q}cwv)fic?VUMx2H&c6eIM_yUd|lz9uzp_h z!NCp1{Z$I$V7Q!8+e9$}<1vI&^7+w;>S<+t=Rwg$?bG^&Jy+VMajakRBW{e*ZqoBK@A?RD7U1gPYj!Y=tpUhxK{_o; z#N*tszzA=3TYOlke9|4P5RaoNCXQ9$a+py9-^Gj)>c(j@ZRm{-&&|Dj^4Dr=Me%J^ zM7)rpmXhNA`AynBe>*WGhS~L00Vb}+?6e^o{9THW4D(4rt?H5N3gMAwsP}j9aYdy( z`+G>CP1V5rogh*P;D*6w=k&9xrG$-Rx*gxtMOoOke2kxh?R%ej}>mE>_qa4`7QYd6|Go&neeMLNGfiA=G9cb+>SbslXR^X{N13Gb`LT~z15r@=4?B$OSr{6>HO zbiyJ)50C2FhY;(wEMq?y?wq@GV!R1v!4>IP;*$4#)MLp@a|7OM`~^lx~VN&G%mgk(b8T#?~sD(ffF#L26BRk)^+i4T*fSA|i%y z0~HqR_U{b^`coMt5<2Js~ZjCZd#C4|E?z ztEC^5Kw*()i?C)!u_-6CbLh)H}7p z9=^01i;PVS!TDm5;&KQ((3FUW?q;$vuu?Nv&sZrHQX0k@;7>BAIjwq62rXvi0;7X~ zZ3x4t(g$mo*QvbHbip^`p!$zb@;EYGqOk^!rS(hOv8V69)6h-zJ+c?Y_Qu(rM9oys zdlOnrx@J@VLgef@Y8DWF6$N7}Z4kBJmotKrTmGCsa5(*CCqBFI3LhJ&bS6PrQ^i-| z^@`~fOUxrHF5;7}0Er&f(}&qdmfUyki3VHn^=*;zMG>&qK|a@6;7IVNFf2Aj0WbW? zq{lhYKkOA;c+M3AAwe&Z7O{AUQk;oA= z#NAVEY&juud6h{t^0FqRV%pw1<0u3Gu0%?{lT&dI(;xK{ePUA3Exy+zbPYpT_T9dx zg)-Wk+3|e%Lr=;7I(UDZx{ZsRd2>#s5M>Ttv++`r+t~IaWyC(Qn{COjFBrcR*dTMx z?O}Xvy82gEalf zR^sd2*2tCI?CbOFSF4|YvMbRItIxr+*DKYj{Tmt10>qAZ2m_2R9GE`OZwFZ9{B)1_-=uoV^3uo z&SsSi#k>vAQ=ya2qydNBtO=w6c#;2l=zTfGlDI4BRQ-=swIl(^qHX)0#=*8vGDU7k ze2J~yhm7G%)7A`N$y^A#y_~v@XDj~tLU(k`toAjqq5G%ytBocty}uj5Aao zvk?GX!J+aGUa`N^V=5NfH!OuYS@4@s^ZbPjc-6VDJ4(0S+w5`uqJ^j-cV8UX9g`Y5 z5pm&t2Iv?`S&mN=Ezq|=BfAdet+Nd#%!{N-ibdO$)>Uu&&O?jL|L0Cq^SI2yOYQ>* zeyOW>=wC1Zc6_F0#Z%a)~fO}~F-}ivBa2tO(EWhxg1-Blj z**kS1N~dQN^Ka+nFAKy9TzP8?0tK$_vHKUYr7zM{$k97Bmrwv9fS!L1|A)08{Xa+l z@ALt7M(IC{h$_+lW{s#4G5nhz|5T~}Uq>yCjQ{;-8~*=-n^66qBVeig|GVC}8jU)+ zy{+rmftbSR)xLcHSD*}8+V)z-hN+Tpxs((B`0u-qy zvRCgB{@{$(IGe1_hl+pZ{7~(c%{88{8rv)WD=I_fKhf6t1ky0*K6g~@Uov+^EH9a z!Xj9-MaFM2g(Bnp>Gej1!Xo208!_DX0bHb6QG2Cjxzz!vL=Nu6LmO1u#rHV?yax5c zA866o%Awl!izNX*GEGb)VK5)F-Ml3`B6Oakaka|_Je@|&BzVT3xeqdAKW-l&_Qh$& zXt4AuB%ZAFTGvFs+ksl~xKiqp{A=C!Qhv{l6N6EZnxvI8k;XpnhpX4mQ5Rn3MRBw$ z_;tUJ)?U7RFiB#qD2iIfpXG~uqDnVtRulwyO#YRl@L%YhzV$DcMk%!rUAuUHyY;O6 z8j#T}F!ACG{@&|N>UsUJ<(fa{K^YQ?P=%#lFLUc*F#(^;yD+VD~`J!L(`g0I`-`X8b& z3iAG|X3k)xcYA_w2&s z*do}VOX&-zCB&l3j{Sy*$X)#t-=cb*dZQIFl!{B>n;?PN$`cRLN!b;O7qJAUG~*Nr z|3-AVzm3l~8XqiVksMPDLqRf^0jQSzwkJI$>hmej9-R@gf%r@}e#G`Iv0cU~Z(81f zLxHG-H0HIT>SIx(@}uveP#s+n_Hqe^^qu(V;yN@x(vUx}VB|0RKD+UOy#kv${kc)GtcpJ(ePvg({yt`2Mpj0)TPLx@X`6uTx zPY#T?<8vG`xZU;+c`*0#RE3iGNwE8$l+2!3IKjxA!5vi?5xtJ7lD|(4oe1he;hju| zTe;$UBJo71%(K258f>Ry-#3eNH1F?KQv7w8oT_8t|7xJGP{WYb8s@RdJuiL)&92q_ zzB9%tYwB!la+%vHt$`sf>T$7MO#69>Dzk9un zyEbN<beiD|SK($b1$tMaF2xekecS3Dd#BAqZ(eAd%QfELOo zokk4qb*bV94OkNv*~}1Z_t|HrS_<)!Ll~!PRSoTzuiL`qhP|V9pOP$*RQ)aE)Jn+& z?@OISQxz97&=2!Cel#m-rHDNGt}RDVT70xc`!(dS){he?ZZzWYdsPu!QSR~Pp{vsd zT@+#Z>s|5^`wjiMfBmB(JA!g7?6C{TDE-rNV0B zu=4R--1mTGB;eFm0nq*gymK%a?!0XR_m(5yP-&`@5~fvry0-9o*GsdAeMuudqcLS) zj)+HN#Q-s=mO(M7lh{{yN6KJR*_0aA3y_+Dyz5gRrhXOgSp_*AHY-B647{mH3ppIS zsSG-=%R&MFtJYtKKHVm+(5pR!xEUtMLicl|5A%>o49NCf-A`%MMVG-lzmg?n_Sx=D z&4(8NR$JOtNx59p@U9Tfw54o$EnT8{`}CYpbL`o2Qj{(Rf1b2aZ+{7AlxPIoW&PmGq)*qlk$OGQz; zh@Wp9O269msgKR+I*F<4`6IC-VB`w-vHGmtf1LuvlMY-TYfq7{`hV|PD=K@EPi6An zj1hadL(_KOm9s_xAN4LoTn-Se1QC`u$5!)xB`liAs($bf@B0rFU{f7i*LB06t}Obg z%boCxub@LVYQcKS4@a>QbU!$FcJpbdexJIm6}7H$iOy1CaAp#!p}W*?Q>zL0tmXR` zfW2H5bO|oDXz>{Z^@OYK&6UQ3c*YX7ip{&NSIt2pIOf4D-D@}rVXe)7^jP$wP;`Ag z_F&ST-!_G8t0O_hIuzS%Uoc1bnSy2FQu_EnbgZep=nt;`w>kJ=4uBaJ55H#?g#HF| z5_@-=KlavJCK4q9hh}!P9HqW zpU5!$2^wvl{l*0W8*n-Z7Nhujm(k`}Jn6GrD5t2@?A!{OEwot)=YMqtvU|24(3ZEA z8q39ZOeK{xW-VzuRe|@)wiUsR)N!AgkI4C-Fxb&}gZ?Da(5t*eI<^~z<=1~gH4lik z?eEXFWaGHE{1Xx4p5aPzZ|)`&C`+3mi@gG_ak~&oahnyeWO|9zN`|~=F{ddEP(Q?; zV)x|>_9s!j4#+okr>Q`fAO)SxSwcs$s|S)^{s>2u0~qnkf}X;GcZzFz`ke~Lfz;rX zI2&6u>sq^B8H%mvtA@IK_kE-w$!qAsigkB(nCW6+O{W2nF=4ScqGREC-}^2w{Cg~{ zu^7HPNwxP%{}s_hknmo^dq+FyNl?>1F??IwUi2#_kSn|Qi<hby$(ct zI0v`=i_OaZ`RS2ol|1|sJrZ>OoulSTfwqe$*cQ@0hID0i5WD1FpYc2C;EVoLZ{V}! zA%8=VZ#qE8Qqg3oB9h8Zu8=8{UcFo%e{jZXYRu~{-2+$rj4`uE9+dr5HDN!^nclM@ z#t~`2%|DZV*57%^L%x$N*in7e^Pqd%T4*C2@!iHY<89?Povsa_`KH(JFy7SxG9(5| zR&@faGM^BgUftA}yu#H$zGZHbgZc+!w!xDr^6J;PhjrFG@J1usz8I>ut*TemkTaCe zWfArnd*e5Yj^AJ;?kc8%B&1^g`!kC!9?1LIz=^zpCWq~taR|(KgcO~`tRaaAL;hoz|-T zoElhT)r69L5E#YPhD=`C9#2}%Zl^`$Skh%+H2U4{a6}FL8CUzg1C|S3COFm(qI2d^3?A7qsJS4oixU~j4xmITW3^0mh^(<*VC2dCby%$ z2aK9z8PVaE6bg`)G4*}m^u1Ur#L>MAc-+SC1dXuv<;Bby!a-^1^n zA89Ih8f*76TYGi#jSlXCD{ay8Q6n(wn$S}F!eDz^wBH5mfA1b(=$Ya~xJMn-tGg=b zX6Ws99!+)|ChXyqRZeS;Isfq&kD@s>VgC_QaO|vU{bKa^Lg>T>&g~T&9+4xXb*YXQ z!C617XRbbj9ZPk_@2utrd+by6?a~bQzi)g(#D4cqZd6ycfV6pJwx8sCu}|)YQlh{j z?SWC*eN6PUJ}ckIDJ1c>OFW!ya603)tmmHI8Nz0#UtHDT*CTmTWk-x2nD!e^?}toI z!1{sqYVujoaPQS7rhDN@Kt3CA*-WS(w)9SmnNxNry4)_x zPaD%ly~{cMV!VCjcp%sVHy&AnVgP_Xkm>-|$wk5`ICqx)3wAF=c*GZ!;p$D;v#N>2 z-{xHsH$L;(&tgz8gv}W-wjU|E-#;Xw&9?nUbAon&_6qAX=!l-62ZBA$2}u&G+`NG=f}Qq6-~}_> zRZ?DieMjK-K}>}Cm#aDE$?q)O?DrnO+b9Ser(spN7R2@0rSb# zq`<$d7QnOx#_Bp%;X=yP(y?t;$w=FDjGUqiR5OO2R2qDe3{c}_;A>asuTxRd>A-?>apji#Fd}; z-Le`m8en{NwK6V6`8asogBeqFOxW{M=GK1OJ)ck!Cm2~PxvxC0id5p?$5#vEUQ-@e6}4gr zxw?@jS89ish9>TWpD&5U7o(c*{%mV!2x+enVWBneR@MsxLE@ zi*M-E8vQIj6l+=AH4UwJP}+`~w5)b}72Lnm zGF!I}GO0jBm8IOhoPct|lgQLwY18j{Z56CHaU&*V4b69?>BnOsHBM~vHktEBMcPO( z0}qC+-#f$YQrNOu!m8s^jwM9d_G*4n^qcUiFTvrF-N~Gh|Jth`r)}6N%db+4nkP1TB&fz`8sC)0`JB;Xp zI92)P^d^QxG^%v*rRYg*&LU))mw>0c((dh+yO@v)-R{zNLhTO^4jqT7sX~BY$4y_` z4M!={A8`Um!Z8v1BX%WhCcfUhQvYp3YY`5lf2(_~9Mdvl%i38^MKW%%#9o`W!%{^J z7_}6(Z3?TG6r0Y*847?;B>&{6%R$iY5x3lKJ?-gyHO+_ikS!ft!((D36M=@4{~bjj zgLnq;TbZG5A?N4hf?S~szZl@AvAAIjy#g%5c9z5_R~@N_^ADJ#R^wmt9j!Dp-Gb3> zYwfrxWy07@y@WFhU|4$u)?S+{Nm7XwMt-Uw(rM+5P>a3)FUGBkt%J9AUT9=O^WE$L;D{9T2)0Qs44E zmrwZ@^FaWtVn;OQ>)A>Owv&0njqY5&)#g~-RdAhSu@3bJD^?a=&U5(cU&zq{h-X`b z+-A3hV#n1m8{+}@N|8Ms}o7B}BKw4Y?1Nt*xMprsAvZa8VwSb$`nwIO!gSkhbNe2UjZIL;cyu;F4TGc4u@;#t0~~hmAmIolZ1>j=-#F zA?5b6<#we!HX^=l$Fw})_HyAF1=gmU-|ItVPGLj0$Yv}BA74_7;!lFLqwgpA7C|P_J1aE?b_&K_Q?;L z&M7WmlP-vMw6uJ6)PzP*wMAyQs;`?YidtW<&PLy+r^XJJHa!zM*z@1t4>!CuT&zX^ zHslZ3*;&hrCYWem^^3hqyn@2CwPR?z#*uq&EabztBk$t)5F5CLk0+l0`sDV@*@7d{kxEf=y}O*6`Fqh{6loWv+c@C z%G4@B8HLaB2J3eyhg}NJ#0K+9u^Axlj^)4n`p<#(^kG~p`&xEQ`M((A$w-Qmg!M%IIzc*$WXug;qaY1sxm!i z%|=`P9Zat)&|I-vadH*4V+&M_}AXtzCJkD=MTXI?OHPs^0+uR zC7N4bWFB%{dM0xkK2PRJHH|x$(nL*l)uvX={5*z1?lkh4My|pv`}a0I_YJfz>1T>k zeKa}xHR*O8E?-AguqQ}Prf78Dib-=g%q0FRWO2s&iQ|D&vEYDq6wL)||Lny34~p49 zm5&&k&o*+C9GwsbX14vMD)>dM83UD`)TIk+a#T3tV-tk%-s@P_LF#z%eeS+~nbHmp zRV;KiZF_-KiDV{g4**A-+|m;c$78iHeU!uWYjC#5dJ8$6+b`pMO_zaaoo?I_+bU60 zVvCtZ*&G+yB&w5OZsv{&PKF<-CglU7+fcPnr?1l9(c#DTyUZ;VqmaaGf~>VE>kx6< z>1-QWZ>yumPo@M(*NAj0n^C(U1s|Hl_G5vXP@1m?b>PakjWOMzVLW{++BGI)oW4Vu zuM$HMA?`Il>p=u1j{naunimCDpCCh<&$PhC;i0?BZ_{_@WS>7M2kfs@(gV-5W_Cw1MDv92N0FWPoy~LYeS=2lQCa8c+Gi+BQcfQ3y{m9xqeb zncna>)3*xxQ%-+KolVH#^UK?qF+(0J(WF4j6!$rh^?ZfTI zo=$zcesaE5+A_Vqs4}m-Rr6;8>s=RR;afxIkj zdq*)=x)7=io#Ef#KF90!rB0{G#I7adFw0w}15mynad)C85~b@Oma-iEOqUHP`RCWZOg;u_zd1p|)Cw`26KK&?dq5G9$lL#5QW zVhviWXOwyS-dq}oo~*gldWl;s>s2Vq6>ku0ft?Y$Kkr^BRducJksr^Mey4oSA97dD z(K`_<(3;QwpI&WH=SJkyM{i`6{^E-{B| zPmT1U+}8VU9%$n1edK@Lxmu5yF2(16J5TJa{2RbE@3kmSiH4V9jF}vHrkO4&-su1q zPCi9X$z1Gbo_S@#HncUa6TWAc(I%eVa09G1{+9t6y2)Webf>VaiJ67c`uDVD+)yZq z?p@e^zGPpAhDzreDf#{0_V)-^v-zk7C<1;eaIO?}(S|$P39Liyf@nJamWS#43#mQ0 z+#2FqQVH`^s*}sR&c`wPxaGOzuC$vUXO-w3a0l6kZw}GlJ}qCp$gQ}o&yK0-oS|^J zK(SXPf%RJC_roGqcY_XKNLsGPM%i99gzc>XiL$B)i%en^BksO|>AcxlV=IvUn-X;h z%)a2R0zda^Ok(Q7{kEEg@{(9(N|%scIR&xjH`pPnbHM<)_9M?cvzbFWxVWkKE1)NK z7fy^2vIgotCB#hmd+!{j%6$DPoz1(gc2Fj~Peez|eoR&^{-c_mg<16=^(9x;-=~g8 z+|%a&T*0xW+})Sigo+_NQ@%uSpDv=qb}YaNPuB?y)$d%-*Kd~q6#H7S&F%B#N>o}V zS?$zz3Oe5C>LY4RE!R{0%#eBCR%0E#dD^2#w{J-oSrs?vT_~#XVPO3e@&IS0+-Wi_ zdFq)=0G}Zp?rO0b5x(9}2KNwx$XU}Rok+B=sDrZKZWvH?8626y5E!1F>nr9(w!t-k z>lX~v=Q?_c`BpLXuRPqk5hGOWt6gBk+iI04n#I-zdSRui+`&%bl!slb%Xg}a+XA&z z-__`np^x_DGJ8^Wt@%P)=Xv-~$SxmfdE>y;-3J(ChCmsxsA9t)?mo@9GA)~8 zGyY&~`Ny>vdjYtkS-dhHGCrb5QRF==)~6x9q|$fyDQn;x7rr+B*M=*&`XQ~z<bcTW? zo!q;zb4Pd1_INyA2|ktuA43G8V$+jgAurqF^60V?K^Dkx;1j~PrkK{ET0#M`F+SRo ztE&T#bp-*Jyw8Nk`R4hckNSf+H6|`^(v#Nq>!^CA_fx4j)MgO5o2o=DiF-aI*dU`( z1sV6ki&GRmt=m212KgpPnwL$P0<3Knx%rA@F|jR?mtEFUFo09?)bL&+kABF^lWR=t z1VLi)G<}wxa+$O5K`rlm0~vevmOZ|{mL(`IuHUD!Tb_}+UPtl|zgZry0w`8XvBuIg z7%ad7RmjBoT5fCwk@xdX)i=>b7lDdtKD36*4_7R`3K3_kQX~2kCH`#jP3-fP6V$jt zlTvic&+PTq%PXYh;=Gp@EoQ(2(Q4?V*}xk8_}a(9^g)8;>#ueh(xV4_bmMmfLMsa< zX*FjU2&W?J22R|nD)G!(k7&wwGWFzv3UrzTe`a8Dl8Wu@FO^v`ava+!xEh7mwCm4W zDSyV3v0BNkR`b8i5uj+1`NWatleS)l#Id#cG>tQ7Jsd{KBo}jbRHi1y$m3l1KFoU` zW{cl1%C4-Xi=me25Fo=V~-3?^<&ZZAnWHse?R|Bx3f`S z@!))_A!h$1zpOYiSZ;WWoH%s=uU;AS^q!F3V|V(X!?F)JBbUJs*0k6qyV&fB6AH)Q z)*jY>k3zhhcYbjJyD4!4(>_?!3?tK(<`X!BX- zIlfrVx)oJuD@t09bBNOJ`LH>ssxH1Mi|Z4cT}ShnKWvkM0*vf@aHP+cT3n{g3_oRF zeixAHWDMqpV3PaDScd?g>mOBFH`Kep<@ah(?|!MoiArWwtS6*-t%=XyG7%_A2y_B& z9{b5!tWq_;Ou|gmkr{&}@?rwmM<&Ee!DVK?y%3EWGd-ZdyW8!a^eI&v;Q@B%CVjhwV6}!wH172~ zoH!()(IazRpJ?FiZt*(6E*Xq0s{mDrT1Fg7X=oMv_eO-9lIXMItNU@I$LJ|(n;4cA z0SMA`QLCjOfw;!CPG z!^zMrK3yvEujpHq@r~F zxgACD=0j~Av+>petcrK8J+1<9aD&RMpouzd)uzVNrLUG{A#Lz1rC{~vp4^WU-&z?r z?V1;XQ-<9E2b@yco=^Gdp5>|p=}(#M)N|qGOaq2szdklkb6g_22MKdv8M*3|m7tFT zwVhFahb9MM_tF(4*J=!+ITV{ThTdr6ZXOSFKaM*MzWKkHJI{DF!v@?V#9p;GRkf<9 zP3)qywJKKBDvdpAuh^w1t=ctW)!w^`plGdFwYS=P$39Qr^PY1)pY!Q_%P)RU9?zZR z$$ek|h2{PG=wVC0dQ%>~+2zo~e{Oo`!GmJ1cxAf~E7t zb@kR_f5w1`=C~u0;?)A7HZhZb8kSj~M5|$_bf-9ie^0Uzdlc;^|H5I2##^|UqQeVN z)zG+8xA9-b;Xcm^Ij)sj&u`oQDwVQr4Ya{8aJ}P3V5Wr}*L*I%F*5Uk&IVX;>V#?n zdEyLU*HkX_y7WodLO-zZyfV@s@o|?lJ@QKe)V2ee;rXoJg5c|C*AitJ{s}}&634rN zmiY^{h`swIB^S^I;f>Wa16zVNq6`%gDN+PqBkT&F?}yrx36AS`h>nVo!>4|$mLEqC zirWM$l@K_}}I9^ zYREXk{;%?+|NDqQgZV8s1`>`i7H`wf>BbyCxM#DWm}e*CR5H->o8MiRGVOQ1-wxXr zw%W2#SEmbiw_f2+{uMeqK>)GR={oQDzCX~-Y$8Q>+XFQt=o!HXU&)5;_g&ZDhu&ED zL))@cACE75Fb+8PuP~r?N~JlMm0welVPgPB?G=Xg0{hDHmia!*H#vf83MF$+(58?YdT))AM=X*@QnK(RlJh+$`2K zIyQ}t*K6rKTSBbytbf?H-k%)t)99RReZ67fxrXJ{I2C%tVnr>^O!emI=5_3qvpd(H zoqpF#p4J03akiep$FZV{_h0A z)+jNo#}JNyiQH&iXUv3_VOX*WYW^>O*?vp%wegO6x`&p;L4Gcm$Dc8TXiU-%Hx#T! zx$sLog4WpJ7&uL56V}4AGHJQefYm5M|32xGfqRYe3Gsf#uyBKN1 zckaY%=ZlD4H~%m+H)h^X9UoU;SskSHSmCoTF!6k*9(cvXoODvYXjp29pPz|KI5iD9 zh%*L4TA6s7e7&|GztNl-jn;3X;diI z!=M&W9szZPMQ{#3Y#Sb7CpD>?1VD|oT-=35MYO}bQCR#F3l?$m*lGjVK*nzQ75&AY zTKSPyv85j6-~_F;`@R}~`#PgsvRkk5(ESU4dO-8=X#^_10-ba05e8PQV`hWMF zZuGabiNqu&SZQY+*XL8|ZIb*{o}nzXra{eY#fue*jTdeOpZDcIE52k^&DTK^oREM> zH0r|SrmnwS%+qc6E}RHZM*;h9|0dp%f+6wqG_NNJqQdO$*UZlEj34wLa5GvCBzBP+ zZ^^ucAPqgZEd*P8ze;qoYvW$YW4@8@3SLYp^}X0;Q90w9{^sFlort>ERpz`6M=Nkj z|Jip1MuVZK1GP@j&VvZa;dgoVyn{p%5Z81C@CDwO+nWfzYU>>65K+Sykp-y|G#pP( zMad3+{<741Ei=Zlg&ueg(#$*-kE`O7V+}KYJ--64p5f8!ryHVJA9YHhtmD!9YOAD zm|xOcHtg@AfoG;8ez_);)+89i=@&(RAffXbK)121jXl=E)I`70hQ+sH{ORnEO=dAl zI+Sr=p8rx?8tUXemerrRXZHA)Z4oF746!NF;n0iJQimn)cmGg-YBY;dD7Fl(W^xeF zcsy03xALKQp0(@fYr!gfA%9izQ)(G{H0{O{C9qWNmjXvG>9^sQ$DaE|*#Qf8Ps~Q# zv)a)5#m2RL!mzc%UVdZPDw}yqv5HXZ+YKLk8bVR$TP9c^E3(HL>@PkunUz9UQ1&r& z9s)+k_grK=*dHyJ}~jg>Bz~Q2v=7Gz-p<_{wwCwo|kM)QX=R zJ3qY7-P?JOzTYPkb`iyAizT8ZgIxWL*xZ$b$uTIGs8GHXsx9+*5K}LPJ0E2q@2d`e z>LA;2ew{3e+(_b)i*dffq#=pq{4QUs$U*ZDkF(mX=$skY-Mx;6^ca)rSUDL* z7f#12mvww2b$w2c0*UljX)h=pFLQ(M>o~Zmgx2)yU~9>w2qg1>om&$>zN*zxRulsE z%?mzhGSU7XH8QSt^L_J+@wCpKW`51cTr*Q)zWxaaGzMhY5VWgA<+VqIc2mzoN$27n zi$bmWb!h=ZqfK9s!FcGo+C-*XA>wOR60^4FsJF%16y`->z^Rlki>1>Aj0W z#fir5D@|RE^(Qf^9Q!bf_b?uOaQgaV%r@6I-9*LzVZVr?cmDJb31<={QK&#)(}H|J zdO;bsHsII;>!r1rcWzq@TVgcnY?Y^<%_CD$##X9rkC%Res~PAC3V(woO!b zwAK5~WI?q&1&*or>HPE+Cn-t$$AUZyL?xO?xjag-2*h{Hb8Wp+=h)|c%}nWXB~J7) zR>8;@YotzV?w&&GzcKZ8*u~YJ;bY1qtvvCkI16ELjes`1WTK0jR&!L9qeim=R7yao zu8Vx>Is(QxE%zqi_^n0|1;gD*-BqDoK@1108ed=a>wHe~i30lU4pEK04I+-IA76RD zpCaZ3yc&yIy-vc%+FXE5V)4`KQK>A#D7h`4fpi?VzYOdqOxB0gdtXHGbhfd{MMpKf zU8#>kYZr|eI*V6C-W(K84$%xCe^7R>$=QNub$t`F=EP9z22*Zph=7Ws1wQhm++%`# zLBH!4nX|vmVv`7fiLzFZ;llu_qMo88ko)wd2OjyKHOPs=20njvuSEW??8hz<@t(z( z%q(mL2lSQA(>^aVgzm*T%2g8h_d1;UP+X*oRQ78{2j?6Z$25!uv+-jM&fUq`v@YzA z)&g?Pe+Cu48{Si)zxR@X7AkCG?@bIeZ;BFI^0Uf<8UTz%5fT>*fiH)pSc#D}Vy0rM~^ETb!6P)8ObDpu2B4>ax?4|eFkXWFrD zTPUyR6Mi0S( zu`UgjR)sK|n43!diD33Jz02cbA>@EjaaFK|Y2A^mpRsM9Pul~uqa$&qCOx$*TBlAw z(ElZO=Z{yoml+EmjxKteCfWlql-{FI# zlgQPsv7)Hs8RgL!5B3Jb0qWJ4!da(UW5g(5JEFz2k`64e1F;4pGE&lFb_YIr_Gm9D znu$mvsE34-$gaeHhC8rhnxJ3ApZ0t+l``sOom=gorhsa2Rb|xt8l}af!h4XX8~7^I zK~4WgP86L_R@f-3l*3bO`S0^H-WMxj1`-j_M7{Y=gzvfcB z!-Ka#ml^Qt-TZLIp+dkEx5d<6j3M$jrJzZuf9t)LMOr=04YloB8Y5tTu(=8;v)Hd^bdw0%)zXYIq_^;RzwLxYPYr5HAdYX;x%eIfcJ(H%qc-a~bj+C?)WNbYsJQ>s_O z_Yz9y6sRG+a}9n7n25a<`sXW-hPu1zj}5UpRw9RRW6CvA*I%sNBFprN%m*_v zrkg4*evR&6S-(e|T?H`45&dT%`*U6X&oHtH2Ia38cM(=*-V_Qn@0ti4|ISfcrtFZ1 znY|;9sVQSHEdFT+W-cqP-)9O#*633?ltVz?H;oQ+S_pfw)jtZC+;LuJyjL9`#f*_ouo&Y?bo$wIzZRg}<*5hPd=Q zrQVv6=#Ui-~^2V}JS6{N8B{M`}bEbu8hT}A8d zYpZgg&IeY0%wT3)ZOdx)Y88ef{C&L}YD)4^^LRD02Ce#*Nk)R%fs;9eAi|;nb zA@0Y*&nSjmMYL(Hymlrj7{LekB5JzSkQ@Eq($uTfLCDzW#<6-y?hwiQ9 zJ6Dtd>rX-q$#ZfN72hCo;gp8`gHVAN`p(2TGfe`CbuN7!)E=nK~8PPwbeP!dVT`cm~XiqI#A-KY$o~Pt<-pEC$@h?vK={X(3)xkZ_oP~xiUFTX{pIYs)l%;KmY&Yd_eUjXN zq$J`?A-AtUnd4|gUwR+m+mFnxZmx1}L$^v)B+hqpO*d+=G-_oj3a#%FxESs_|Iz}M zxC%8BG0zv$?B%{J6|GF6s7DE-Tgzi}*A7&}RX9N7#RL#^tl)(F;S`!Yx#W=&9~yn?kRg|K6qAGnX>PWxcj(ooOeqFGQY~?I0$K?=?&x*p+(I?@fjGg zuX4mLnpLMqCympOe#KoGJU~wIXMO|K9=#%dB=Bb?xl%5Bo-Hdgp2RFoT5Co(m#6lZ ze|21EJ=W+4R;B-L)Zz#D?x~@S#<=)J`$a+uBQr$eUuFlp+9}}k)xnOiMddJnD z6l=dF?9*F=v~QXiUErsQ?)q>*GKJQhWqB2J_eHRstK3evkLMLgFL*6t|~f7g%Nt$!g83 z3lo3!+xGBH?#4z2sRJBoMn zHaBD&HF5tcgC^wAZYK=i9V#CV@2q)=XHKq-jjyJd4Vho`em$ucZ37B>94hcerzAo#qBC(7!amxN?=N$`)BOg(2 zBJ;>m$0j2T{$e4z4W|Z@8?QJ!I+K^z2pC^#(pAV563MPZwltZ6b-&QVXA#5o{xp&P?s~cb-GuSQU7EOn#K83f&oGX|fu_Dz_^HQMXhy zB^L`7Tjmry*HTh${5f<)7oX?1DA!1JNEw*-Fp(BlVw2EY!N_4K)BXAh^aU)Ewo zXf_Dw;UFi!ASiSMR};V5O&aMV<-6tPn9Jzuyn2YW=I0Dk-#(BzIMmqOmb$Mlne zjaH*AN_e95$$ymtFJ7?U3bOr^%+Htn%t{H(!o1ZDE=VqENu6)vO+gkz7OnV1&LQJ} zX|2yK^d$HzvHLcnQ{>+*I%PEf1COm^2|(RBg&G5Q{xMJhk_sXQglY*~pV zUfSpjmH6v6`3p5AfKtiVdSrQ%b$1l2wQ0y zOJ1r|W;0l1a2|>n!mJzwgy9E{J1Nn>wB>oDAY79;$q)^@ByN7tY`22l|3#^#lr&3G z;(#AX;+{XlU^}^f%6v&f1)R_4&{8((&eF_;?0X^4!YxRFU?HtS>Z-EDK9Ff@OHkK` zIpO4L==oj;UE*WrABLSZcWZ}a4hY(lcNBAZ@Y=7n6Xq|vYylwH=Zu!kBp~+5=-5Kn z_IL$57rDo-SD(W$$;g|Q9DXC+t66K2MdudD`^F8+Aph3gpEPR#CIgd8FjywxU|zR( zGOuguVXDon{$uv-sL?h2lGL0KN>qMjvm|%%v6TO6sFOE|Zh(8p>F9Zx85BsPRs1O5 zZ#(LvQ6$VJ=c;F242A9z|JX-%ZbA8{|q(F0&HXz2`c~zUyMS>uuqSR3BN3NQRp8 z;nBS&K3L0bC?j5QEjLyXiJ?GU99fd`-~hp|%3iYu8%@fDT1AGr^NkW6y^P?5j&~Ql zc&_zfecWUe1JOMsR--4*_y&E^&-Vyp(O2A|dNz)N6GDpDR!x1ydw-`iLAoOJlMZr+Mdv9+Tk zr*2ewd$X9|3W}l0Gri}&ENhC#X%)w|bSHJK0v)lpi2-K4tZUiUSSpc@d;YHzPY5n4 z%ZIQOKEwKDvJ|(w%u2Wz#^!bpUnC8`qO?2LG=a{M?)@yz)HDvV{4-^2ovAn@*a5?KU)omWEIuNd z!m6{b-C{8h(l&fP`)xNoAI+yl=_{yd6h=|L_R5Ry%zt;&?|M{(46hA$QF};?5;^XH zd<7cpv!U~GnH+DS+=9|$QvbAqu!haL^RsOolqFrjf7nal* zabq6c!SilNcalZf5+8YH<}1-hqg7+D4#lY{jZP+N6*;Q7sh(vWY#(-N>pPd#U%Ctj z{ocStcwUA^n4Bu-Q4tE=4-zL%6RnnbsvfbfZUnYb4BZXMDvguuSr025?`0 z?GCnkaK7#zCKOVNZYzKHsha(}y#W0+2ei1Ak)O-hPCgNp1Ku?*MX8;fPWr37*YEc< zzORp6zo*c2JqKUf)Qd}fQoMSLvq6BeSgIRRq#X@lx)o^c!;|{ELaSzH#Yl}YaywchV7cVmjFq|1_NJdFhsmk{Oi$L7fSh|p&3 z3@MJWO{zix=F3O|lHw`SeY!gTHJSX^v3N}NR0@tu6m|ZdYl^myT%aSQra!BMZ2>|@ zdb7lkTBuul99C<&w;_f&MU8y7=pbe2qT1>r(+1-TUPo*=NJZ=k*Cemu6J@o~=34#VtVJ-NG{HZaKW!QG;w0}447q@ zRrz==W|R|ut7Y@KsP3g6WM2Pb?6D1lK188qAKAJ_ur$>I4TZNG`mf(RgVAaYYld=_ zuKFj626gaR-*WW%lmdbMr6B;lS&4hWn~P0dCW<1M>t3Jp8>`tj!HGD+shp11IS4}>a?v;3Xd&EptaMCJEVg%218SJ`+RCb8tM3@2#| zX_59(R|%&sk@sa6jc&;=Q-k^0@Pc7kx$6fEg0>-b1dHBYz<_-er){nE7cYtgLbRl{ zte^1t9^I3~_CKriS;5`q8$Iy;%jQr>$ARlQ`A&m`xy4$etdCDJJaBVPtmW)D{fOv#-T5j)*-JH_c zh#i9)(8=Ctbh$C+DRqBf6R4HSuM+LcsPcZ$4}*qL$h}XVC)E;SlR(AM?_BEwc$htG zZsG+7MC_x(Wd7kL0+)B22k-vUlIywLdCC)jp9NFVA5RU?bHB#+Rqmt(6|?L6*wrbE zRVuPL%Zxga<5&S>!Tu@D+kRXNhFowM;lQ8Pqm4!N(l za2ocTHhZ_Z9iFs*DWw@_HXz>=)(dJH;4(yHV>^H8;(`V$Y4-#3( zk$fbRSfWqe_nb)+n$g_yV~4> z9oD6?w^pP5f6XYxK`d4Z6+D-R#kAZ}g*UtKuWukuhC+ zR%c}W%{m^q(#(=FvHgti5|EX0brx}#E@Qqhxw+2S=TQ1<7raFZOye}#e(vq zJSYl{_l^t7neMnnvT1vS#_!qY<{GZH@3^T)r|QkUN+1Tk)|;bA7!B^;$W@5v)%Q`b zjs_AefWHj+V7sadX^(9mylhk*b1miXktnM0ET7es=6P>dpKB|VByIWY9OUbmlq$OQ z>GkA;XGL4dyal20nbSu9(iF*31`2eFv?YU+Z8JV!eBPCG6h^gI?;g$Rgkw9ZR^B=8 zt=tE;2qcsRZK4B+C_(4N-TE+bz!fs*%PLp6)n2-o5TvC$q9E_8;^jc|?_PSmLA7`W z{@z;4`To9Q6`y_uu8(BMIgUGy{we7`rS{lV)IhP*7jr$Fj~Fsa{|yT3~t?+XFF^E$LY6I9A2u0n=WPP@`k6+NF)k!&Wd` zeE)>j-YF@rRZFj@!59;lx9d&akAm!6utZ%OmYb#=Fq=zovh-wM2e{+Kl*J$on{hW* z)^EhtEWGA~Ks|a?Mi+(#?S5s8)9*jdXRasMWXsw1cFKJVqZ_W6*5#-St~R0XlPW$6 zdc(m*I)=wO$p=i&ZuD+!8cTx3>$4u}MQ%%a@f=~@FNg)7zkgMvcU2xf|MpHY+wdo0 zIQ(3M`I@daoL};<8-wG|A_TTcA~OiG{^K6?0lPDqiE9jcNlun;vmdO& z7uGAMu{a{~DHfkE6K>r59*k?!e z@N~wR)N8Lur?WBMLq_;*IJ)zi*`~aX51AfSS!J@W@O_;7A5vuF=K&3dVgb+Q8M*m9 zOA5j3Q%EKQ+EX1QKWa#9JP(MuI{ZkgZ`LuxIr@~n_q4IMN_s(fD>~T5#r7y21B=Rq zBq4$*k7+4^*lAg=gy3UfTt*_vn98)-l=UnD%omJCxQZ8oWfsqH6hqzG`7<$;> zFd|-Cx|RnAaCIhGJ8j)*5*$XXII0Bc6JJK2cc;JZ5A~iKOvf+}>QMfmD`LOpUaS4_ zg7b39n=GyZRz{)FRluY&$on>|4&Hv!&LJpGMvERKnzCpb4A?QwLXb6J#JXSchrNtc z4a1iOk!rZ|WpYjT0a`D#-aB`q8gA9S5bP-MtqEd zS1%+Dy+3@kt|#2g7C91Z8T3ovJT;Y~gMW5+K2G&3^Logjk^IAdW@!Qy`OMfh_77}q z-Vcuza|v|vjf3Ef-nGm)IU)RfF&ZkB9(qk|abezwvm!8vnnr#Iw(d~=mVyM*z}}wq zAoE9#fSDf=jnEspiA8V0UIpO(6m+dOMcuuaT7YfSk}MruKJ0l0@;6l|qS}ZA_mV^_ zflFn>EhSsOBfuJri(Ar4VwElXh@_fp=1Iy(qVkPYq#WX=vsvtQ#LhaHHbe`IH=e*NKSKH-{%aV2#BeZU#i>pHDc z*3L=7a}S?%I31v`5ZpuWC4rBZ8m*@2fDRwo9LCw|+7tD@iNiRGShDj_y&7yBCtVrx5D%7~<8il?Xav&}^;Wud3vs5kak5y$C0c(g&A5%0RPW>EQ>b}|C zfzg(%6G($4q1LWMADVd(lW0|`FZI*B2YENs7aO>hDV!PR54LOW=lBlv0qo9!Y(=(9 z7`yY|11#*JO;5tzPXedlQ}E8s$Unx*7ri&2&$SKFY%r{@Vxb`o1D<8X0czSB7Mxwz z`tz`aPZlY2`Z&uwMa_#);K)b(TnE7{>7IpSDJBC@w1L9JI2cRtc=FdoQI`yn)n5I< zh93hq9@&I9{0JT`G%sW9pcZ<_h4i0rm=hTEIv* zS8eEYmpfadZa+#S)Z2gcOWAxf3KT+@&qx8=x6$>Gpy#k*rJk8BR*8Kt@RrS^BtvcP z+7AY)tsi4?-p>5jLE~~24=yK;jAR1@lLJPrdF?EepzLlKP9cEJn(Zp_RbT=vYMLSM zKLQtN`-jw+1V@=CTCqsNu=$U^x0%?EB9twN6_RyyQF(4)F6e!Af7(Z!E#x6H?~=(V z9I(s&S;LzDk;hclliE}v;4E}iL*&TvuUzD`F;iz3^Py-ez8B+ zG`cB=EHg7Yf@gaDZIt5&KOWo4RR*ZZ17zMC6i3>kLQq5!!yeh?_2_xc$}~3FCWFHO zvBMgIVMd?-Pe}ZpP8(GGhd|0r$u2XEM`k%<@Kagge;`A)+PVZwoKjxCnc-?!&L%YGc6d=l~ONPaJne!#gh=wVJUpYd{b9(>9Ep8xM_J`rRd z#lvb%Afm1!cXskuc;NYm$D(HMs=V1;B97VEb;t0?jMCa>2=IsN%;6s|{#b0w36y^~ z-0o>M6Kk6eC_wyVLol_<{KLt*yeEgq&NNi|+q7w&5g!`RRoGuXrg{{J|Csq{(_E7r z-%O)@QZ4aE?DS-JR?{K!GjFNs4^sgaY`aJUeLn(@>$h?TmSxUYL9If5hhN*+g3L-U zN(i9z2|C_UcavtH1b~_L;^LpB9Tk7V@|umk5(I6wSQ5-*Qf-F&A3xALmi))>&7K9# zKQ~U()@cg;E$bc$FcUzVG8zwAF~GklJ!(*5`)hh(PJw_Ja({=eufGKX@uF;g28+T1 zM^_oRbT)UVfI$As9m`_;>s2P0?|;m^ z(f?13&<^LYyC2i8N90ui^qPPi@a+0t%a6+`-5$pt{9ep4iQXr<`+C>C5jq^GaxycB zD=%`aWw96Z7ZdpSVYP&^H`}|aR@QV^k7*XLV4@v!M~~a@E?@u88F%pYCob?yAW?4G zbZZR{$x1cSlVO)i{O0$M;v4W!1r3;~3T#|#!3#Z;r651)YhxR^vl1t3xeJM{Ke1!b z?7-FMU{>D#!lY&sfYbJua#!#U@mT|_k7`X45}jU*!NW{eooUFDh>#awTWriMYi-yQ zJ88XFtb~3JE+*sf7n5Jw8J9t#a|sJ2zE5Si z>T<6vaCw^o)@@K!VY(}+z=dV%l_{q_Z4&gKbA0Xww%KY}5>6~C=?+%8>-Pt07>EIR zap87n9DaVIwTmE06g^P(DY$T}-KX)sUh?cvp0aPdPPuJm|MIp;L2;{q2Pzk1*8BWYsQ9ZyvmvJkaQ~bS0_5m3`@`E0FPMO;M$tUP zMc<1|!i?h?xmK0JE3aShYfA*7U~8_euCf}1HodwX#DAjed4#Y`_ua# z!(&7b`u1C_I*nsKt0;sn`k!#^qw}v+fogO9%vAsKD8I(|_VHC#s8*@lC9WIHz4lLX zP^irG!No;U%O-5&raNS!k4I;a)7ULg8lm)db ze|5$O52nr;MK}|5tPwrPpXX$v4Uo{e5Uq5$Ev*dJe{}wtUm+>0ZKM*5Pi8$(;ZEqS zUg9=(OtOrZy8ZLD*2PzF>VNx9Oedk%$a-%K)w$>2bk0lMd0Hebi@?>r!Vv74Wux3~ z5hQH64wq{;ZGIvV0)mphNd z?Z18*9>DvOb>sPif`!W5{>uu6hd6hOMBZe&=~{G;3Ny!oQc$DWWvT7T?lv9*%2@cf zZ_wD$VqG1!4!efS>(Haa!+k zB4vi4{FvmVk5b$noax8v?DcaGK1F@&KXf?N?9-QlJMi;~>SZ#e6=bc>bP@j^&0lolzPm zy;%G@C3HsD?2X(g%k*M4OE^rBgk^d6D@cAV$dvDD2mUseIY$i-WE^twl>}vTlZcfD zTWk8TH|6IqSuTEm68+}UC_f5o{gI+kdFOfFz~E8h>_L-U<4Adquh`o4o9{C*p$5wi z_I~<}@0pAn2*A;mW3Sh$^twn-`^47V3}|OCa&|noKC)M@qomSr`Yk}x)OL6)^?%n` zioL_q*jXVZYKA#dSxhms-rn=HP)F8ayTiq#yi+{qtyQV9@WQC8$w?g=r;F6%wV@9w zYJA!<=%P-Mc3Ewm5_y&|iifS+^C@v(8OD!JyWzTj&NnJ2k34C8VIhls8?13u+=41B z?GAN;)J{H57#J0q$BPx8&A@TEykubZ0YkU%yycnt`<3R40B=Rx<85SFTsb3zI45l( zQd{z@K=Hc&uYOoRSo-_H@}3)hY$)Q9kyG3kw2Zlp8k$sPb2V7?u+&N zrF2sDB8dQQa@M9EkTI;@ZW~u2cwpQRKu%_=)C9p*y7($ZRQUv)BWarz$`WveV7*`E z1&!A5dk0M-D1Ld(F&(>(4y`+|iuykkwb?K~0$tK=_sTc3h~u=IjDF zYM11eRh`Ugzs1rt-KSI6W@U~PD(OI8V7m{(CrdmpE^z_DF!|DBV}0pbI);H|Ab`W+ z<3@HC%WPbzq}VI;@R8Y;Y%h4NB`-N!+0|;52So6O)dNP3`*QkGXDK7I@`YkpFR0yp z^jj}zZAgN^aj>I)qiREpQ5iL&r;GGUZ_VLn3}2PpW)k(MD|)`0>O4mt&gp)Can@(XFTdbBbx9B?t* z9wCA9ip2M3#EU=1;Oz{0t>AJ@`+8*(X0=mI1BkF=X-YGPXvdlur8V5-AmQ?XIw$l) z6u+>}O!?^_+~V#K?}KpB#!os-e%v-7*@TofI#bP_7brNmEQ9bP8Omd=t~eZbPKr`a zw~kzOd_Ip0!n3#P+Y4>w;Uk<@2#D>=U{^62EZG`0aqcK19c*`D#+!*FJu@Y_n^c9v z9f2EzIbj+JsG<$4QS`i^Jl{FQ)rvNdq|TSFN6qg_#DuKpAkZS zF-g*tWo4tHC0B14w<^o-2XmQ`KMENq>W&#&U`C-WeM1@MaZB+k;XqvCid*uAJ%|=U zgJ!)f7LPcDP{pNMiu>d=?87x2{iBfUrJ*~ zDe7SRdiK2vAiPYUkXpCdtHQ1+Ze8dTaU2F3+}XkVIuH}WzKlOE=z(rfr;yZ$I57Z4 z4vJDZ04hvhZJca2g_sUFp^#f7k);6p3|Ok;a4K~)<(Sv^YbEa2WIq~KE<%S?fgnTN z+Gd$+@Y@IIr#upCjQ^ZTubt7g3tV+JJoKHC?9pL zr7CQ9TphLJBae-WhH<|lPzv^WoaGctZrV#!+@MBYmzG60`3cceEY{E!1kh1!fgtGD zp1BNx>G|+0Tmg|{>|+x^zS11Nk4@LA2Z^{P)duX{P9Hw;v??)8yn8uV_=g$ffiyZx z&Byth-3vGDhO7@=otDb=?A-k_X?&^P+}|98)W}uc7XZOph#Lwd3Vc8V-vEj!f7Z)( z!xMNB6|0XrsGqm^6OrhI?Mf;~R824F?APYw--hM5D&^Cwh9>a8F}rcmbT$DxrAIfm zA13qq%M72VNN*tX{MH~m=%8G;VoMZ__dzKEkbB$OJb+@_bw)_#eb0iw*op9XjG#xz z#C%`r)!O#=8`Cs0^;@nnpQ7QHJ%`5@lxtx47YuU@M=os zw^G7=I_11&LhNvj{CMN7*sC6sPY=}NwLcY)yR(75bWr!25~5%7N`-1UBCGD01wG8of>K zbbq7xBp?<`Op4ei$Fv$m&2u{w%p**;fs?i?cS{{*SJ{edZA8G~4)K-tr-7)de~7W0 z1h126R*kf3J5EGQW7j{H*Asr+$0C_mxR9YA5AuPYg1N4WoJixa25nepdHft!1J|>+ z6-F|eO1IwTkilf6WioJ)8UtT{DWgn*N0qC;8BazMAAav!Gws#Lefsgm)JTgz@smEJ&kVno1HO+{An= z?Ok`nAc~idK&M>kVtsp3va@M@?j~J-g^se`T-ZwOxoD`8_lP8|x_T-J!xOEAGIZ)* zt5w%fC~aWI;GN{L_ZVzEuB~uCEkgL9xoHtA7~ncWBUq*w>D(h8wO{0y5d11BX7fEZ zkd0_1p;YTp7{g9zIXG8J4$Ze|e zd8j_#6VtHbZ>3RBQ1o)0|5=9p@f}r6*JGZ9!r))pWL9NcHAdPv4PURCa|&8f%?ZEG zYV31}tf|MQ!9O@HYe81oTXclG_OW@#OApHh&4I#HX#y_#?^`q4Uu+q;c!uCX1En`R zjJ+_J6g zA3yFv#=L+tywg4nP{_k*;O}2fv@Z ze~nA;=%Z;ovCv3P-;y_jA|naea}M)VbjKQO4ZtCG@~;%Pt-2pqhnbJ z=6My7F!tB!Q>*Ya7GCd6r5jqd<7pDq+Dm~@!Do&x{2pnp*IDp`y&CiLVv_@!bN!U* zKpaf(h(*&&8R9H#F1ha~98bT@6d0r+D?V>yoo%Ib+Rc4kwZGkh9jm0d&9eWSo*!XALB$j~Aj%Ikiu zAvM{wpqeFiKPGu2turb75mGxR*y**#_Zabz?r)E$$!Ji8oP97;-Y3zm2x+NNj}s|R z@gjNSW19W@i{s-jdPYjcmdD^_uO*~Ewa!FPKre~ zo`0)(I5#`tQd*V#chTji(~(~=Q*^4+5-ZLnxk14Z*#z&fc%_l)bhBp?Hc@`VQ_h^{ zA7TdK_%B~y>y*{AZ2odCfVa&A9~GMny->Tkp*(Kc^)!j?aPOKTQeF7AQ+2@}rTzzB zh=)eu!&_9WT4?12kJndo>59`vcwKC(W4kHLt*BQ_du=*cAcOaaBK)3!m*6Vu6x-{R zryxLD^{fX_;!?;pOBFL{y;$L#h|2^X2%9Mff`Mm~ZJ{)bau;UxhRgSfUncd0QQJb! zApgWA9%b`Iu)M!~%Q|FWK1Z+3YsWVBO*l!aQcw-;1tN&)Lb!MBryJ|0B zC;gr%y06|Ej0n5wtwSjOj5oX!ZMEW#pqNiWYnFPMF4=!V4=c?}{J7Vhu3dfCbArti z?049}nyAXIzKb|{F-b)GyCl;jpwt&zFmjTYTNlIrKMzku%iWy+kZ=A_K4bN#B21XO zknc6pr-$RPqKhxyia*_%t;z2w{(I>DfpNG5gVR9qg7UnC zKaGZ>^pRWWxtiIu(Svb$7Zzc&!JA1VYCz~@I$*hH-zx9-pla~y{X}k@C|S}Iqf@mY z>kgvFtwcwlFV9;k@uxZgY4FW&I&7dx&g5wVkH4hJ0A1km6$>gs_|WPP@W(IemVm(b zFPu;KpbF?`0z|nb-1z_1`i!Fv6h;4gQZo3#f8BrS3ikk&^52u1>>vKyA;kUZ=YLC` zsGj|Q_Hr%P$7uP$*O=371NCHuGHFo_MkRuU&kx3zUbf%dw8<1@E*-aT-QAoo+?jFm zU+KH({A`rI{d;@0-}Z?;_3^IiyY10U&Axa9yG!O*+&KA%&=Cr`DBy6G_Rp6+Y=H-1 zbLhcy_|kyl@@mQ5@Q04`T>bpR^{l`r9<+1QioqSl5(sn4GOshJJWa~3W*=IXFwqe7 zg0IN~^As3nub*)fH<*_2D^}HakH3&dfoZFfYVxh&`2;C)g}r`3t3l6STV6gH&&{RL zTV;GaAgcD1uKqrkZn1%5ef4N78-5n=U}V*0OJ{l3lMQq7S3OfvyDbh=_W#_;fmqAV|6uMf!=n1$uwfX625F>2g^>XXgOTo%Zs|}!5R`6)7B&F_D|AKtI`dpyVSe4W{Que{c})_I=Swaz2d-v$+3c!S5k4DX>> z7);w^qSzqko!-xDP7?z331@Hfx{|9}BL*)0nc8eU&{IrpfeV~V2a26V*2>?n1N`>4 zE?>iX86F9GE|FG#B+U z@LTuHzggbQVwbbczhf(Z;$YuvD|YR{X_UE`#RbaI`~3pqF_qESK0$5_VZ8Ev2n3EV zhWQQC4uyJJXBK)sR-e;wl2GxNLNJF1{^QVC=DOOGP+5*d6_MqNoB^sL@=ol0`UrG@ zhQWfpBj}w)>p$NW^L&iUP8N%hR@Lk;9 zZrmIqY~F@P;L+bj0AJ+mkK&O}er#vR zH^^YYtfoqE3TISxTK?2t^22@5I=jSDesULa>WAwnBG{mFP@&6YuhSXK)vY=TqK@ez zB;~YliE2;p$H@^@@9#HMPv|4pR-8BjQPum>gf>7ZC&;(gbcW;3MaQ;#-nQTDcs9d$ zq9Y!*Z3|vZ5iQENG{kKl^s-?R<&7=edDAxD>YLPy^>Rxl4eRc8a;Zp5%xF-ZhI^tunUuK~d%MMvI@dc4jA1q38b z^>Ts$g{M%fc^JV~R#cfWjm~7o%t@Zd4|w!y{3-5o1R6)xX4ii`*!KJ3-I}t!l(3-- zxtM=hQmgXMjk6^bhx#Dw$ba~k@xi%~l*bE&;`Z;u#+m=M=j<(lXXBfjL+%w00f`aA zF=g&`{hw4BEioeC+=^G~rumk>w#LQvLWT6*NB)`g2Dv@Z&p5kdXtUfbpxg;{2~2#EP^mUO9R_EN_FUgsA>$NFFtX zm%uSP15`?;r*8$a%+08XgNQ>8y-rTF+x|7Ag_DbNH0v@6y789pQWl zof@M=cCAgZA^WF5d-lRuI?koeEAOW?VpuZ|XFBiB=Np$4m6IS~S} zkZ8jvfv7)TWo?G#sy_KxBn@ApHU>0u#j+A8s1*6yuSyF@NV9&*1?Xjl*Er;Eos~ni zutS|3$}Fd-x?ta58uO}WZg&fy#}Kzc``W6)!cqd{;$aFzxp@}b zVJ!qDNaz~=+CJ(*taw^Hi|@@%VQQLH5EX5hX*+1!cdq;5gpM*BJD8$> zzgY&sOKAOv07E^WBsyaj=ew6~q=(ZPGlT3aritMHRouY?MiIUEf>$F;=HFbsu2sn! zeAEYDptFCTUx}0-z2V-q^_dX`Lj?)J^gJJo*mYV$Hz8s~iZCN1gPqkmw7f0}A^7E0 zxV}2(4AkzVj`Hj?sRKik2oB~*pR16TjiwcSI{AYR$={bvJBWyeKVW|w?|c%5BK^;D zP}(nSkfDEC=;^I1q0$k_ftr8jYHey55zipvzvc&1aU~Hv=W!t5#3V4H|A_YBx1Ng6 zc-lJUm&eG?rt#Z{WuWG1a$Ke89)e;;YP;GwB=d`k9ogI9zq9oscP`E}04B#}!r zufY;o8)&?IH`c@VSl*?Er#O)K?wygRc3B5fnV?$R+_Wb<>vN5g+e^(Kb0rS#axu&= z3|l|K@R$Eq%3+rxDs@pfiGrDK;cTsEY!V|+BF3zKrRaIRen%BtH2ol20%0<+r#FA3 zG}CMR{p42vjdR3g9pu)~tT)FCRn_v1qh7bYJp2^vYML7qdsFo4<%#~>Ar>xP$uC^+ z`56uiTuR_8udsr&-r&GL(7L^Xy#`ZhnR3ex74jJMyH20 zZ$CZZ-_tc#8X?EjTIBK4Dm%rpO*M~E7IY(i^)wqm!amEyQVi%G1d(b>zzGAK7TPgC z7V`E+(2h{W58=2-B1tBbv0a*noH4Jo13A{HsS0PYm<~c2zfjf4;+~ri}7HK z0MkH6PLhb2k2)rlD4SGxj^@1H1uZyT^W_^`2kT~sDGCqQH197naI_0sr9WLI#a%ts}s>G5YoUemKtgp?-oemQtb7= zeT}EMEK^ihwtyt5$gtA~LoY;ykK-d&{riTMv^H)F7F;El?MwDj(ixQK1c6KZ^RF*7 zjO(m&g{?Az=azn3pGQ5Ur4j>BC$n13`jbzI!?EZB zKStUhU9l{zgM)AT*#TsUb=3J%@RXpGZR?=@ko(0lz?56dj(IihNm4$%QSl5y;=+Vx zG8Qr!mP5RbSw}xcV-eo`+81og;aPMRcQ;{wuIhtvCrB*^XL>HDYyyZ&Ru4FaaMCxa z{!T1!UK%qhPMgISI!Ov=Y`vm>tyGOY`-1PpXa3U8QEra^%n zPL02q5zdzczw#+TBERw6o$4wH-!Ff5PQ|ZAF(*l9Nib(nIbN>~I2=C3JMLnviT&(^ zI~W0RX?tpbGr_ZP+z~0|(uHh&8N?s03xRxOPOx;wR#_Hi{&6za$g4Arde39M6qeWG z3_^V$(k~WWAvtjEaFPb)9>hOAjHZCrs!i%rOk>8A^?t;@%=fB`r@t~6&LvM{PUuGd zi1JLfjW=toekA96y_O&0MRw**^QfXcFF9eND?m z2ZobJvXvd;#b)An$q%?ESHWjz00_Gj{x>!xk0F&(VQN4d9B z_EQj-KUAKmSw4`Fp>CYfkGo!*R-kP4Q=wMAQk8dC$w~MU!iEuE>WXLF;U-38ABCzh zOd<`q-J2Ir7aqB}{*fGFe}8;_rH9XqC z0!|1CRbY9(p_<91J3I5-X={X^CQ5poWRxW>Tc1i14DKBJ)?-O)!CMV`YeH_R1c-+F z556BrsvQKLE4Q4bgxL4+`-!!qEK&lx}_b;RsDa%utr)5+7c9_?Ab$|_WA$Sq&Uh?QE$&EQ(_L(d^t7`Lk zH9=u>^yWsqKTk#TMgOS$`@^@@64ct?yv8!yE$1wVPIOZL1 zcgZ}bRq!hZj=fU=tx@@Z8{`6@L;p_#LOwx$w-@VWxB&jSU!;-n9~QN5{^osC5|B;N z?`|F==ng<{(*17rPl#f4YaG~_Q3uX_9IZR^es}$ke-sUr}olWv1OdF}pfX+!X%&T3N(+ z_?t-W%gWx~fl=Osn&J`*p2=f;4~IhLdvMHsbqoQWmw%F1aEZ4>keugZc<4X_ykN}c zm)Guh<2q3@c~OC|0Igc z^oieHXSv@QgZil`ccRP7ln@WpiuV-9O?%+_p}<>1VcR2<^eIH`8Rrq3FA7bTS z24ivL0#8QRSjTVNNbqee{`1ub-wZAGpDp&dQByx-=$9$@aPTQ7V99q$- z+_G}j-1WqWi5^^!3`&T1!Q01feA#t!H>jTpy!*J3g||M>@816a$5!Rvcgxc9i-XnZ#5Hf^ATM#10a4Kh!FMX4`7Y${7c`^ZOQ;a(*8s+stMmPFX9Ny zO!=n-t34s)#mT$E&4?zLI9aWb*S2r0-G7-(_d^<=RGcyvDG|j4zHP_Jp$az{i4PO% z);Jzd_Lv7~IliNee!QQvbBLy?G1hbM1`245 zsQSiK$Q+RzN$ZR(=k;OOeFK6x_T^s|Zyxda%mk!hGb!0PxwrNqkCI#Q&SG8*Gi3?} zI8yT;Xly7z`3e_7@#Mrgdn3u9>93Y&<~nowjx)(Vc|sGa zru$26!SSCYYZm`a4~(isKMb;#daHY4xC~0CfdJ>ekd^~**4hRZSf_67L(oKovwLC2 z@3#}_XzT_3pL?0)g^^WSyfwu?i!M7Ei%K;9XGoM~wHeQ7XoqnKzgl_3N~UT&`BoXx zJ#d`50l^&M?>DnOZdg%f$*aQBnLoHq=wT$Z70wbbFGf*daHJa63i9Y}B#pKzzmU

XG_Wgm9s9tPx4sEugN= z#Hi8|q%Gl&E&RSygJu7Mx3gp#_gKyi9*sYv#zLbmFvbEEE;E?OG-NG>2AXPqzfvib z&XS?&tgX`xo2y+?tzn;VAvar@eOcl-X4Hm`I{W|DLU(2`f#?(4*EF8zpXtHfuhcQR z1q7FT$nnh_Q;Ihqn%lH>Z`S`f3>HYPHKf@4ecUmu5$%67p1`PR7t0UJ^ellHd zri{KTTIj-%=!aHI&xj2&{(fSo)vwx?U|Fv}jJpcq^DA2;vAiYJDx!!Uj4Oa7&5lKlfCMdztcL>iJ~{eX=6dbZ%WI2R;MxRMvTr zFFB=^{-GG6(HE({%LUPO+c3=QS;^(Ztsep1y51SjG1jFJflEo3spc${3v=C8{Ad&| zq{%R8EdpwTqc?o(XXZ;1^M4P?_wyWTB7G7OAJ*mkxg_R7QkRQxRScFPb}^%wF+YBQU3{5mwl^|fJ?yyWOej; zSH6{KQ;P$6BtOKUxKx*lw4c@6m^|5az+>#M-by!K% zq!4P1SzocyV$hQ)PRL3K26XgfZMqJuuLN-BE-{iNfj!9fBX)i-j)F*fT1 zbq_+E=>=y?3ytoa8BD3VD+x&6E3nOJ#uQz~0CVH=2D`y(r;Cg1-w{jY^fqoP78gnR zg}C7I<5Eifo}#%0J!5x3OQ!ZM;_aV(HrFp#tdrUaxL|a``@XOqlEQCdY+>B4A_Ioy zyc|O(YO(@^F{IC%Ez_MeGvyHU|EGfcU%uC(VM?rwYBawj(81MmDfv%;Bn*EsQhJR7 z+n|39P9s!Ra>U+qv)f+fR0ldz{q>;=*xcY}{e_c&DOAWSk&Ji>U$rUMDfJ4BEoj&B zX{*!zvoEOX=ohwT=o+VN-Zxdpgs&mn+{f9w)9jy;EyGYj??bz;N8C4S^4}T&!{Jpa z&g)^Mzz09W*z7CYo)3G_qpcNTZ!(lKO`q?zw6q7(pzRv|K8-F}OoVN5JEm)>(?JTR z1Fr~JAzJ8H!81)y4yPo~G@J?fX03+%$!qN^l?fbf23SmiePSjGMIMnA?UJS3ba>w2 zYt_QQq`WL*Sy)y9L#zAKuR^SSn0^J=t#`MJekHgcvm+1L_mQv^8gT$}?&h5Q@)vmp zZ(x&g3K;+B^@S(xGjfXp<%AzWmS1O~R27${C>Vp2@s=vy-|c7`v7Lv+9>RGTpUt)2#@nf=`2<7|LDXrrfg)JMQ7ekFW$AwGG>T@QU&T)m-;{*$Q!wpt_ zH&x)F{a=k6O3C8Sxz$OCAs6XQ=huQP&)e>y(feI9od!I9X|j3Cvg#-FgIDrlvWt!Z zSw3YO^EInJ;@(%=_iaR{l{T84hitg#eE4_XcT2Q@y09i6kP^QcocQwJBO#4E6{q$F zNgIaCM-M%9nb5N0+ucbL_y6&)=LnWIvm2c3Mfu$<@0~IT9+nEtgs0Je%KM*z0zPI` zI2WciILIN~ba$ejz36}SNH>835dIw&A&trY%QY{#XA1H%EzbLJ1}#j8CGU1;9*$Zhr2y&sJ5TNYP}!WlC)MWv(t z)M|y8d~Y`hz`)U>fn4EdFj-sP*Q0F%p6J#nt+%1&E2w$GPq_2Iv_4^#$tn~w4?ak?dScowMXcw?*PSYLAE z8ppypS6kzhp7hD7~H%@1LbP^s0(oPEBwtSZLzK!azl1*@W>C{N?_ zVt?z>I3W~P(%>rdlRm9y&wQx!MuVjexbq@n&*A7XgLR z6bBr)R`y)lSwKCLU$uC1u0qfC1?Jd3Rz3m0Vm0Y5;ipjwQDRY|g;J&s6jG~yv0pD; z75o`#K#a-@fh~{l29envGTAi?MTDL)f>Re$6pi8+(m zOs?ixvyytRrrxZYRqDNU*ef0iCYR2TK`nk|+F+qdsCGq}d$80>SQu@$d!LX$e=8Ud z4E25w4EDasqt9>{{sLYaqNN3|oTM$|!N{oLWWp?KM4@FlMi=$oYp74Z1Kt4A_Ic_!UP8hrsWV60j~|S7;fxG%dr1iPBA``ezhFq?d>mAs z4(KHuG55J}f#d$VsN}EG){*FwKV#tRz{91cD~2biy&EAsp@7Yn&RJO4fti>YDvD zxwm8kZL7rrs?L#1{!z@IX%|b8_SFawxKv?~Zwre`9UPCuP#L_~6e8i)UJV9>#9<^= z%8CUUt}+=ixa&Bb-(1KYvax7C^HMT;G14FlvH|ml@6-#=Cki1LfZE&BxmF0=IHqW^ z@b?DV+dd~#LD%lAs2u_c zZ56%!E0%6KzGe(H=)2hR$$jc|0VL%S6e~#13DlJf^k+DXD&I9_)R73%{W6AqnP(d0 z>y`zvYc*H;j?QoqB4VHvt%Z^?;Kr<|3ES-_kYUik7PgXdmr&|v~ZXH+aX)eJNYx}539Jk zk(O2wEo)1{>1NinGHz1A(6M#;904(&PrYgaYQZJ=WE(Y-cIwj;W*d$w@X&DU_yI$m zAwE&HA44FAJE)edZ~r(!XDwzr&Z^GG2o!H`s<)Yt`;u=IFjba>nAIvRTV#Z3Cz4)^ zz8nQEf=D{}y-qSPC?s6Q`+TWH;HSnIdBhgqN3&JL1&@=vhO5n zhQ=dK7u*=}g*{!ZXIxz`48m+0kk$SiZN68jcXQ*P5P_%hT|)FI}yTLXS6f~grj)N^%7y|cru$<;8^JrK429sNR(X-MDFRp_Up2+ zm^MI^Hhc#yO4EET`wx5Qj=9Z9y8sgr;i%*@WX$stnQav{Yj|r| zo*ghGBtn;A4j&`@&uj?Fk4I%f|6GXqOoE>~PG<(I#?C%;Jl+9DQr z?%M7*RB{o2ZupeG_MhEcmhWa_cYX-&(?6aBNl0}cw-L{08KymEKZ36snJ1vBHqA(V zvxkGSP4y3V)On>I8wE2CT1{*gCyWlBDCh4{FVJ4yr>rx1IlL-5R`Q}V`S~;&(PjD- z^M|?4bZxbQ&qQ{|=S*H=kYZS$d*=D4DK3rnrY9R3BP=V5?iKX!O|9 zNf_f2BX~eeFK{=5okt{`}Xpv7t zxEuw_M^9;hr+uSx$qkp&tf`SQ#7Tf^zpvJ@x8;>k?u`V^r`@QJ;!#~Da|W4L2Ypz| zKHGW`+car&&F2Z5v7+X#wKbKbb_4IXrIdD7)41Y(J>M9V=Om!0!UQADa zQ+@<$rp6cx#!(-(MYik5#SYA+yWUcEj))%MH!w!^@IMHW%)ki6BosTI{(zv5UpA$$ zBN$x?{G@uu?N}DpVmQWi>c2Q?8Pfm@vW_8yv)yfLosRvr6+Ro>^$%=YGXBJj4;R1IFDZ z9uh=m(ubEWCKPou{Yc=z5gmyBmS%$We!IMx2+*pe)jSP%v?S)QM+<@pQ&PF!RN~1Y znBZq8`Vx8B6K|{{R=NeKHJ}7CY){RN}GFbknPUg7>A$ zUdzL{E_+_4luI<545;)GiOYYtD>39aDe(%tw8NwD2=@bs*UieJ3}xHd;+&D5CPK4D z2AVmi4%IlHq25KtbA83cTUrUHYjztAedaV?DRACP>M3OI! z`iVQob^UtDqtbcD!0<&R!k-NOp;K2?LM6p#9DzGT<^dv*`xLE{)0moF2fPAK_MS`Ui0yZ924DyuC?|JzU zAIv&7gX~yd9-7S5<`;P!AAyRJ7R>12Cp`f#>V3%zG^#s6pOLbCdF7vNXu7binTe~c z(iMv{ZTbi$iTEo`3+FHu#!wsF&Rqpu`ItLlcQF#CEJ*wYXtl%eX6EesH)Yc81_vUu z^~cRn^zqV?O+2Q`7UDU5)hg@z#!*QrK1y4Mr-pP#<{BaEiB$Fc4$^HcSYDN z97b!n_#hbYP#)aw&0Gt(6mOqX3+YHArl$-t-F6a3^M6H-lgt4TI=L|i% zD2!?2F#1y_urA$n@nc9hHY3n&hFU)K4sy#;2P|}fSdU!lOg-Xfs&`%mb9k)cE@qhK zL$boXNz`)-R7r%%+`h6shkW-h+F7pT&98??&2a0qVE-N=>dfE_dE2;^L?`(KCC?=5 zDnwHq<@Cpbbgb)x3M7c5caalpaZHG#c$(GB7_1Ib&ovnPr>Il#m_?%ISfV!~L|!3L zUU9kd*$fvX2fQI`sfX-ve|ko`D#oP9IE9(TuIl=2mu!Hk7FsfzPfDwkIK;%%P#%7u z|ERL%gU}^@Lf$Q~!oQky9dBV5((4Kwj@D2_F87d8LEH;JdpfG>vmDg__~l@KQ^`Iy zxU;}K%=J7!y2zH+ML}7CAChBO>$4!Xool*qi9I6OxuAdrL>e7Q!P~e+K;^7j7?!l5 zQJL^TNxwoYA<{a$`ZpA`$-Rhwj9P>P-Bz<10ziP?%$1WI5bNT)9PdA5wbg*rR=1aZ z`Jf4grfo|XyC6t{iEGuSrxvMa+OA+t8IVsMK)9EdtC%@*z|EwN^ce0Bw0K0n>+;i7 zPMSxZ?YaeY4K~G+8VVC?`w;BbS}r*oVf=hCUA|V8C@$6uPos8YRSQ|C<3n?Z?NC@>jkZ3D$^h ztXf^-z68!laH{3-$%!>SzK@Armu|-Pv%clpja4Ri7a5LrQN{}cH$Q5hJn|zT|1Pk) zLXBF0&2%37$g<4QEx%9);w2+AJ9GA`6eOZw44R_vTOOa1r0Er2W)h<&iIM1@r)T13=EhmXg;<||Vbn`Sp=+_*^esZMk$_oJMYaUYB%QP81BM*~v* zwoRDBdtwjufXy*bM*0;7MN{DBU`8~Lp^)LiXozJdxjrr=e(rU7tBJsk2G1tW&!|sR zq2+vT?9G`nugeM<$P!O{PH%4L2#tf@sgz*HrWRp9-PiV}ChTD@mE#9shh?-N;isiA z|3i{eCYMgj9GsyGEULQ--c^`6UYUAnNQfa1p!vBE69UALVlmCvQGIUp`f|Jx&e(>B zqAoA6&5Qk?C@2aojQ@HM#O+&iQBkqX3wkf~e%ZXuAi*`zJEe1t{mAA}e1&4aqv#vt;CxvlMNV6Ib~2$^ z>VVkcsSkTKsjt*~rl2&cPbF1p&3kYsYY9ZxdXefq=f}IYY%kL+juqWVIUP4D_WgU$ z&26&gk*BjDcx{n#u|Ce~PJ5-w41x~?V;3FfkgJ~%k#M(b8Xpbq-C@nuV$njqu<7k+Bf-Nc+%$DjR)iXm)&tVqj&e9*oiMi_ zh%aw$zoYJgK2RG+oJ?FMpT&#QiP|nPrKPyHiaUI1yvKLaJKf(D-!)ycXUJ37-Xvv} z;W+>1%C!$j(9^vMN0NGyp1m5X>J*J3)g@szl*3&Rk#snW0020(Wnn<*AH;t#OSQM~ zzgzPd{%_DB0QmxtrT-tX{z+B7I8}wpZIBGm7r^a;PY}Q_#~0KWSwOG_@brA(UX0#0 zic9UT^`*gMfWUxrR{gVT6udpzPP)B)C7Iw?M|OSC#X{lag3kfh-P%~)Oc%OWn)4eB zrRwD0q^+N%%jIM!4pxy?O&e4yGi74fKZh^MR9EsBcHF0e07eS9||Ki>GZEPp6`kA6umO&>Cw9&wSM?NtIVBPXqLFCtYCHE z);^ZU=>TwEyf;d>+@+qbC!b{prWLNakre0`P`@ATh@ZL|Z+|Kk-}s1tFW*0K6ed~O ziz`h~1Hy#F1M|>-|Le^GD=W@k`UaLHZ>P;oE--S0_oEWOk_&}p&5+ND)JIB30-q1b z3J}u(bp8%Y0-mx*z<8Q2C7@UAC@Yj(+9a=?n+$9iSe>)z>) zbM5`g@R0NY|K_lKjy1imcBpi#l_WuD$>oWfNR$T8>)K|+$5KTB%N(07vbB`I3}`&G z=@bUyV}Z#h#>8JR5J|ay&)mbP#laPJbbsz#f0vjR(!@8P|GC4Tb#TE@e|hGw=T@Ko6>;0vA(|{64(>sCj2{ny2W55VPf$%lG5`_R%ViMUamNx$^w-BgUuq z1hj@v(ec8@D;hbl`m>dbCShlxW9I5Ex5LK&x-|U{(4|Ti+S2VK0Bm1xXw-vQ%U|(r z$=+}l5A5t739_HXN0JXty|c)z>Kx2}pKIOp46(RT?H_=gB4<;$m++eL=KQituA?Um zrQ|)%Ecm{W)s4C0JVt!Uo4egS`7nA%`8a2FzQ|S5JQAr;RL(MKaaPDcI`ChwbNRk~ z-;}TuYa_53z-vg1!e13UL{KmV$Vseo?_Pyzqtia>U|<+_E67M{W04LJ%{K57NW5H~ zd+-en*dH_qpY?Edy`q@Do4ys-p994utZ-77p4tPp(k2dZ$!!Qw!LR{O6KClH1dUd1 z^Xy82Gbvz;Vqwe49TQ75Zub&}a|VIElhKap`B=A2DFp_wkW6yzYDr!~=z5NJ1WvB} zH`ZV+wBpc0_TdK?nU0P9TDdcjnl)i9RPmZy034mSr^7$avL1FV!e22?@3;ubwjkP? z`J?r}K_#0Pui(*W_l}%^L4SPJdp3rV`ZM;my6l|aLg*e+nX5_GBzWelO}7DB(T&Nn zo@>EWSv@gNVtul4+}4HHPDSArV^+s*bZo=m7r;^a@o6e4ePqmnQm^>rP0i&wO;#U@ z8|ko@M>JJjFDVE&P$<(!{nxLLp1Lo}Bl~FMyValIizw}%S(#7k5|f(l-wr%<83#_1 zYj4{sa+M#P3d-ZZgIzY0VP*u4iJrThR*6^S)^O>r|rY|)PMpHO7Ok4+Lg$o@^=5#pZTS|6$NMchcnyv)X9D@BZ{q=dZxB9LK5-7 z{?D$-a3r6Sc6;h(Us&`Un9@sEF@KX89ZD^+{#k*yGgwZezI}`NIgWueNl*YXmHaP# z$=C&T1VKG=@J}eABAF#6#b40O-+Jp%^(VHm7?FKjzE_}>>IFnWH2AsJFCm+h+_X

ICh&&bLduMs-F9E6${Oiw>@9VsLYbp-yJ8HScsCFMsXAT!t46e z5?`LML#n+F!^n_T3MOR z&rJ19?^XvzCb{Va%U?3Mt7n?2?(E|ZYRt_#z9HR%MdarNZ_kn`GFw$Oh97*Z|G56B zNcy1^2PC#Q_NPx*7d<>+uZR5dRVMz<*~-ZeG53D@2sPXL-cEzrypII#w_1AJwkQOe zxVvmxs5r(k&sfI)42pQB;t4&mU{C9c&tG(!b|)|jz#4^7iYQ`?*^R01!rnSPK$;E{ zlLcvhCNN6Cg>j=R=P`X+zg6ud?oG#GQ|E_BA?6ZZ&pNM>Jbu_Yc5gd#iE1jvn5Cah znjrDk7`l~C98@vSH*FtBnO>~VEzy2GucZxWD`Wx9Za#--1n!Z*cch2qu86_*IGGwF zwT*QW<~teeI~UT3FXhzz87|0};hh2I-1 zf)t3xoJEn|mDA4l4G!^sfDw3$8NjgLq@hy-)|x#gwk3#-uOm4sh2BVfG{O=bbDQ>~ zV5$Fa*G^ZU*q+}wu{c{h?AJJ~NnrBTy%x1YoMwdW`l%UZ@-9icf4J|&R~I`Sm+@zw z-I>;yb)#K3Gs$Uzc;W^y>K}(q+ri2Po?Dlqe6GzfaoF*HySeY9^i;h)wFK%7?ltx` zp36?oCG|`ej6B$$*X|vyTq^H8Da-%-29|Ds90}^_swk6&OkK`&Xm9F{wd3Yp!! zfvI%B%74w*Ed9E(=2tY^c(*b2e65f3Z5`|#a_b#dP9e*I&#Ha-|C%CKS+TFB{ytLb zKk|@lfED3-&T;L1;WOun$9T`?S^fVP4QX}I(r2$?(mH?pmZ{Bs5fHNV^xjWp@ffyo z6v$I22UT+)&3HnR}R z*5kAfE8hHkc-3BA}5qme3Ft_P>F>=qnQ9 z$pqGl*;c1~{@b;u&I3fOIK8j^VC{Agj znf`WTkPd2}e|7gh+D0cT4L^4Ar@5vQLR6_NlZ=0uj0(k5q zV8=UCu17`4uQ~B>liGf@YLHXAX>ohIL5Zj&UHiWeG3*1*d&{a$?A2Yb-l+SCW4{w5pshkH}3zT$ar6L6HhM=*fTo^}8lw4P))d_v6Loay~s zb9=HHhdyJQF`ulIi}yOEl-s3$(Lqv!J?-HK7BuSlI#{z?=5Xi22*a)rTp3s;|wn3kS-^zvuF$ahO>-59C9eacKH@mTpc(%Z0q zT@(t8RNK1Kb9qm^c#qFu9uny9rAyvOIRta-d=#}JiDl}m=T=EB$FM7N7ka>7|+K`XK>)R&cj-r#i$9 z2eYeHkgvPzh5zu{?(L}yVD<0zYkYuSP*bUQQAzX8gz?(7$jGrzgdJl8YK;dEjq6SF z+eYJuCy7Oidp*UlT(UVZZ1XP-++(rQg!k1qD;xhvnG0ndr2s-5uLqM~RUFOa!W3Lz z&p!{R=%=uiP`IDX<`)YM>I6YNx7^uvzJXyza2uoy=|aJG_Cc{;6%F;%)T_f`CG?cwc6?jB#iWds7|;SfdJcg6r$xp3gM z%+z>tL~YFjfUp$6;9cv9o%75j$3Fr@u~_aagxXmD3*ZCC`MxAI z#R5r!*4omlPOZ)xWcYd#zu<(`3l%&KB(@*~?4L4RM^w5TusIiJKQfNvps7XnE&T4& z%JY#hctK5k42ALA-mCwXY`B8zDaVeoV!rfvN;j6GePZEUFbr!}m*~7RNg^@@PctUC z2DaSI7j7wu1Ma=*lBMyLk)&BkD zS)$f@HZz=5qI&VPiAC^NjILP(X-o|oaaw1KMwr}>-{&{)Z~Qz`^fHAdsX_HFRZ1^J zE1q^s8NFkt&A%j_<9tb5#1KVzygym1wq%l?Lpmsv%B_eR?kN1eLVnduZ5ZK=@}5ob z@8$OpP7%eKX5X*+{)if%LN4Om#A%hi?%w7a*%gZKqBW<#zEPo@XC-_pp`2FFh{LEP zHlvE*fxKkx_8q+x(}&hhtg8b0t$5HA)@+$E04|u=&5{Ui*on3kdMW2!5nyXZ==0n9 zh)d+-T%h;Tk*3J~3X+>HVsa1J4Z4eW zH9uKG(U@Ih=DyABtmVn)oSr_qw`H}3KuX)zK88o$kRkuMrdb%N3bef3jko)wf!)z} zKoGb2GS*w;OP~~j{<)IiLa}g9;IddCmYB3&zc7VX&1)Qe*ChWr%R7wTJ;C`K7mhuZ zdeR41i#%ZFJ0QZ*6_c#;=hl5Ws09Eto0&-v7Wr}c30z=L;)82U5%_nl>M00)qF>bV z$}!s~r)nX(&-Ck$520t%Ej09aXHSt1wO;64ulrfGn9Nqe6JHGEQ&IC53-pewviH|q zX;?#he@IaaH$QdHtQnwPoh!3x{aoupIc-( z+h?_*yL*x>p<;F|_xi|pzui6h3-~NkIX`ENUVn9;GwsW}x>KZm=J2WJ2Z+gICCdyL zQ?j|3dw{8Aw?bP%{P=E$E7a5;knQ7@LSO%Fn*St5ei>7IpGM;R!*wz5n(D=vFP3BF z4;E0|Gz|YgaoXm6=tTG(^iYr!cnm);?*BqH1ylo=y7#!)(Z$)k--YljhM(=r#dOCD zz%MH5-?-I77FKE!8AMD;#EQ7OJJ9hbzjYKk=uKGV5^H{A0 zyHmvb3$CQu;$O@)(^$`y28Dce4$n5vy?Y%|l%0vFr{12)_TQ+#o7!rh_~g?J>VZng z(p>2q8LppI%^GO`Q@A#1+18P!V|8O^a4EdNELVQH&DzY(e4+JZUuS;`Tg^w4Q!|o6 z6yxk&vMti!^O@FD9$q4eF@~ID7;NUduuX&nw2@Gt)sY2pEx!*?;#kGhc6P;YYbrWF zcMvfn3*vb~nV6#s#c@jzZs$fm>LH*}kzHgEkgnT?xJ*)*^FaJT7G8PsMeRFt_o;{P zi^4H27c4pLeaeraoI_%Kg#Jq4rq=N))xetI5xn(Vfl1ve8JcTa84opu?wK`#C5Fm5 zZ(_afL)sxm>w3UoB4VIs4d0gy3?Z@s-a2fFT04yd`pC~7u3cr+8# zqUtg!+C1se>9XV@B|(sZ&DD8AgoScYXfNu<`;Mo-^SO5~M~Gp}!HQx>jhePBGkAR- zx1W5cF~YqvEKUBlc+z)9upsEu_VQ9*tG>T8kUQXeymmVsm)oXlE;S%}_acC<`~#4> zqQs4>!-H3&)MuzDvv}`9;(S~-zw7d&z&Vu!fFz$yQb)8A6%6usjuG$!rHY$0HRcML z?$_wM8}H737CjX`;PWu77FsCXD3Po^K74QF9(}D3cl{3b@+NcGA2QtDAE`-43*wA9 z;D(QUBsIMHkw+)ur>Xo4$!@k@n==a;Qp$hq*XfsXz0*i6Trj?M85!KCH0n?%PGQ9~ zXt{LBox*Is;3V-*Ct}^_SG!dNjreK$pYz<6$;GQphjcQ4G>iQH5q>HXu*u?%SzkqP z{_tn65I-#Pv?Y&Gm%26C=Cx6Y3<_J)pTRgjEwpQKrfK(?ut8~v93rt*jaJ*D9#Zl1 zFBC!=oz)#kVZ6*gojAZ+>!b16>d}?qRm(qbrkE<>$;y3!X2NWG+};E&O4}%pqaX9A z{%?Elns|Z;*}Z%tP-4+8(k|(6GW}jj1U=8$U<2$2iogayH_vohmv_E;#8dnJ$9@r%!H9Jd{PkW>K)%hQu$NBf3c zzqFm+9i?AsXy}~M`4Pm(`7-+lel9ASI&4^g+CafwE#4(2&c-(4wU3)N@&lA5pkd(b z!PBv+VjzNLpI_@v*cKv@3DM~4dh-7v?JdKi`oi~LQW_)#Bo!POkQSte2I(&85~O>G z85l}Hx5EZTi^M=>kaZekD`Ml$$pgK;9=bS9 zvp!{rn-)3#f;KsSeY#X{?-FSg*MNr5{M))pVwGlXmN59N801GUVt($0$pcA)amG#l z?Wu?ntVct~fBDGvrz>zhY#+)%Wv(|vgtSTqILKcockezWYTJOYP|q_H?{otQ%On47 z_mH_$T{@|5Z9G51HD76{1_v8z9A^pGBc765X=z3%ee@jEXw^c6x)XtUA=ONZ9wX8# zM?q-!d(mZA1=v2R`-j`|>D15sqt((YWD7Qwgj6~#>Qpdh6%z04^cwA4lRklL^$T@# zp9Vva7(G|w)PPlqCK4Tu&Xs@qseF-%@u*L2;JdUC*-a-$91*0ML$9P?$fU%dvNQsZ z;VGS=(jO^=$$GUhiJ~wIOhm$(Ms99q&We$o-I-fW63aE!IDSJpKJ0+ zJ0!Qc)`Ag3bKcWgLcok6b_DMxS3}RqBtjy?DFQ-|;x$5*SjJ_TYx-+6!HqFx?6M78 z8C;e)umtUKpQ(}G2HzdpIm=YwYi5=?^fjrmjtv;~qYAA(TN(f3rFRYaZ}va}uwH8| zj$PX$pYMA$JX-moCPy>b4KEHibNt{>+w2Nf!xGC_O;*c)$AulT83h@cJFmGe6y05d zWtBeXr_z=GjEuaA&T}|X_t2~%>YOryVrn{IcF4`(=(`<-%!+yAH;vG_lVv$V2oz)6 zeE4&^tORxc&Z|Gxcf~eHi1W#Xzx7l~JAIhNzV^?hrucYW0&u`2ZH-|9X~=Ztd#%(e z>*%-clypj|m9W<`7#F8F>eCt&7I{3$iF$TN?O#Y<7xvq{I4iW~0l74|AS38qZl7s?Poi&Ueg z&{PfiZ5e<^po$rpJ|U)#aU^K5FO2Hf=Y!qvb>eenZAc3MDtR=IMtE(wW6 zQkglZDM+K>g%1&AJdgvRJ3gLte{7iTE^ncvvhnDwd5egmP33*z-T9|r zxK%+vNGHUOW%w($Nb_ecY;VSrTe3%tt4_<(04g?W&QHoLy8!l zp@d)F+~;c`ya|)h0@GV0Eo5LdY@dT5J+_lX=PcgvvSNKyu{<^FX_y_M*q< z8P9TcWG}qR?voy{_a~7G;qOcynwo&(CNA{qmy&9+y;}rCXMu9-p^t#)1;IACjXgK* z7@%kI%Qg#wW#PFj7{42vnygI%Y-HZ?ih{Q(f(skC|NcRdc97=b9EGHZk6QZQS~l3l ze;s{$f{}Os1@I5_VdfT3>7C@>Ls&T_;@3Lx9$kVHq%v!|AN#`umG)C?Y`z_?pSSX| zRHDR)W0Sr|1=&&(e>dO)Q{fl88`;(6@+RV-)L3~ItgrX_u#A3v6{G`+r3t`ES|&@i zX${9gHP|R)me1riC6dzlUKQ5@bWRdOr+~eNZ-A{spC06j*_Wc7qPFgiF;_5bQjNmt zE4gie(_zwn&7g-UrLI00uz7aT(FVSJja{d){&MkA2Rt9fAER{CmxuU<5Bj245hC@~ zQ5upZ9s;N>y0_elL~ZP5=D9sg@N^p;qk#ULyuL&ofnuvVmW=fI0-O#J(7{iv?Pb-o zi60(T96bfUVAH_EqZhtbRb4PEZa_%#d z_9Wt+9Zjjgm^KRsvf6fl<%*!=VJZXduKdl!tXz6I!4LH$oW<2w#rxD~qT;cJ=LU;+ z>~q>3w|gSDf@tvggA1vQm1p*5Bym&QJ=dW>ViAHuQyiMDQ;e2T$>vA;D=muACW&rY z3*70zMoVsl@^zc&RLJGgT4b$4CfpRY5}UMuT{;SB8Yf+OyA46)2l?~_Y=oH5y6AWk z^64wqbLe+VLPrFL%-j`=J0Z^za1@34a-KnJM7!07M>^;! zOzq*uZ=ihmeM=gxl7 z4tF$qgoKkBwMWX7D|P^rRVRM!WApr-Y~T&ir@iTf4(!(~a%DjhSL6geaaDExyoN?qztp}Eq9CP zg%U8u$Ma@GO1{FW!m+9qt>~C725oGz?AlX-X5o9sHgouD^uTJNW4ti;E6O4K3ruO9 zIcx{cuP-#PS2aPI#+R)3n43-nv^KJ$0}$5o6|hVvd`9_#YP>`eB8OG%*$Fj_rYrP4 z!L8yOf|L2Vk7U`=Jp=q!_t+zHvQmF|wMz3V5BXsVKr80~wscyaTUG~n*ZB)>I*LZN zSKy2+kG)F?uTV!rC4j`6k6axSw>(KHje>uOr~!f+33=FKeEzB*%iTYkE^wo2d~q&T z**;`Rb|&EOa$B1GWefGSE3?}E6Ng2t{enHx52{UYil%#vt|6@A$teW+D?j=m?vvZ= zJ3nbv+rnCt2dJ;IIr22Xo%o|H&L+-M7>!75YuT*({X2!u$QgQuYr`;7GM6DEF+Azs z=u9f1FizepQu)i^Lr6S#!5kex#c4(YsKI#tQ~dF*-alu!?-Q8839)Alw>plgXeOAF z)d-MajaTUImoLukT*j4%ivq`8wsDU>R#U3Du9X_w;96it6jyLsZ`JKs(oTdS|H^6$#em1Y{PhBLLr7;CH*c2*VGwE!4=gY@kkADzeL}k%!cjh6c;=`UQSESVH=fgH{)s+{j>qpF>DHMGGr`v;%;2)G|p! zoCj0OfQdbt!~wZ@TPdX-1MB$Hb*~NT1utOp^G(UZ^CGj2Lq$I3hd~FYG$lxO3TCQ; z*iBd`jE@Q?I}Faib@dm^J(tRpJX=OSk;c^;B)Q&eHU9;_IfKs-f@d8U#pI)?AElx- z=45H?fVcN18As1(ZAb@@fXW;|%F0u~mV*nZTaJ1dt$&s)`b6}CDmIq#HneR zab#kWNQgFb&U;wM>C>cbf~4-=?udpy-2~170j;F-c-An@@hBGRFJIKhgub*0!!|r7 zQI{G9#7j{p6~s-&tp07#loQDl+q8AZ`wkGw07G|=6h>_u;JO@sGj0>Jx>0~OxLOK< zwe7^nM)NqB3R;PQTn56~I*Q-C4=%`tdgAjBMnFFH*HSwH1fmJBw%ic5vMIjSS7ZmP zVlW~+VK4YK2A@&xY%gcRBOysT2S+BeGW?O^tlg6^hTwp9>L0-1j>0Gg-l27Qo>E6s zM55b9^sQ`>b#y-M`cGHS(*j|0-!mXtQDo4E3 zeaz8Ckr}L73oSGtyrZ;?@~FU|abc}7(ANM=xl1s37lA!o*B)_5xTc8z?5oRV5ar0} z?RGwxs*Q!QN}B4EhuIVD=Q5986#rJ-+VbZ4B3O=$7z$E8%!#S&#pzKk8jZtUQBLFO zt1lJ~bJZP(I?bJ!2{OTUva~e_&@3q9gg~-8M6n?Hind!aFtD>Ba5Zh{vAc+XZOyRH z=w1yAga?E-@;cB~k+~&}f_QQ8^$ng{o}SCa%FTF)5HX$>#sPu!qpkx%BVc*w9rS&P znHj=Rh7Ofg#v8%GEsUe?=sNxY0m3_H_3a3n?z3%yEoef*TIu3|W90c#LmR12yf)iw zwST~Yr`FO`&kNt$`?4cek};`Nya&UE_rfHoDtNyOhsZAE#7$}sVo$atIWOXf=Uuy1 zSDMmIf3B!5>U{w0s`A=`aI^%f9wBcdr~CX)FR`&Vaw=A)q9zv*ZA~33Q@Oky)nZu! z;g!U=GpE`(OxpO(1I=@Epw~LZFQ_Pi_wj$9^3UsO3zqq7^UWO;XlaJK8hlN5Su9)h z>ZPc-73C?ZimNc=L?-zpszCtaQKQEmM_+6)p!{E8nP=$X50OltC?pX|J{w8EdjgVCJHUwls2h91)M@0$pvkBilW)fppN`c& z!~4fZQD?86MPL4CH4BrO#XWC+6e92Rt=8OzSD;@zA`vjXuN9riViIcQLn2H9vnj6L z%@Yd#SiWQeCx!52Fe0iHpB_wF!PHeJI!4SGU~O2WdS2Ls2QSc5n^Z{Vjg`ft%}YCp za-0y2i`3j0rko@ly7G`LOP|J^QATW!(s&+GuNj(FQ@od-l_-aS6P95tir=7b0{iwG zQAJ`Fv`V5K=xWuCoCJ-ZQOplXi9hs6#-8|~MkF^F&1@IyDO}c-uz}uhLO$`uM`M_v zx!;IeZd41Y9t~a>&*Js<9nJ#T`kZpvNha<{oY9!mmG!-_Uj!57ApcOULKO_e95OIFXt+%3%MT-^UuWt*RmXm0OK zT=5|o;aK3sJ06Akvy-;I%$#uoGm_Qf*1m(Sus=4CHH>GGLon^qR6+&yg{H}%%HrTI z9UXcjjoQ0@uU5c8kP7Fu%5cafecM{$ej}fkI9h_;5oHa@ZxPb5IgR|UzYk?2gxmlg z{dW2`1`wrDb+24ejQ?}>`wvgvtt$pIAJwd+fTeyUE44(_RtaDe@|mYSUVM>&_mTd= ze1$yynM$C zLoI&$ln&i|<@Cv3JJ~TZyLwN}!cF4rws%bs6)6g8!!%M^F&2^*V*VuS_u%eno&0io z0`lpQ49_EtpA?Hge@!>FEN!RnS{t3HU4i8M-2k`%Z%VluqKCZsz+ccw7E&SsIxLg( zd(b~sd+pQ~3>%E9DN&nj; zxsC_xvQSH1E2lIa{8c@7Q)HlZJ3C;t=y?>idvug=bjfyLB}_|DBmPEY|oRnY@j^LZkHTN7x?)j!i(mzV}!!E2Xnc{qGP@ zoL(`|9Dad2T4Wn_O9mYKZSd3NHd4MC*UUdjsRf)jW+yE#gUg zaX&Xd7=oJKz0Aqi&SwS+sJ4>4@w?dzpNkFZAAkab-nmn1mMRhLPW?9=%`GR2U6l$t zn`4#Y#?|P&t>7EM*S`eZo`bE_nbe<%ul>n+Sn%K$R5 z%3Mo>d_NQ#uUAp zfG)hky`OfG^xC25BKFY+l#~9NNc>uB)5Uji-lIaoh``$g0_(5eTTRG+9(J*=czG8$ z{-4S3qS+8uVNh1aD{kzZ{+6wz(^XaAVOIRUl&Whxii?%e8{Xkv$N8bs*RiAbtR|Tn z%$u~@y70Ruok~mV6H4st#Jov(Fm?uWK@yp#JNQ3l@24=DHj!^jDtNtmGoZfJC!>K= zJaP2psu*%>y2vxxwoI4zr8t$<_q9xEMa(PZ_dz?%ER^qD?lv;Hp8wvB|<5LHc9?Ee;ni#c3$QuvjsM+B_g7&-r4&3vNH}gNCw1pdZ zf|5G)t%X|NQkP?E?LX7F$et8>%Y2n9@Mx+NVZ(WFwkuMcf84MIls3jFQfB zbP%+;H8kJ@Z=%L~QHkE<(mqzJZ0P4}CjmwzvbF5#8Q=(Fqz z6;WnHn|%nQ4Iw(CMoJ}f6j>W2BslWkG;`Yz_|>cu&!biHZb01g70h%f={#f?n{cs& zpDh)|in^nVTWaMf*h=j7i#}h4@Lo3!6aOQFJnX7pos9Oe(~q;L=EZ)pT>SfikHk~# zKBAMveQGu#Lq%FFy@-n8Yk>VE~-WM0MQei51fuz`VzWm%t^XyLI;MPH$&|0I1T zjptgiFwt?`HPM&ZAIwW*Y?8d&q%a*m^RdSVUjOGZSbQ={N7H?UOCRb=`pC^LAF_y_ z;*3`7sI>4ND}eL(*h=Y2fY6=WoVJ?>1ihi|s_{G!v5oty;b5b4s+5c`XC_F#BvZl5AQya-jRs-!O6@t$JhV+it`S-CHm+aOoF#@TlqoRJ^niexev}H zKjo3;e81U&^MyNj27@v6-I9lbwxmLkCZ67ZM)?JmdfQ#q&&e@WqF6>|3o1DWGuHBr zoma`1a`kvG(YiOTx?Z1jQ~+7T7W04TLI86RPJKpv37K3@OLlaX?lft}85r07`WdXX z_LBi5P2Du{;r>{?Qb$o41BB?u$gWnt4$TAjh#%v5K4urwvYXVUSr_P=xe`(g6mwJP}YULs#0pYchx{G0rVS#7$-5a%kOE?P_F zuI8fDSP<5)`||^Qr4{hS<(iVniM7$HO4|=~O|^(g)uRO9v`R?DAThDyLkgEC>io5G zDs%t$aTTM5JcWkYlzMDQi*nlY&NfVnKDXV;oGMOjLdplkZ#v*d=CtvxJ;r{rv$ei$ z#1GBj5GTg=#X3b1acQjTp*k<|ZWVjQ*lD=>xqB37O}bwRgw;HxF^ z1mivw5Cz~LG-x?}^C35AJ*)I`he)1VSTJ#inrgr*yZn=X57lz^aF9%2xEjIpev=}T z%h!J={S1IkDBust!$32Lt`iVdG*On(J+DPH-Uib7-_<|?U}}2jFT?+te}Pp6mhwI0 zo}J9QJ&Cmi`}#fU|3V-S`+@yXe}O_<`^~$RJW@kEfe9J^xr~(ziJMFe7ghkDuRMro095t{v92EwWROp6#QM8@@6Laej?ELqjoOX*OV@c+XWRRZ+%>E?Q~tI#6z?wJ`2{EG zYOzJw6u>&9JpTuAq=-mgvG1GOff26z8iQp~9n4fjGm!Byjw!*S{T(r(oQ0ne}P>%{% zmj@re!T~zWyJota@@xAp zwW*L8vswp9Mq<5zATo3zQPH|xwp8fS1qPK?**mvzgLBrUx1*Es;}>IoNr-Ai|Bast z%g6bDwrS1_P#4N5d3J3@vV9(@tU6z;Upklol@aYLbhU8eDsbZFC<1cQF7H@^plR4ikJN#&~e-6wEnhcmtPRY!j+;{)%3fmlfA4( z>=#Q=?xl28z}gF@xEtU(b z0aXW*-4`&2qTghqPx;|$I4xfBe;6rt=cu~L(5iDAGyI52S10QTuu=}-X56m&J37*# z#4%c#b2dxWa&oYZC}G|@F?07tnN&a@IOUXFBrzTYHUPva(qNo=|HJrV*Zs$(V@hRn z0F5V3uUk2F^k#Z=*tW7(YFZpdRtcN>jg(z(daCu60fr{MxG9%MzB`|3z=T=&`^(hF zCu9Pt-*wkJiGNFJ6c2y(vQLQ_NSO8DK_yFg(%q9n)6owhj7l~RaKwgiK z5o>v0gZW`B^X3Ipzs4trQ~+!Ncuezu2>~3VECP&irAM%X&y@+%nvuFL!0mOY#(cX6 znjxO_jg#U4HQ{|M8%j46EohhG*^Q%s$9!*UaZ5#ST7G-jnv|u~YJds7Za8pOpe*H3 zc+gKBRZLqS@UkW{M=O`n@1<;=Z(CsPSIUF6f%88cm+y}7Fm94%SLlBL3diNDNv>Q2 z{GvcUZgkl7IrPv_r3rfma~B6I5854(^~BXQ2@g98HxzgIfu^04=923F`Q{(onK?<# z)Mj4)rb|7{4U?WG|xRe+LlBkM+uF$SkI6KGBZ( z;`<_Lb*PR1m1+NtVzh5}buK5#wQ(BUQpb#x)3;5rGiuW6!(CNc39EYH(+j)DPY9C8 z7R7Y%4_+^OD8^LwmDsnu4E3mwc7P^JR?-+9O7A36z;W4;aNal1pPsXhtv7>u>5#|K z>UWpe80%EY$uGg%it=fmkwEGL?cYo@6&k^S$$7b5q=k|bdQJ1pyHp8@zLWk+y|<+r84awWFbGas&lIdsBNuh-f+DT(aK& zs`c#xO#nGqkTvR~FN24i$%WT2_&tKhI)i9)<*3QV^lTr7Q79X=S`0~fSiip1c{(6DHgzI+@9>Y^mVRR>Y`&C}cx2gXSbsCa)m*nuVieYUi#;({Mh?)F zpxMOhYKy@&V*>BSed$1!HP}KgJ1wK>4meTuSz7RrUPn!5ni2fPH=iocxCEE8mUNhP zd*1GSdtI7mt#c;l-A&$rx!wjOFPe}H<<5T-XRYqIpm%#ttbO)QX&6d#u@B~$B#NO# zJl78pFLb4WIcOKpJN&@>9fJWR$bjsAbl5&sf~E?I$3?Ax>0&tt!r^AY!LXX=BCNi6 z|0Zt3Y0)B!Xvs!mjOE*ZR}Tl zR$A+Xd)>>vhbpkhJ(wc3vqF(PiAqnw(jT^+6jv#ri4^u-h>r38+6Y7cyUd5_mqHe& zoTJ#5K25c3iQS-bjrv|ODPy*YOr<>+@UPXFI zKzZ;kGqg23X^1_z-r6|5XoR(B6k9EKO5!p$w-tUE?U|WVZnD8@PKo3wf$8-X66kV5 z%NXAi5Pv{>W;tUr;h9r$}!3?vrjs!4IV^7)9*Zs^T5{;qwvR<2Q;ZkX-! zWB|~Te0!64-na|nLU2+wTwA*6!e@7B{U~ZPF4G@m{g7mlD(Vn;yJL7QzMhv7GI>ia zw#*dn+v7hP+1z8DT3G=LHkij%I7Zys9|`4Uhsuhw2^a3@%!-|2=4y&^Y%51n{qc%a zZOhlA&zwH(M6}40NT@z^o2iOpy;csy+qhA>*(vw$q#OG7@1jmxo$tBJ^Jio5 z{*GV#>k3XCS6>NHbT621B?^JEF@OigaOqSK+` zk?P?T3BJ1R0X!r9)%dA}GC$R8+Dfa`z?jF6f%Kb1LwAAHnn?|#zGR;X zh&O(n+c&^mU-=RL=(c^zbo>WSz5}INYpyLOacB`EW(1JcoS$`WeSYv;SUzNF4(HA< z!E*l_?bo>mr*BYTtrTYFUS@F5?gB(h4=M2pBL3~VIgtP%z{N8gN`5Xt= z;Z7a&YV-~)LjwjxV{yO~RG8-dS*P`q;HI>yV%TBWBicTY4#%H`b#i1T8Dr49RVNSG z8?ONbtN=MhA61&pjy>vGj9Fsttup}B2neDg?4&?p$)(4y1^B1yKkvLmrF9ANzi)?Q z?md?(XpZo{DLVmdYQ&KS79JP_4#(z*>kEN=Qr52l6m&_|AIAovg!vY8*zeUQnXy&* z6ba<^mVfEO;@5R`({4r=Bq5Ng(;98w4o3W};(3*;59SivfznX)__25CZ9!%r;Myhb z3sr<}JTMBZiU>5yb%Al`FPzFy$NQ^Rf@e5uDr>3NIpCC6J@BYLzTaTCEQN$$YcfNk zGHp1x0ncG=9MQZTGXrO;r?e7S^2+t2u^7T}CWw<6xsk_P3YB5s65hW5=g(3UGVRt@ zS*NBY9cqxW(Yqa`K$4GJeRR~R1%R~=1 zRgcFhSWWW2Xo}hKCt25`BLNuIV5vo`5Tl=R{AbG^x|JO#oq>!WS*@S}Aef9yQMUZ! z#g7~^lssjP;EFVB zV=a(^zR1(4|H7(#i<#P+CBZmg#^|9Qnpli52oGp=tm2#e)9kkYlls6a`X#OAT+(L< zIJ>vyk^2MG%3bpyPz9;^ZjUG4Hoy78@V(vf3K!GrrPt*q7-h1$E*A=5PH{{I)PMye zt4|I?Sf#0RLfE*YylctYc$gExAcnZ1)jEK8dY?KvjSOYWxqML*w8ZqK^ajl~v40_pS}ScoSt_GyO72)t$l zGh$~Pwvtht{<=|0Df$qzE8cQT%$Id3oH4{2*lU(g4{WZ-BDnSn0$$c-7kSumY^gmK zeu?SOgnOFSHb47*SVSouf$cTXa9J<^U@(~?D_mmv*w};K2GV1Nvq%ox0rW+__hj-- zk6<_!9#kR>#-)84H7AQED)>NHhY3GViL`baqe?@`=1UY^A{&BZNW<54Z4{$Yx)CYr zkRA02rTpnp*y-3lzmT)qrrPaB31LRdgVFmE6$jzmh- zRhU=rHtHE#CyT!Adi)m1i(YLJBVx_E=c-IsQuO_zNiY!9qBD4d1s)OkUHCQ^AyP>U z_iZ6K3wgs`j|q~;4jB!O*H{gjq2bErxad{N`M&-@kf^Io4ZaW`3%z96PEd^>Oroy4 z9uwdg6>?`YF6(jY#0 zzC8JPp(ph1BMcz<%BilreKcx8b;7t*BXa(9(J1#p>zwRA7fDv7_^R$~j_3h0{YBh- zl!0Srg-OG9_k_ueypLG(=MlOjH#%H3ht#v8?cG;RMw)&l$l3BOr&G*yxBc##30l*M2MY%*4;)#}p9y;tkP4YYv9d zL|2sdSnI12h`diwW&F@NK^myOzN|f%K3J-a5A6za&E_006oWvU^hm_DED{L*c=Q^q ze0%-t^-aOf1*%QrRwaO`s$JUaB2CsEY|45wagoN7dN~1RPxa%y!pIpYnk|bmNGuC< zCt6VLzzeO^6Yf9-@uYbRFTRhxd8}UsJU*Q$_m8eALs-xDNL2(;BGQfW?@W$r={?-c zbkDT`T2oDaIQcs%I=ihnVihG zODK70s9jIP_p(2Qps!+D#Uv`Q7eDE?u*6GqJIbPGwejw+m#|F245}HW*I%|qOJI5? zvsMuUJI)HQ@%o*+`NQidYq8u45rC+vB+RN#_;QiCatoCtbbxvAP(_e+Ed!#0CukLJ zSC}I)7cLLfre~F8lB~wD&L}c`Ch1cV8WvuuE$Xfi@z>_Dew1g6@3{$MKi)jKxi}b3 z+F4*geecb+Wx(w(?Wd#yCo%eIh>zu9<=B4Tcc8*tRym{|3CDKD9FhhIzf|^JWEkZW&ww@j9l@gcX`tuZ`xx>S#;RBAFSuo<^)Nb9xNnGQ#;~L99R~P@pfV!2-}q)oCe2xaOnq-x^Ai{9 zNpSv&EOe;Jt2u+7X&C4~Nt)OZcV%Gx;QcN^$PDmj!@-bn@^TfM;ksuB^x77)@|c&f zi+QOmR`$NnCL!w7ZnH>}_VP-;Y)e%rkzGW6p%^YsI>)G4$YtzqObX~V|3>KyRcS`vPI z^@*>^VL;RDX9s-Ara*q6;O!rIgwC9d&&QCbQ+eJ_IgQxfT-&6A?*qzuBSI5|1mbya ziTuJjv@92|JA%z(Y9uVg5=q5f-Q z%FfF?@uaECMnO9|N&L}`;q?z$9_DxaHs8bccG1V&L=VSIyyZhQ#9Cqs0*BL7fg*q2 zJcd)#nU934_#gPpS;Tj!IIWNQuTIJhM(GvK_w**qyxjb^d#_Y%F8Bp?ZqrkDq=hUJ z4!rgxnC&AYRmftc{8H6CZq}9bL7Pl5!)d76*U@u zy+{1Aj3fR*H12s1_+Y-40h``pg#jCw#pQV-&}#RQ@W#r(UbAmykQbK0PWWSG5xsbf zs!iB&x#qhbIec-|v`XnglZQE~3~r$jCE3j(-Helb-CJ!_d$imM6te4!q!ZWi!%2ts z2e!%wb8#Jcac!=6VLaJUD_q9?w6x&C-(=ga} zCvBcfTP{9is2Yo=hyX*c3a=83ei&i_d&=80IztD5$+;CNi-|#)$YZ zY~)u4;!bV81y*02*bY7Y2Xi&=DHaL#Q-Gk_4y@1z`P5J3DY0UHIEF23*%R5jjl+48 z{#?f5a5)%CxbEA5vB0T?-$3_FD-xU5Arx@(K;I`OtDM;}?EB9fLO%K>cameCpU@nH z*gzcMNT>%VM86&HY*F(JMkn;^1?xG;k2AJ1{nQJ!wQ#>MnTZQ*7r=P0m87f`Q3%$r zoG!?4xi!Ra#D@&Ml>pRINl2>GQ5GT0ox{duI_B(8fCW0a>F8iW*8C$dQ^9W>M^5m^M zmoq|BB9I0gyF#h?<{}gM(8#w@PSkHFyNLgt_TL5YC@Da?JWaXW6TL~!GabA6quHSu z5J&|{QsS9A!n!mMFTyq?YAlfyjF){h>86;>ZhU6QP#(Cigs6XmUwonFK z5J=eEygA&8?{s*mCuv}DsfZl#c8;t04)n1*w+)_@8^K33-CRQ@V{ymm$e+OyQ+wE- z-19R^raj~_2O`02C=^X&+d#}ALx-FG?e{8|0c~k|F|% zwIxK;=il?=BpR)^ce$X;6MYu+aSc{&Z*|>5DVR1kpJyA;zgC{p_2Nx25<}wBcAFqe zM@1^^kZ&H3%=CW3DEFbcXHuk+^mzxaXYqdTi`EVIu%LtHFdB&jmBnJFrRePw4TzKB zjiE7v?PLscqjLI1RjOp(Vdruw6jp%D+*|#e`Q%mnx7Bz_GYK^sBvtotIE{Z${GXvq z(V$D5%bq7}x$?}afW+l;bTK9Jz4A}n(VkJmsBk*Wk$@+X(H zzA$Cg$vsl*Qx+3MRPlGF9W=x+LC%4dM`+Z>kA@Ct^!Zna{Yy4tn_ z>@Ps@9UyM~_xb<5s&xikx!|R5KDxFbE3okQJ(0S-hCm|t|(vJtb&KaSaZc=`O2PF{0(Dc zVBDsPY`bzQPAt;Wl{ibcZxwa9b#u3dS*kn-F)eeWNm=b&FDf`s%nz&a9=aom5F39A zqBU>VeE~tQMGBDSuZH%1Glm65(abx!vff6IZi^Q$yOnDMK)?D&cYh#P9!_b>+!pfa z1~0|}Ks9tiv}&y+CUNA^L2%@?H7Aa^A55tJE{ey`-7PQhag!DaNlobJy-q7emg6N$ zQ$bN)>Or^{FJ-!D+f_DTXE}NToYFtAY@9>0Jv+lM$>O|M!T-vqay#|H@#E|CH8rIL zIjH@5vF`wH)aN4))f#o0kgcmCGjEZu;Ro>{{F`5a&bMxPzN{Tz{JE$0`_iEYc4%3l znG~UG%|^eG$X@M2^33I&cJuVxVMu;7w|emj?og5^vC{27bu@MwGQ=MXFcoz z;@H{?r!ESeKA_)T8ljr+qL<9FF0-Q_bb5dP?~Gplo3;Dv9~^!X{nfj!k^)_GO3+D{ za0sT`Fbhad+6W?!=gv|Zm>WnIG7^ZI{3W|1yTM%m@7#(|dFviaZ41g(zU=RW%u7q= zy%zzTPpglCu#w+BSg!d6!>?=$(8-kJyOfS9|z3ELJH55>9&n&B5`l)`Sxi(t@qdq8*65+vPS2Rb0rT;k;U^M35RlAWt8uad3 z&mJUYtaRAbF>9v(n2J(y9SRthcUqZYU{AL2V+jm|lHymR|V#koHt_M}{u?9mU4p5vgoJJzG$mM2v&v^6!KevAY zSv4Q}PD|Eq^hzy11EXuqA-eYZVD#`D``RE3^Y->_oXN*{jge<6ww5A&1O1Ajq_}0| zALkmCg_o1f*Tu5f*Xi`T58yg;VeB92LNNrDR8*S3P447)&Fr-Dfg>0zR}=y2cj#;F zl?J}AX6%~hE7)&^4~)}40}d*{MeWmc%M4tEaZx|}g&(IobFzj*tuz~Ef16rldP$1O zF-^JS0PAynngd?tVf4)_;Wa&G)}6r*fz8q$OGTP?RpH-$TatbZMVSUdOXDM#igeGauc+{3)MVMO~$FGp?jLFz!a}~ZEOCuUpbsqnOOPE zzCut_&S2)*;3t-ax2j+Ke2`b0SU!s!c*nb|yJFr<=7fa6xYk$$o=eD2j^jG6bsbO; zIbx;fseHz;tH*v4;wJ4mT@WsvQyuGBPtEig1Gj$>(ocmoJ>8%MPBK37SnQ%UHQu?2 zW!P7AP%-|QV&a}3rV-*YdgP ze9#~0HG~D_t_mQD%}z`ps%^9$#biJ%G;ZGo`_y6simo($H-Q47C5_dzK|rzNh8dx= zc}inWuMonm%b<3~MaZb8G&u{S7(%eCV`Evb@5a z&s>TpM?-&)WQuj=;5(yQ7-;SlmSSDGORBgZNH<0Lm0hT#kRZ5J1zY2#YCDHEwmxU` z0{nw%#zsCQabcVYVeGW_C5EDSk}t5^kYsA$OzCH+>q63~XXNhzd{t)M^H$7}jq2Ym z#beS?E^mF(ea(6@Cs1pC3~_N5a&b(r{@q0yTmeH`CYc`#g96ElN*a1D>(sH|At@n} zsymiruImi2?nVU8Q(pxR874+>$cTPClT_=SsUse zoEDSBDdRS>C_Gk5|N4y7q+|?LrAx9;efW$hf4ylqSv6&00xvmFE0?4R+!*waOsOTX zv&=xgH;e70DV@$nfrI%$a&)_)QE{OafCmBwN}w@h+WWadCT<`(;3(5s^Zp>}RH(nW zhQVj2SF&0qR*6W3it%h{N&D<6gn=BjWF;cswJqd_J1hIRvcrn^-a!&6NIIO~ zE^PmE#6f>QvJY5fl9T;y$OR+{I_&5ix;ERWr4+}XfyA!Eo`0fgTiQYv6YF%ts_^FM}|QNuQCL?z|Di&9JlnO#m-{ z6ZY0a{{hvvvRiDo&sR6-(ll>W2E8d9nfLK}B_nnT+}S>-x7Z~2SiMiEq|FqX{{`If zN|?}|P&Dug?EIAs7)DAg1c(aHr!acp{CdSp4~*ZWYksy^Ny9OU7%q_q%tH{QVdl0^ zplJaD^@SvTC3~Huw}kF8B7nH{VhmUF?`zzwNJgUICr_I`7b%0uwMzaCh6Jny_9Gd% zoWM$KseU4w->y;0FF#4I_EAxtdgcq~rORoCV`X2$^{)QNoX>Gm1p6_NnDWV;8kh~G zw~rUF&3F|a9KqSWjTXa9cF&)Umi`nB;9CoODSTg{Qh^UzqNxrOAbiic8LsOE|CN4? zDC43uT8~|@Upao+r_XC)tb+La6li^LsB;r1kPZndx1t#;mnShoxgEpU^W1dNPdWZs z)rPnJyFT-VY|HiAw~6I)X4-)~eL_vFl4Z}td1c+xr6!)Kj7B9CI?a!xMj^N93)~IE z$xv$79qfKHEC)PMJOLoR8W>UW|BlF`;M#-^+BApb zDIA;k61a{{?W*2`Lop-!4N@kr9(&&fQlc2-4B?dtd*PmDTfm!Y$+)423=AbeF+(2rKL0QdGCYO(Pqa$wQz=x+kdCifjex(=z{2}g*CNpD)zcoZtfiC&1 zV&aiDCB-m`v#$)Sxhv%EQj(LX|7$Y9Tk;Ic{edG1QPy5B4s2QfO|j&{#8ie`?QJv)3p3>=pVTU)0-r zGq6~j@7+|L!yKv{t&0vW(_Oatb;0>YH^#2!7uWcDtQMKH%?$<~UIl8n@vXPm{d$_j zI)Rv|T}e=khntCVV|`X|Ti#oC4sq_cJ8IW$3b?a?xkh(`&y|3-o`1;16_!;C1ux>R`|E#j?d822i?h4W zBv*L~e_M5m&E(MwDK^zxjn%u;)~>hkQEscgdsjHvvaLa&C)u$h@I(G|4U@0hwHhV) z0uN`@IJZn))-y}i;B*)R_uTLmP7!CfA8`1z=eG2xwTIo=RZZ{IZ-2kxt6I11%LERV zRljmBR2sQ?Chz?3Ab3pRa^=o{Ra0E`b+`08X{g`hK4HFmw)ljPM{o7+b$hYD=7rn* zsD=q^-|hT!bJ6F?A<^7{z#C|CK{wDGdj6qnv-I|fm)5N1?qADbE>_f}Yx)4V<>chg ztNX4Rw7wT#4cam#BUmE-Q0`PlvP^Bw{Yc*4jbBp}UaZXTzRLK*>HNW{&yooxdXtyi z9jawkHGNR9HP`)K>4DhdlYR%jSe^0yu zt-pR&s$P9pMf$zq%`NJ=wY9gVe6OE>^t?|@)}gmQf6bKFwQF4iTuxn+95=nPqAF?; zca{8}uWQ57_dkn#@bB@0%l#}5c`y2V)SdH}n6j?(Psvl>gN8G%0vDL(pYe`=soA*h zSF7$%k(BNFeg!Y3g{Hrp9&xDpQ0Q;Vm)-TQT`Hy3&L!8LrpE)ls#}?v#9Oew=ew=G z^b*$4dgEnw?dI&A++lC0+TZ+9WDxl-bi$suwhyIJOM#hw_or7!s<_t8{Lj1py%}iT zs$vWOBVD1_V3vU0T$O9!C9J5Y;Da}Y(DsIMS&&Nv4sk**paeRU_|XPhyRQ9b{r~s> Y*){J(*}hI^{mcLap00i_>zopr0QgAL!T zctiyNRP%N+2Z|cI8QVEp3J9PenLC*MrT1t0-wQ+?-5uNjEI?UnGgn;z`(F$7|6ci* zt$(g#`{z0rb7MDaM+Y%uH**>>9#&>nc4ls7E>;#c5Qv!;DEepG(S-)=tF^m5El|nD z(ahb{{67Q#H2Y`M|8mE{&D_Dw6#!!X%N4L8M<)?SFJ15xGXTU5Vq#-v2XL{oFmZ9~ z1Le)ltd0NAStVl^u&I9sL&eg+|2C5mGxYDT7{@1(z z(?<|^&A)vVRssiF0W2&4j=xPQT37&Bx&FEr0DpkOsz4T?1b`hVp#~Ija{$WAg0)43 zY3yjhlS==JGB{U%`NzWk$2d4$D(0qcx&Rg~Rwh<2NM@NfQ6fdiJKX`6B`E; zI~SKeP}SYU?N44ct<5aW-TwAg*ulZk?Vs-c@$292iu@-)+)NxGz@K0GKnZI*H**)D zgdI42V&=i-~|Jb>^h|>a;nx#sb?M;6Pa&P!HJv#Nl!}OPu6PFY6$A4C7PD`MN3Ii142ey{NH^owb`I zIA<=dZlYGkF5qJQGcRWDYU*O`1a30`%fGrs&iG#%AddeOikgeN`Cli2nxndd^`BG& zSpIoH{IwOhn%u0w2LQOo*jWJ}u(RykoB&o zCnq@U;B~AVoB%EmI{*X%uLWN@z%2p-kAYagx?JEZ*gsbAKI|M^08SS0JnP^4{26Cs z{xio4;9vm(I5=4WY~0|rU>{i7z&*tR(*I}F{|ei`!!GP<`scV{2A`NtQs&l{R^Vfi znS~wrC(M6OfV;)g^-ouWga3C|F|vc-o{<&A1z=%e=lDw>+*{yjaDSPDi{jtu2ahNi z+nfK-j7o!#W@}Sn2TMD1@V=^U=Jpx@F7Qe8r@#MuhX0$_|2**j??&e4;^z8SQ?meA zI5@bt{@JW&9}(SjhZ2nL1f9@7I77oA`fXzYgb4YB(7z)>eWy_QMx%n6mjsZC{Nj~f zNHN-E#~o>&o?AKS%{M|};P}j%G^XG|m5KK&HYs(C zDzEAlLP{p(+vN9^PmXttw7C`S;Gc?$@{01ZhZRwBsfbu|d~wyJk#zt27vPo)gAw9wX#1xZW(^nGGwdQu7^865wJ$vE%fDg)0 zG^Fm47G_s`Au2_S`?l^rK{IBIweN9OqPQ(1#`KRbQy!ptt|CXvmE2pXRCG1BrkCf} zXCq&8Uc7NOLp-aSN6SNnJj z3y0!t21m-12A~PDCsUt&2X}QT%Q^@eZUkOQ_li5u4NKsXJ8@_UG;OxXo7`lCCT7Yh#%s_6oa_e5*a3MtWp{a(h(Z|?JCkKMG6m7WW*?pL9&knzr$yQ z1}VJr>zqU@akoh161Jb)&}qNMyhoKcdkCLsp45y3U7;}woq;Gb6{Hhp)3Lo zlT!6^VwUegPilaCH|}bqxe+3C^R|~sRJW~`hQW_*V=dGs^T!eNQOYI?BkHe0{?rWy z6RiXnu85@kXuc81r4OuwT6}~crIDsPG=T8PP>ZnErFJqBIc($r4t%OwrDEFkN>(=> z3ZVQGB|ElRhG3jT{Mrb@=Mtcps;i!7^(&am z_#NpIQ$S-C^B|mU(l_))DszlVc^TeH`B4+C%rAuCdw8%=gM}D87m;I&eb9FhX09Hj zN2tY*`+*xdP+R2(0)j)=_7x&i{ESL`x57D`+(A+!UvrE7_LND08Vt-7T}hoZ4I@@< zoydBYCqH@hIo)qp;{=5q62xnFD)`2h^ZY`h^j8^n75fR_GZj3JUWMmcN5J)?Tc914 zEwo5C2|FiT@b(+h`+XYNqXQ@G;r-n}J?a@pqn*%!0fkPiFK$M|5)8=834lQf=t{#K z_;R7aot$tosnt*9QNr1K_#cd`M;jfO($YnZ!V_%noO=PvD^|a{*{~&Dn=ENK_2a`a zD#)Nu`lFV8;c1kfb?k8|2FXoS`6Xt57B$&i*soz9S9(y+)Uu44yn+P(~k4t&%V@3ox)*5kaCTQs*$9|8z2nfPi{CWVn zg;0qYF%kIgI(U!gUf~-qca=?oxf!%}Z2s$Kz!Jg|QXbdZFouqX_IcoHXmn|F$^AI3 zzM@_IP%qXBie+lt;iP%Ip4HMh&@&d~myL{>;vQgZF9(ylz6_!BLEC=wTW9O7&FRVR z{6h%RmOFLT9ddG~xK^4JlG2kfAy-oFHr#xu`sHX{iWCl-3o#7Jh}_Z*7HQbm zH|2cEVQPt@1o-y4^ID<^h8X!^yw(@aq!-?M2Iy~3S{p9Nb}MN!<7448c>*-|!Wadd zR*tX)At*ki5KiO3FQORKdbaSLE<{f65ANrGP=BN8hqSvhlqkgrK!sq2B9|#Xj@BkSX%(A=_LhTSxt?HXMunYkNafX$LAQY6(CtQR> zC*6gvGeAuC9)p)s1m>ewFv4-TVX1*Q5#@Uf_bvpCc@_+^(mg-Y?~y(MYGU(2WMWFx zV&S<8kDmhV#Bybu7~-GEh2#W-d=X{@P437)l#9xjzW?fjv+fmay3y|+sX?9rRYM#{ zIxD#pUiT~M3E}%lOUEKOP(&b8da#0+%SPt)#i}~Gm;>decyf2C>&8* z4k};3=X2<+tfiRRo#UL#qvJJaFU3RoA-gdl*RndnyMXOEom(z|$9hnEW9o-%?UNu5N&SxWYCZ z4mHCHE#E^skPD3(Uo4I};hd63BO?wO6JWj{^IaqVE~J6fo((4*wJt`)nrR<`=mI6)V4 z)3^jNPDH)fq_Q}IJy@7$TqwJMM@sp}XZVr~_mpI9x@F!u;tc{coA(cibdn}+tb9H{ zwIs(9fC?KvU9qe@1s{)^k1Yk*&Ku7^(bthK^<BH+U>l#8X&y1P{a(3D^AI>s#Kht zG77h;OQg;G58Av2fvkmiCk<1l(Qf!kjjlc;r~9f!2uGv$ix6e7m9UT{J=^c%xfQW! zKV#MBW*?4YDoeG&Qsct#pT4^>&NZy3qi!n2OL&B*q`^=ZiG$VlDi}+^Aaju;i7%Mj z^Fc1Me(0weR!NV?|M@C~^3tXuxL9W|pT?uBK_`ZI-g3osW13rq0TMqUV6li|9#8`G zrwxV^i{^Tm$i%X zetBuOUvbaNsAf*Dq)Osd+pngh{r2(r34is+BfZH^nvA{cGLr927WF9|1Cu?zRoPk> z_p%oBlP$b`S=h^ivVOxL+8PbSC+#l5e2$a5=3)jTKK^c{0v{a@{0=$}%tL+qpqLwi3PPSB)_(iV^vc!OZ8zDM>pl2TlFE{=NFhbTn5&*PYu)@G z>CY%V>?J_wzRt#1W7O??F+z7_!{ZEELfltk`bzM5dEo<=KHB5VGGxSb83^A9M;b4n zuL5F>8g}|@f375V4GBvBo~oZj{@I31zeP!l6|E5PaR2TF89i@qLj+=9F%L!_IsyhV zYDFq$ashKA@GAmMrA(C!4MU~Ls$F^=9xdeyH_L>F~gU^1ip-;!v8xA9SQqg~h0|1u@wgQC4dxRUsrulq-o`%qV_VKw@`Ivt=qK}7{9MQa`NEFWLbSEU2cyDk0QAOvi8ZzR)(~qm zcCBtXG{yxPla886V&F^ND> zr-j)zsKpeeY5J|78r760V>Z5P*DB$*qfIeNm19hxDY8!C+{)>EaQ#_R?~;;G|5H-{ z8Tau(^!>~(5B;aOrT{etjP{O2IiL;l<`eCUY@=w6XK5<3s|UfP%Ys9NqgnF`+ph^I z6N`6GI7h8$_Wqr6jCm1#@hsn{BD`jI{Xov?Uy25Z*79NVeP#Nws4CKyc(C%%?t}qG z`#0w*Ve1WaMeIBA_g~psk8cL=p3{2dtdTN#nqVZ(Yw^~e;46qf>EOyfa&lgXxH!5| zN!eZ2lJA1#&&qz5v3B{UYwfRyileNZAh=m^Y}W2#Or2dPd#1y)87O@zU~%@sjUUZ= z85qvhq%XoW8_>|$bHyM>Hc4$SK(Hz)b>$>lBlfC3sZRZXW5Ba=qi6I~SD!FnR@Lz7 z;cP{7^7=O0+Z<=x(5{2}J*n;S=Yc4v_s2@Y^I7mB;uPj*KdyPNtchTR@~e-Rq~Xlp z+#Y+mMMY_yW{7-yZi>9#LM zJyIibJicC~$x7aV2GB>N!L*i~xj%&h(|&sWMDyKos;ToFrHWBKxzoqLBdYm>&IH`9 zL$b2@F%*d$0y@=yDj z{dI3WOF_TgTh;4GZEN%ei$}8Ph1X75ykdxGr%~vZb2d&j&X7C%hPp@Z?(>CK{VT=C z7(r?NYWmxZapHCj+q*RRO_PncVfEbkpQpq#P}#7Y0Z{EmLIb7I_x7W9z7(*AR9GYt zV>A(*K~EI9GIZ+}>||;`oLvS@3N}mvdwjweNXA#&grwcpgg%LRPE543`em+#P3^k= zRwS&XD<`q~ez^IVJ~TA<%eakyLB(xI|7SAiZXe4~UDDey&lr}cUD@)=TxB!Ao9&xP zdFX0(^-erD^*dWnEpA9H-vb*u>V`iMqH#4<*{GN;J8g_;CFpibkm@o z+{HkxnQ|>7fV)wne--^@){y!SXUGU6t0HZAUH-z1Xp+w;70Ll#I``W038S2g%k^BF z^FBwHYR7YI@*BENa_S?WOb!HjO@k)n`@R;P-rLDb%y&+0%o2Cq z{EX1|_r!fuveb5nl6Sa;=OD4O&OEyPvc)cO`vLCZ5kr@DG?m{*R68B>thf}{DZz^` z8&l%#bGU-er^Xz`x6+eaAS%kI9WBkJI^a8$PnWmVK=o_l(i)OqRi#HnH8q0My24-E z8?IV6H>axf+8VANz&AB|J{OH^HZ~3)&xC3EcGe8W)(>)7kdJbdNH5peahvx|WT)ja z8-qvh#21T<3yaR3+zZoVyYq4uS3kkt2I!kII{sc$w`uKY5z0qsWJv3#NYl$B+uGdV z)e9N*E#j%6&>H*9*ZZ{*-s^%T9@tWU8}GFWi7L;&DptK5kdv>C9PI6MFw4+4yIq!q zj9cFxK*IuEq(^f2lmGi#-)|N8nV<>gU(#uuQWil<1bxZE^*_4YI7;SWzNcQGKH7Yy zjhU}R#?6z~DfgWI2)%Qyr>~xGcfYIEf`yvzV0TCLQOa@-Hh+!46rRK9{K{x?;~d z3#%#Hcp5xghG2g*?t)rhuz_TqL6iv>l|I`?Zse~!Nh4V!3*o*VG`I;Atcf{)<#?u$CLj!djcXI)o$Q_Z3V z_A!GizV=P^$2*Pq4&djr@8fL=aNPMG+~7aDT|oMhjuXMvI#nPNZ06l*4aq{xmI4;9 zWr?Bpl|}v*h{JvNv8unS?06JNXc?c{go{=Ko;J6<`TEunE<9ko+L*r55D+#lI~H7--G0{)U}T>53_Y}Q_`dUzWvNM!zq z6s12fkbq*IP#wR9waPx%zL%GNl%3f`ueK>uQ|~R=l1JU&PTx#OY$eDtJC70eLInNv zOmV+WVOW?Dc{=tZN-K2qaaWB5v4ia)UypuXIyH@%ZPxaIELC(W={evCOH>Yj_UZ&m zgAuh*qU~2S0=ydzUDp8yi@jJ^r;Ed}l_lFv(80FNad?JA{u_q8pp2kQR}5Jx0p+yl zj4xiwC|v_Kr9Eu{AP~w1IY7ssIHk9PwrIOas4^HX2#`pdlqcX##YUSDK7vCpP4J~} z(i~xIP=M>SjU02PSDt@c@#dC-gR+e$gTOm%AgdfmC z+Z6=seBPekyC6&zL`KYCU5-H{#o{rvWy`bOH_WC%xcTw0*h*g6c%pkeFa2}IU?#~{ z*W0euLX(4|xT)!r{7wf+k7~8m+ooCWx0Ov+?6??@FNOZuaz%+xDvP5i*J~lLRo}(1 z&VFWW;ZGlZlGse28b(Q8Th&4R75l~g48V$aJv=w|0DIPvSy+9%q&oY+RI+1hviqp~m|$p!v*xC`*(t3{jx&YA z4OUcm;ryWy)?tAS@1P3fx)9IqgoSv4@7Yd(-W)~0m`f`@p|j9Ato)Zq57-+vE_%{D zG`2t~q>;i~OV+Z8QexAV#nD>ib{X#vQ?~9%PSgSRLToP_6~dH9i=}M{#l!GOjVCm2 z`i%w_?^oQ9t~POhLC?qUD)3$I|6Pf~d5)OcZIwevt{oa;^6ZuyWlQ zm`Qq6jqSO_mx{bz+nSR0rk47dlm@P-~ zL~x9UvF+exfPgO>W#GDxA|dS)KTNs{83<<8d`87d)|e=NdPT3=1@zSlWD5!?cCm`! ztvz30zEeY}1A5c*wbim4F1hXhY}GV8OIzON`Q2S{zhsSdQYm;boxOpk$ocig4TW>l z4|s}3M)UZww&}~hj<|nGYN1y0Wpst2L1{cTnYaeEL}aZ=+N;6i;I5(^xX z$^K!>o}mX&Rx~2R{O8hjjocDEjd5#>#FhO7XArmjYx@Tt5Uh-Z=jU<9V5e8-M-*&;nAm0Z4b)4V+?AvxzD1VtDJ49wrUC8lny5#>$$BA z(p_>-Ka#PL|DXyux0?j?>{cYgT_gcnFk>-Ek$XJD)4l!7FCPxe`leK0=u@>0M}N=5 zId@_i1^EwchPF*(%={3r?c0_fvQrWvl-vvqCuNdAZ(zp0U!wS`u$y8R8nCRxBHnF? z7G$n|f`u4CqbGQ&r5Y4+4$j>OXc)mm{mtk-zM(eA;bIGE+jD+=wNc zu~8CAJhB|wbL7BRPZ~zNndSPe07X6Wqnff{%skMRwvZ8Jmx^!{R$9fyvAm2dKXesX z7!8XC^Z21HiolNHz%zM(9;uf7Q;37IGL`63_A6Gz72iWZI!N8omYA#anRVx<^u<(c zo?*o6%1HEEAkrp@UJgIyYg!cD_&KC+_OEVYo0)@mVIYSOl&NXLfg^iVMD_X$P;Wbr8c%PKx zvWl6dfzZupfm#uq;kastZW;TtGT{}rxrO<{gET{Cp$u3=Bz4Ss-E8)nN*0kPbK0;3dW(C2(FNPHLLX= zJRVuT$3KkWiCINjyt)kDQ(tkarZ@8@7E@h*(~+yP-90e?Fne5b&~q4x#^^$=1`j+u zeh%|-*%}?VylyPm){VOcF@@gCR-|N*MTFGi+_|2?x3|`!^g_g_Z($V}`oHB6NVLCP zeeZDL4&mis(}=J6xby0Rc@CtMYhed=K}J3zvAVoUR$RJJ4p=3Uw)#WzA2Z*@=*t+%9sw@2V#?~q93{nt!lCVK_ zmpzk`cB1S%;&VD+e~~UM=?u=g_7{HH?~C4bWagdGF2-@6>k>Ik8;XCoxQ>#;+!?4K z+8XAEWgqH7@={X@KT4@Z4)vR)per`t47D6)1L%##-$N)u_%Iz;uxE$Y*3CeMxF>e_ z(_aLqTTqte2=S3pZLBjOdYpA!pMKUmx(!d8rgnIoceocdPhd3)ACdolNwZU4V7x0) zRXj)BzhC{H?3M0S_Zg=s7jwSZ`or_4n14)}SzG#0dQDxCT_XR`Ym}J+U216IVbPnq z#h05AgXD_+v#ZPl#~*dx)K}Tc7m?iNL09mjp6ZO{aTTCr{$tl;O_0{!Y}OoKo;RD| zmoEA@v{j0R~Ks7)Q@XvmvWO zXqp-0@8@zOvrTuVh4j2*Mzb_VRH^?^UyB{{P0_*_uROlAzLs!>veo-)8gk_Pk6lL# zV@mv#X947ji+ndr9F4wPf4rP*ZXVuFf4l78h2Qnm#m&VbIz`r}l^tG>QhrA4&oeK% z9vQiu<5ZueTqf-34yvvvTt2WkoD8oIpY9|WSDX6SWUpmq5$av+Udx(B)a7pWmKU+l(4ZEK z9}t-xY9}dbuJ2x&=Wpwt%cBL^wcx&UY`4^AZG`@TAYD;|!)YV}(Se2=o*gZ2Jmy!< z?yaIC+EZ(*buI^ppBqe_2nezc$y3F-h?1{gA6bb)a|#M(@UaW>bD*mEplZUL*nHPB z3amJQs@H1?M0SHp&DGl8K0!D99-r&Jh>gi zQ(a~N`mKkV#>uN-@f8nGzF4AVW`F;_U-_HvHV<te_}+LQzCz z(Rg6|v@j>~baNNsw)U)Ge5BF?Q^=Jj`<@9`kvcJE`uI6||Ad5!EtYkA7G00^5C_c{`U6 z>S~Gjx{OwYZ?!>=QU{4fCb}*g*Zb~-PzIn6M4OKow9$N?4Mqvcpe8g)g|VLattv`~ z@qMSy{7uj;BhPjhHuL`22h%I(HoN zHD(JNy=?j_l&@tj`7XC-Z`iy?_*TKv#ojSK{6SWWtH=Vw7qhM;vdJEX1^-qzxVK#l z|IWKX_Nj>9mWBSl$r@xu!CkZozYFqFqxOY?E^}4&^^#*JZC0Rctj3)p7^>Y(< zcRH3iB|?G4=dFWU9r*F{5S(3d3zP7;0?lc6zcxdmtyP}d;LG&>RP$}4A}+|^_D~a3 z2tPbxvG{@t_PZLZUj=(eKku$F(bpE9ep7)mgu9o~v*5eBt+G!|X0={PglT3>-d62^ z7P+49P7HR?bxB%9en+N$b?6(>k959PXrNk3@+hGn2UuKB-0oqzF*|K|4oZvu{; zi}|0(n|{)S!x}Ss@Gl=E;yF>krJ@W(Ux2A@0NRW2SAhVAnb-g=OtXjWW}s!5{bypk zcOx4IobwKy{HLg*UHgJR>i9#&zdq$<_St`*vR5i``WYriuyAvhsByJrkV!jcdVcAw z+k3;DHMBrC=08}!#ws{JS4^O|Bb(x%)6RU?C(i$}O1$^zl~X+BgwmHEY1g5l&o#tj znE6xJ6{XdTpQO!e9T<0*b_LviVSzO_tBRP7)o+oPC-`B}5^SfAZQEFW;*Jw~-o<9f zdf?_Dn86)-jH`paSy{l5KlZ^&_AHO+hQ6U>Q#3W79$DYn@H)y$Rj4b{gYr7`(q)NY zkLWt(lJ|(no9>9;v}qayGI8s{t+l?=EUg(a%qymPGhlxpI$wzB3Z?2w;@S7a&v@3b zN!;pJlAbBPm5oHbtv5A>W9rS!etp2i9#_VD7BMFVa2QlYgh z%?3fn$@8lfJDU9L>#HaVL%P%UDWw#=NjRMga-AJ6Go6`DYZWZWUwz^mVoB)v^3ZK| zEqc$}KF38W>(>R@EOkNozZc3sk@f#@wW9xxt7Q~%v@`pE!nJ=>@xcGUwXAIaPq_A9 zQ22i+&OfO3zu{VrKU^^zfSm;l!?OK>VcEbiEErH_;{<@gc`&>R25LFk!O$uf7_tS= zgLVEuw_ISn7{mpJa=~yc2N-buGtLgy`^&~39rphLw*Hf;|KGt@?*BK~3Ia3djI3aO zmW71_j5IT|fN}eOfUW<6ng5LZ1-AZgA^rbJxBe5g|G#^i1H{byUvw)A7yEx}^#dJb zC*2|UjZcCQ6jJE@sStv{E-@ew`Fs&B6eEKn{TPaQaS&w=U1RE`+4T;Ym1BsosyBloQOm(9%sr@PZDBU z6|y9*IS(pTkzZ#U8|@!|@qfHK*GHfqEBPiBH%W>wPJPHGJM{4vt~f$R1Ugd=Uq`Rv z!J9VBW7zZ}M~9nu6r^qRu-`(q4 za2;yaqB_rkZ?I5JbHJ3co;lG5ZeZ5KG0*(`FcR z$7pD(RRUR3GAlVghV*Giyl%Zh($yq|p^)|qh#N}Kyp{j>X}e|lvHFehShL!2iXl_x!CYq7 zn0PQ5^8NDtblP|%OFEXRg0R#G*IBByG|Z>_GItNM!KCb{fwU_mp}_}`A4;(E%B|KlHmZ?#cY_ur&$IEyaz=g27Gq47^8q zU_HZRi|93~YMA`i!8%Ft{7oT{Dm&Hv@>4Jd0!vC_l++pXd}QvA)F=uACRO%*;XLVh z$`3^hTIHMtokWNJ%v8_*;=d4Lv{ab+`sh2mrYHwP{vRYr!HPNHsE$EPFs zX5_bkB_qHTVo)W=kSS@Ag*IlEM|{-9`YTnDw2q~eHQcbYb;2UIicXO`3a$NYTgn#? zYkkR4B7Pz$NrGmVP+UbkQ5O>omnIRng;foKH9O(}TXydp3KrE)JesTkdZ9XO|bM*=4$q z-&vc2vG?$spz1ot=r1QCvjq@Gu2GZvnwFJmtR)veB-11x;jAroEJLM88FA9I)n{*K zrgLIm&WRD;qgE+sfgXvRs|D5P#4y}0F@?A*LgVIxbt50SrQdK8*a zlv|PVL?AUU!xPZ>{dSN_+ExxvRpaBQ9ChPkgWXW$+k@eehZ>wPWzEHev93c~RDePJ zWb^?$5;*1mFS5 zj!~q&*ekH}AW)ZsKwhy>C?xSt2}7LR6tWXJ_I-Zc>M)i*2dSs9eeU*gN0NzgvWJVV zySCVF`$YNu{a{<+$Y+oGPXs5+WD&jrLW}U98|mL`d784Fwk=Nl$g7&LUu*T;w@%%U zcN~)DrD&aLh6{`+3217*>dt^Mj_pFR;bZ*Zl9QWMP)ht1I9{laR5V)MD+PA`1>-A z9mj}Yu4y7+FqwkV39R0O09Pc3lZ;gVhXbzoj#=^GwtypOD6D+Lw(#VX4j~#w=wM4U z^d|%~(pxNIk$0HHB7^|GGa*6>zF;mfF9eo9BIm{PnM=+KAptyyO9~cBz6~Kl@J-9t z3v`p{3v@DZFP;EgYVZ;nF9c`!9n$`&3Oyjxu-Af-?qOZR{Iytqb$k&*U@R=r01;j{lH5q!mixJO6mlxKEvqZO`8JFur zkCd2K#vQi7yQP`^*<#%9T;yE1U=x}kp_(tvRj`v8<}4M)rGK2V!wFZEPszU_QP8@{ z=tFNCbt<6B85>+d8`b)S#b{>l+#(}$-Nc@ja?wXle&fq3;sQhnY{4|rRNN}@*frz3 zMP7W7PMyWa5SPha>uYt8m+ebnpOR+N(k_ywW~e?64Shx4c$b|2olT$p_4dMtbY=fk zdgt#2-nAXVm5qd7YizF~vvZa9774BwmTv9eRoGCNlPCFkR;500)`m+|K$!9F-&6G$ zz%@{><_)n2nTF38Wtbclgqtg4a@{zKDRYeo+o%U(S+I$q5GynP{(+wf3zv$#%4*n8 zQyOZGJHWS!i|DC3ArC2YE!N8j5r|f^Ta)#XcIng#?+nIM|I_Qaf9pEitW}eEqQ2ns z^KN>25wI@rf(Q*2KK69Y^ylm4QJ4j9+1k~I`xHMlYoPF< z#r0<^+BoaQIBt|649Otq`9SD-^3YISA`tW`e(WrvIQs-u4?tHhj2o4*E=8mirYB#v zz20UgTPy!vw{$p_$8b;qYR-oOqwcj++v6o#ZWM929HkS~U6l+5do~95 zlOLm^^~X38nk_|*tzVkbsv3$W_3hm6&PePdH{H9}ZZ8fFLvNc=8bZp6s&~5+er0uh zVkDXj!%T`vLL;Ld75T9Ie;|hlFXM-`9jAO-c`dS-lb{O<~ul+(p-vA@3_%(fm`WWw)A_fcF?y zSAC`P@p3PHdl<`ei09nT!}!NfVjW$Z2A-5oJM?@(g2WRhC+kTMl{p6N{*NBTjV@%G{MehJ0~$7b>TfaA#9> zF>-A>1=H_>TYj&xJ5Lh64?*y}-~4XNYz6Hio8<12;bPde+J^ z+~aP?{epeAHjC4t2}g%$|5o<}L6qPpD+!$2Wrz1|nJ4vUjM|ehh|t z`L!PP8#$Hu=;Y(}tcZg#si%!|Lg%diYqDxZP4-s%-E&1ni2?VP|ILk};LUu=h^U<& zL{S&Q?o3Sa^Aqf7`SQTi!M- z=s$5CHN(FJ*yJ%mZ8p)sSWfRlXlEKMYBH21&S{R`6n+aeR!*`b@+h3>w^BY zF^pAJK@-Lg9Y$S=B7vPvYIP#)O}UA@h*OXXda7MmjL~)G+>pj;C@XsJDxi1Lvyf&- z@-4W;hUkTKYi1dfa|_1miqpQw4Q!`O+UwhxlI{++^4`0ij!%qR(F1Eg z@2xlXv?J@%B}euuRJkoP91OCGmSvm92f$YK3@x^0#%y1GbgC$WU8jTk?7cS~Ag>&G z>55hvlSwbQScxofJ<01ZqXy|`s8`NE?Y4Q*|5RpELarOq8v5L9`27~SOu1y~{mHKz z>7z$?H_YANx~I}=Q8J2TUIg8lVrm{61D&6()k4i~QLbmKFtRRM-eF1x<`SJ&&p_bn zsUS;sa#siC#-dPUD@%V%+JSJ!nT?_|nx>H;*@&Q}TVF-v4~|fP67b;3GYV{P&*BQIEMoKj*r!T)P+miqA%Kkxn{I(b?X1ZKU%n(j2EMFXgk)zZHD@5*8!De|`KiCn5 zG@e!jy%*`2vC0WR*DBNVmKo!9yWMkZ?f)v>-kstpARs&`{&>|W8Ali;HJ_$^eQ~l!biX_jV{gpu)sQ?Z$T;#qPw`foT3+Ja5o0E!n5kKs{)hT`xV1;Lg*#1t+jzEuBPYfunpVwC<+-dSHbdB{#@!GiN@`ovC`w^_qMGojcw>%^t# zQg0MHD6GM%2|tohyTLP;i2SYlrID0tk>`a)!;fKYVJ35cj5Tk)W6p{Gjc*hjrqc8L@^ zm+VCWzw{ZMnt5e~CnCNSNi;=o_gM?pT#=S)jJ;8F80xl&AJ<8p=9lkg7ius2mJ+E8 zdZyi{YeccB*OQS5X0e)G`Zm1=^^9*Aw)SN`rejM|UMm_ITcVgU!#cPvBYtS#(lO1% z-IaTS@iNv;g-zk&M91fb%6hNxV)7%x%p@Qh_!}TH?wLdT5Uwu*G{)~bNqwRuu9^xL zfxgIHF*grO7gv2gk`bHA3~ELk{tL$@qMBW?f~rY&c7$b+D|erBj)mipS}Z^1ZOg#n zv$eEEn&2T9Yw`S8Ulb9Qwb|>Yy2FmaEd0WNF)2?sGNVT7s*IMok$yUA?CL5QMmqk! zWquv*HXRGfgz?t}Pe*Q9hXK3ISo3B8M$V5_K%|!LxM8~UHs!f9cMbI1 zd70OKw@Bw1X!KftP5F3O3QZ)ocVs%lO0;N2P8B)Z?+bxb1?Pci0%!ICAL)EA{J`qA zbXON$TS-N;h15CAMYJ67;DNrV6IJW+W6_v5R!W>c4At1pY=8QG`u_Fvn$NKf{iy`B zXaVZFvK$kpMy3&qE1Vsp(cZ1y7+fYPB&yLtiXjbiVeqy{cY#^>bxIWctHzSFAcv+J z5rgBDfX^^-ZEJ?akMnE->tlfzOJvunaWS~P{HbpE`;L*=Q`mL=jd@S224Sn(;831+ z$xQn{j$0Q_hJnwVoj#eLkbRfo1hS&= z$J2_swefHQiR&+uW!|3_%*xk%qeX>ZB6isOh`m$nr|@uPHpiGupV`?aLT{S%5%HwIGgo;44jxe>9l@%P?b7%|W0dgDdeo~Y;3?}zwh zyj$J%GO0agFO$+G3)z9Bh`TPAsa^UHsGvaE4&DcGQS%_IE^HU?&~qX@eh?scE6f+k zCD>W%I;oZ^o;*5DPvnJ;(bKz$)`WuIt`$IyO4CZQHhO+crA3I(E`YI!-!f$F^~1ceVg_t+;&G^kerQDT)*gBUAD!X zGC#kp5#$2v!ShJGZv*XFQN&$gv-?Ro%*w-5q${aRu7#@|>*oP;g=%HIANh#|dtLbp zc>=jAZwkYxz@Km59D%Gy5X~*dLwU&6)d)t1CuR)h_QexBUWy;4A1ZQsUh(Jm-MQyq z;u|<$ia$1%D`zjmpQ63PpP8KMGPy7wT>^igd6j*@ zeZZyb)17`xIG}IDvaNZ*cb!Cs5^XIY|CXapTQ0W8ZQxX=VDV*Lvh%9|KNVN#k`TQf zpc^7MtI4=1P%Ds(d|q5NQ;hG2gR)ePxTrAob28WH3@okh@BTuq0SA2XOKOu#86@u|m3 zmRPuk$W-G5+_#b`X4^`Bip88J=K3m@aG7SCDwed+j)o}<`Brv9#ZgnbYn&-`5IMOO z4S2GaI8?epi!AL~s3?e*0%rJ33~D-|%@{ znUdPV<=2?AvVWPoCF*DEW^5yvJ1_6gE>m{eI~s=ar)NywG+vM0teuS**#_W$&mN=O z%X^&bRdLJE<WL4ix;DQgX{@5HO8@B3|BKJKF)-#I%4d+cl1IR#t!$)Pp{I))}QvWEBjI2Ue!&wb{QvkTRoLodHH$lMl#)B-2$}DbxmcR z&6y5VfNnBTGp%kmW0;0NJ0mxnTUsUz4TuGTnK}yC&&<@coETF_R~MX7`dd1X2L4)A zM*tcS7L5ddCn4`s8;9(>oe|c@;+v(inVplTne?6teSCLYJ*~vVd zUyxQ%9+L$$ckxchT59<^fzO^Um@Cd#G=;O!kZ~^tCE%hrg6W2MTAm!uI|B5IdY;NftmHo-SW#h}*SEZE^(xe(%T;P6ItvdkjG&&+7hf zRO`~Y4Mc(C-=ey72*W9OS@p3J7 z-MNA2N~7HooTi~nBVU4El7m<^HJM((#_GP<_MhM=fESUYSwU@Zit>H!5tbIyJcbH2 zN0RL;RZge}$+bM38J=`m=A#vbvFv z$VKEStm$eGgEZ0nZLK4ryb4z_f)<3giM~vQKW32E(t@ruRr!EjC$Ja5<{A+?%|ELA zRIjGC*jD2vP4e6nB7urb-@90E zaB*^U402I(Kl6H%QHO5g@9nmK=MMev-VHMo=YROJiIaB046uWjJfgAd`9TU=-$LTG zxJck%3u}3SWM#rxgiwzHoAqt#Wmkaj>dz*J&BvZL?w0H<|N~j*u%Yr=QQLay3BYSf;<3-qSf(n{gn4( z5xX!qk&{Gx&T#ki87O-&j-tHyn%IQuYxs>!TBp9>4ae}{%}pNS^B`Njy1j?yg}=3X zb>EVBOH9Y<@S3o+xC(IytzA!Ah5X_^ToghGd{V%ib|7e5$gPim)8x+9C`6rC(Zx};N|3DJ`oejzY;86Wx^86`|e^{W* zoB%uXAN&4Tp3DH&&tDcOU?0mL{t)MXvpD}9#q|Gbak6pz2fT;*FOQP};Bf*x)c@ge z{uA!>Pml9|KWqQ)bkYL&S^v)@pMS?b{qMgQRt6^ae|epp%&biR{_8o{^j0ul^yEL} zBN5o4j0XbtE}{+;P#5}gjXDY)`TIr#Z=KR__p+CCU670 zA2x2e58o!9@eW@*y)P4W+mZ#m?p7nj1D~918XE^C5QS=pL#TJs>i4K#0>Q7c7#6a1 zbT#0g^~%K}f-8?^dS}FL2Jarb0^>iTz8oK5pwxQGf2QS#58d%yabpIiz=eMr9nD{$muC8CH8gO{+Z{SN>0UxX_3~w{|yaI6N&g}$N4d9`oT)vJ_FQ51g zF?z*mM}iVQnf@>kA7Za#MAxqEkRqBLbwD}svSO4&{m z$Y;VwJ^>Duy*y)BJpjTW!Zu81lXe^NFrMMyvVy~n1tpD?4l@>J*elbhF4~GJsMbJu zh`yshf#pI;!N47`I0oFbj{*b`~ zCYHPfsuQ9%lolN-_1wtWFNbdX%!ULcH9Fvfn8B;<@M3ooM+gGy4OvOy6MZlpR}RX8 z5*`bU|iR_TUc61*{d=;AW_v`|} zA=rvq(5R(0=^;x4>j)>Ut*ldZK-0Wab$k)^ZjN z@P^Jfn)oE3mG}6Sb1w!}b|Zg1gAl!}BJVf*v0B_>(p)}S-113H)vt(iR0Y8BSdiN> z3Eg7raQtfJB#IG83_Bcas1v|-G}cjty5VKA0B3~%#1x%|Yw%AZ2Zz_8kv3P)3pT1SWMNjET z!3M9SRbdR4Lkeav+uA4(8P(Dfb3zUTs?Pv}MF#rJ9f1&;T9E;zxD$ggzQ4^a6t`T| ztpsc>KPZD#dM}lR!-@VLI1s5;@jh@4vf9$TPYQSsim-3y3!0ex=x-e{I0fEsv7zfl z2zb;g#;)-Sx(_;b;TslwbKyHmAITSJO((SyENKC32O;yswxxo1KyZ>%)GUPNtcADKnPB4zbot>%SkO}t zy9qsEHu!;ILAz0-hqTjUa3H$H#3&C50vJc~4Zb^3r03y4$12Dn1V{q5zX7&OaG=d7 zej{vA>?<%xbE4uD0>+i)_ybUqg?j+U5Xf+%icpkdbW@JxZ?WtvID|P-a8Ofk@UrI? z;ufP!d4~N064m4pEXC$x)U@0*o}7j^{{6M!%rlIFm5{oV*DBEs(>0J#O4lSpNx5#O zR=h)iJK8G&u)`=qDb2K0DPF;2^$zXj&0%_mo&ZwlE!N|!WEsr!G@;8osRzKx+J)rVF|xpH5iuv2Bz!P&-L(-+%z zHRLEfOSo6Qhp7GbW5WCGbVu-NqetM9Fj_Q-GZ3a1H4dpO!UOnr3oJcdv_RvlP*C?c zQEcT7#5*r7e4C0owI=JnoK8?V>)cSq2*h}`tE{f4dV@DNw~w7{xK(>(mzt8c=Jc9# z(JcGA>LC_C20#A=*2kK@?n#%=cJjVTLgU&TRs`%1o+B)7c6YlmwDw;q7p)Fv1#(x| zBd1mOuD1Cl2YPAa(`+to1P@i#D6G{2v-?KEg>8{Kdu{w0L_0?hLS5r7I9{OFh9$B^_>Eff!s;(Rxd7G z&qRk3T!{Bb8F|J?u)E$tss!;nvb#*5^I62$vo2qtitKpf8fQ%pkN$Ua!of%pkT9&L z)aFDh@fc7R7OtY3AZT-L%ub9mhn*N%tt;R#3W@=^^j{D}o1f?UvUnf2PXbo$o+mHT z!{wE<;9S};AF;*{5>qPXywk`n3>!Qoe7?5{x0Z_;zY7uG_XeVT&&`HMnq6|q9!O^hx#s`=Y1|w0yp;?IH!EX2T zYl%RzjEQh){dBZvLZ%3n{5qVdSW&l38!Bd%x~TE3+*C|?gO8T}E0-p+b)}tP=jjM* zICfO{=bnvEmBSf*Dnt?}+4@qr@k>c(32|_T>POt*T~lW&WkAPU7YnEI@YDR+{15h* zrSh!BR%-KDmKa^w?JVxKl-VR&<>P!?EQ7mU7GxL@ZPHfZxklU?BIs(OZY&=O33KjUw6Y3j1SUv7C^o9;OY{sme> zrEOhSNV>(e?De~J(AyRlMn8tMYokYdR0?)J3|L;-yT0&IZ(Tu` zveha=#_Hq@7bUxAGvWba<@Rt2gmd`%vOvjWMCPEw0K|LAFnx<5fSKB8{>poTL7RGH zl!0k6S#n<~A3bG9Nw$18XEN4jm?iTe8_N~w!||xMW%ulPYrye$YwfIj6$FudXAbXs zBP7T+`R8`1!ONpLn;L{#r;m&8{rp9-dE(;6)1c)F-`$|IxkZjgzQsH0O%eJ@b{OB} z92jGOn+3XYCY-{a+bQlSe7e%DzdM=!rIlipifOYz$7&izvnkl6Zr8%uPXBOM4gyWc z*sogKGJoH3@)8JGKCJuGQ4BlL_SdDCBetqxTyC^A`T=?Z7~cmKLyrrHMvZ>ZJjkd- zHwpF<$SRt=VfULF)&ayAxDyTUCUmAUqhnHFD-RLgXu^f`8^k56?x zEGkL_r}))0SQ0;WYW=z-T^899nzUI~{F!fJ*h9ZJ3zyNLot~nH#qxV~cI+4`D;9hI zxFvX>>bGz@)V&BVz#HkmrC+WU>$Z}b3+%ch%*lCxErXQ{MJ~(;ef&lRN85##J5+A= zooh=%qR1Y-cPCq?Ar6{mY#XL+&byvSp%TV6v9P_pR?*tU?fGaIit3hdV(R#}Pn+6~ zbc<93N2c2O2B_7AFH{bd&|xbyN{zo&Nxx^uHAV{llSo3dCiQ8wDR_#g?s^=ot0=st ze-Z17uiJO#MY5CH6354c&0@gsyr@9N+Bo4y{n&sc{~LaZXB!}VOiAiNz|+#TQb zWbi-r^pRKNy4&%ud%FFoKfCpJsmR|82=}IM@u}-Tm zzC*1IpLk4O&bDi(TdXISUrUb?o%2? zKl`~4kTI=;CnH6Vt~l=6X1?Un;|;&C?VG>C>y-0S1jcpv8uVjndzyccf0DoQ5o#xS zYGhobw#=mxssPA{`n9DCdKHjY+fgD_7jR9PKd``&Yl`UUfw{pug!YerI9xXe0kcAXRvRI?M-@{o5M-H& z3}_|K>8LmY-&l0k>q8rQtzo()DPWt3X)?3$* zrlm29B;Jr|&tZ#$u{$@h3pQadnU$_h@nmv5Hln#D`0B%ulJ3udMt)j;M#PypM6y6f zelYCdMJi2ZJPKt5H?WYZwA?T+OQv+)F9l&nUo}R)AmPR+XeLfRG-qW*+9g0bv?pRj znPiOv6PzgC1Bf87gcEgrl`^OlbtiCNr1h%Qj4Ilv#Q*fwr-uc<%D%%#O4Pb~{?c zxOh8Qz?(wOq20FG8sb0tT@zap-LV_31*n9LNZQb|90TM|*0?8EL)#z+C(qJ$$q$JSZrSjSZ3;^&AG{%= zE~2~C2!~bpR1}Xw32#qHkvn=EI1R`e6xslbHXjqU#}hL{AZ<$Y$aE@r3OmFbn$#ey z$q`dCoDJp`#RYYc*`X?bG+JJj}$+R#b6(sea5Ru1P{KY@j^Ym^z(q%bMJ)LBS(Ae8?R|rs6kuf z4k!UlgX*8N(Y2~~AqUH?Qxtj3Fh7;C2Ft={D$L8{n7fN>>!6Ll9^8U`U!rnYNH4** z5ruepc8+EiIbH2W0_SkM3qa72xFgdn~pYn`p-!cAh>%P44(xotFmkx%euc9g;6hake zk^IzYe|&7_3{8S)cF~xvD_-obLbgkw?NQ`#adD8=&$Au2yfT;wtCArW6>q9ue zvb+onu)vs&TONXIzl|W`$w66m|MUm3DxAamTV3`qb@cz9X6xJD_uMk8Q#DEKj?4^q zgJXgehM!}V+XCL0#YB=)p?eQ_&sp*^Nkf)xwzUk6R_ReeBKFly8uiobs$;x7@kaw+ z7?fgM9u-~bF4U^J3_wgRWkwRAG1s`|W%%o%h-y}vdsB+nALMQpuR1OB%Hxt4pmV`# zG94LYVg$Z%&{QHXNX}4dPb~^2C)EfC<%G51>C53*BBinP_ z^+z7FQqSe)v1Z{&uKl)X^w+;X&;QO!|CjzP`k(su|6ThAuvhnfF}m(Rk? z3}EU5xcLA;{U5&mU&jF6n}d_#FNXhL+Y zJAm!a@E`R2{Xg{lMb|BFz-$2l@WBs!2GC}J*KijvtBbow59}h0pMdYD*f{@N&L^fD_{k;vn zS8|MQ{_xI`+Sco1kz;DkFN#;Hc-XmItZw@?&uvIb{2>Y-v60hr5ekp@hltScU{|B$ zd4(z;-*EDOLapRP9uFiXg~|Itt)zqu&Yd|}y^!Pk!{vVgJ&!z|8*Y77?E+z70!OeT zW9413{oLkh;D^8SV`Fdo`2_byZfPKjlbeN~ZT*AW@9PRf>_iVnU-(-YaB>2hDDw}Q z>LI0yxn-;>Is2x)rL)*I9&^4!r(3+5NqmYgVZ_tD8j6fBpWEUB7{h6<#QlEBelYoW zQ8%S(n`Ti98^I5giyNa2;Hc;=J+%=5eQRIH+h<4_I{gAIH#QG~GoT09Z zf>EfTR5E0of-1i95C~*en8`&T5r{G99iQwDwiFkml2f$3K;(xL8%u$tpp^McF{aCq z;etSuCbb9rdJ#(+jt~gt)Cj*W2>@rCo+tn5Q%JCjjZ3Gl)E$fz2!Gp+z+N{7&+25d zmkF&bh!Fr~7pWbzpKAQWy}Zr-=V-!8_StR{1N!B0Ffin{9)N3|{*ypHq?!<#6at$V z1V*+q0RYKoF9EZ%km>FdP%sEW5=1}vqONj#B@K(UGXyQFVxM_DAQU}{JZmDmBEpi53aufwN;l35c;&urNYxHOYUNDcEBhuo0V89@ZlRg9#d zq*hygafq6TLKvqYxziA^aG!v*0x3jmvEWb0Aw(pV?T3v{Q%*Z6uaGmv4-*lE@YS~0 z6>p|&c#J#jfseB*CMEKRJKD;5sI5Fjg|I{rsV~XRj+{|E$ybO!!BK_1+g?%`EnvoG zTflxn)M*N0Aj~cpikp3x$!|B3M<%fZ|Ip5NuROTOn=}oH<~brI%zLrMG@j(4p}pdeQE#zAdw9zt5Rruo|q39@*HNCoDDp%m-4(sS~tiJp3c*hxHk z#NW39tJZLnM@p$Y?JVUt@%w>lBEAH|$r?v(AwVzTpoCH{{fMX%?qN_TyZH)D9N0O& zgNWWtD)o}E@5w01I)9roDrf^C*-OCA;N{KN!>*iyM2H-#Wlbz}r!Nf7j|Fij!~kCB z(Mqu>wS%p))YLFH(kvAJ0LLj|7RZAmC?7L1i=DtbezZz zQ&o)wi9NK80CE!s$V;h>Ja964GOn$>@Ow$FEo(tmQlsX)0FLbz^v)DS;sq)+RWY!5 zmTz9K1v<1g)FH;@NyP0oWos~1P0^L?2)AFU*C%XA>#zFVM@eoXUE5$2;m*yT7tS^C z4q7P`HDO2=R!m%$!(|a&(XiKbvj8YMqfPWuDw=+wX59uZ8r0C#0ETPStp_!npOPw9 zz*gg7-c^;U9_R>uc%fg0Y1FaF+GKXSdJwcfJ9OfH$|p+EB6u1n)#^${{^lx(c6~mL ze52D-3LyC%HUvjd$BB}$hzKQQtnx*eVDNIP3(g6Z?Q7_l?ij;-L_Mg2MzbmEMG)=j zUpbk*{TQKO0pr`&U*#Zy_-M@9vYCoa{;*_;(#;&fcGwd;vH<=R*fTi24VKk+LWm=9_?eN3e*T86pua5d--5;(bEL5GR`0ObyukI?7cMq!(wpS5{fpjZuE}yW-BQ z!*kvYYVY{o6F8lMt{Yb0zad&vbdRJ+%RA05kyZq*j8AX3A2tRXJ1=Af!k9(u4y@p- zOfVUPnK$BSCUS&f8J>uuSw(p@8RnL5tJ?y56E&8>yp5aE#SBG{8(W=lUxI`s@yD{*zo>S&v6>&Edd z`B{8^@+x`XO%9TM6a+074j;6CFYP2px28l0H@e=a0L^WyJQpyJld>Jzy_NY`*k0KY zA-s%afopWr=Ui!E26lR=>5!(a*SgB8^Qc7_#axTfFp`Iej+uu-L|0rVNK2KVI0Zgr z7|rDI5vX~5-Ah#fXV5bQi^QTZ=B@5&kiIBjZCExTEJ#5;jJkQPHp(=$j}jLcAVd*1@}I>$1xa z1>>nB@8D@Dk`)RlHZK@CL$~#@5329(hHzQGO%F^55lc*oF3|>&Gu_!G9x54j0&z1}CVKM&C)QRDV=twDF6(Y` zA>&unSF9X0tMN1PqeySm!+efPHEdHq=1}vs%!!Y82bQ^<^C}#WYVb#!?NY&*QO4$D zrY3rfgOU-fXsEg1Sp(4e5cdXOLlxLSs&(08M!WHriO??yBXMF09HaVT6MowwaQAYm zB?*=bu-PbE2-E$9UI;+sbD$4v!HC!cpT=@P4VhsuAU*Nr3uk(I2`{CZ^aU|8ec4ET zXcLO0=S{1QhC^^U;Ph2SGX=$E1yA*DKli?l#0^XfnJC5Mn$_1*mEx?P+*IauEPwP* z2@9$!Ki*Y^DUH;1E7mX42W?AFAkIk|SLkQTdx;jkE2BJfn+`)v4gHyb-s)sz&0F2w z@9z*v>2UFi&tt>JoNKhNlByU<{7vT^04N5#@_bROx4WlQp0a_;EJMl$zB>ic@|XX_ zxx*H5cBGB^+CNN@I^2UQ9USW`@;gyU&~*h)HB&H!rK(gEHz^P$cPQK3Q)XY!=j4elf0vRI;#>#zyUFj? z=Pm3y-}Gtmc$cydVaHTlb5H4|O7u-`Z@zEF$zObV3*Vn8rQ4j>*V0Yh=;Kl4b@ZHk zHSPHrojlj&p?rCFyE?rL9OLRAxSgZ=LMU-n04p-O+yZ5QJJV{RTh>qEXp!=2;^g&u z?b{vA#=yX)oZN%17kYhQm*`;u^uV31n5HFa5sLo&FAJ`BfzU={A7IFd1 z-av+#2xm`E{9KKCtL4T z_Jyi1XpOZD_guVYkaa#i#j|JXStB;G*12aXpJt2*y4Qx^LaMskX(=0%p-qMi3OEb( zWSFC%P?sWzQn7!EDKkNKjqARtekY$>UV-4L+1@zk2W3X|;oSVg`T2#F++5RQV_Hfo zD%w-FCt~ReB3lB13)3k!epwVoBWE6s<>8kYoAeB?{q=^<7H} z{ncJN2ZFg>`|FC$O+w_!4X8Ws)9|@eV-FUGiaK{Ivl83K@%A#_ck0sUuvgh*l$2Mi z8-zQxi%K`VZg8rB-<_VFA7`}(&(#d~RzC`BD=JdmQN>`SPupePaewUXzVF|MX9}AY z6B>-K9@KNTua-77>!e#yR4lAoSS!BN5UoN&KavE~z8b$m%rI&PPXCCuLttxerCLom z(iYv)u9@Kv#-tK>cT9nUhK?<^FyqD7T6|Qr4hmfw6{$*x!etjj91b*j5`!OeTjHhj z4lE=%Iy8Zxh+lNhEfZpVHe@W1%0O@tbBBw_u-CWx#l^RAK)>dEgQAaP!K2;wB6cj{ zWUkkZRgd@b#%rsz5Jfh5x%_&Fkb6PRw4%OI!TC0&w>CJlj**N1QH7brjby|Rv>A<9 zE&&LWl9Wq8)D88+f{CI=DusS8w&cnx!fV59Vq(0H-)h{zlo@Pfz!XHPS+>6O(A7+h zu^_YjO~bd(Vox)vf}!1={riFIw)`x%Mph=~%*Xbn&^Z-%@*;k=X-B}t-(K5pz24Tz zh88{<=ge}vl2CGMplwpO{c^|G-`V!w(5k7Tc?N0Cx5D}U9TrDA=UlE*gfotSqzyn6 z#(v&uPbrbGg)$pJgg_zTjsGS%CP*jU%GaGK6c1IkpRooHo5+ITxp^LLo5Db|5^9%H zsga#xwYazUz3rucJz1&gMV-@7TO^GSq4i*HSAFt8gXKx@Ef)?iX;U~YU3GCYU!OT` zSzYhp_1N}-XjY2!R1I6bllDb}pW%hc8-997ss$_!DOeHoS$ZX;J0B6*T?%X3OARuM z@3NacNMTI#36RCX`^;X(ZPE&+OBzP2)9SNBd0&tMJk4RO0_e8 z;+K6(!thEcPl| zu%=p3XL2xT@w$9}4?V|!KUup9O@z)6EO!KJMq|%Dq93Qdq_dV;2$d0&)hM%p`Dz8P zFNx>>dP_VW69a7;%UpVYK@UG)lG)K&Ca+Jn(ujZuGDpcW5}B1RUT;ZH$Tf0C>axi^ z=@;4I;)|Ex$jZ|3K<6CzPVp3Eh}API@y*zzpt|?_sADm3EG!_RgbZf)B}fRY5woNm zYADt!QK8;zt35wZU{GVDs^6(q<9j}y8SkDn-xzEni~-gx=m`t6N#$Tm0S$65-`VZ0 zUd|%6YBge_Uvt89g1#~1D$kM%Sck|r=(2#0BN3f)$Q-yVj|aPL0%3JWY&n>VXm=QY zk{=yIS=-}4hO}Zq(p20%Crab(#Xrob8jL5SOW#+~YJZOBT7&5R3|!*9K9(Gh{i>wK z|0}BY=mFw5ZSuz(Yqmzmf5bASzv@>gmq-dt_H8DGxQo^^K0~#?VrWQwz28Ie@xzL2H^5a(7 zWpdI=cFIMnDs{94k-ECK(vk6DH!}1kQI1(n$Y%G}Rfw^d@|=+Qc5BMC_F!C;JbdvY zubhGP*2-opt8TL=kX9J9SFb*yPZ5Om-K0MBcn9>+wKQg{7S#F^?CvAS;|%Cp^>oD- zANCs;&_|I1tVj78;?OPIEuvqN@0Re%kt_;+?J_`kH*o@~tP_=>HmVmdf)&ii8bXZg zxxfgR^%QMq`Njx}6htWA9Sc0c0?Z9rujd%AMeUpii;k)SUK!+&Om>Kp1i|c-VR?&W zJ-Eq=l7(s)17h+?Y^5otNw7t*EyTy z*Xqf*oR{@_*831JxMiQmXOX@(YoKz3hLH*q3hb*n94ll!zb%hv;lD>L?hPXxv%dQ6 z5m&zKRwqYb%IeCAY`QdTX7QTt&iZFItKE#z+Rtic2_m-2@R>;SfqNr`3-WN}3J@J1 ziA&h!Y^2f!wI$RE^+QM>CsoNlN$GCOpB~aTLXeOTp0_GoDa}Q-d6dpKl^U}%HNmz# z6i9KajH6{tS|*x|V_V%|tk%sqO$IMwVAbvlCP)Z3$=7$xdMFC@ zH6v%QQ*t}DuNgy^8-^PS8$Of5t?QC~rNBjLc~wL_)B!iN=7Qf<3V(UHvJU=0QC6T> z+cxU?^=y=1w|433{5dip#Hm>8Qq%q8l6a0ATDNIXbxud8rJiV0yUY5q+RJ|bDdoK{ z_Z#@VCzraTx9ji)l{t?q3mUzwugzr-r1X(e%7{_@9vJoQI;kMu#1>pne+FnujA=}) zP8u=$!WLz99M}jKz}bEosgUmOLLlyUP{6gw>!gkjM}jj47g2sSJvFCpYe}klgwvK?Xs!=rV_}+_n|1hF!zdw?X_nLIs@ldk7preI24p+$bOuI76R`sQ}L-j=RT+fQN#xs+?(CBFBd ziBgMtpzHX+>*mBTH~qR|*K!Dq-Cu)Wkr+WzmdEeCHiiWEPmtqo=`zb8(+n_h2mH#k zGKdlOmX>t^>|mwsCY>U@Pbn|_j~-99tobEXbQC)Ye_eayb!vNshwl(^4?t?mW4uqXhh|yr#bhf6a@4D_jMy-*YK3w)IQ1Bqnt>zGPFqZAM#GKd;Qr)udA& zFYV9UCw1`!u%d5Wb9FZ~_*aFe9(mDGRMkGN%$o*9D?)yk^OO3-D3j^A^icyp8`_f+ z~l9l5U5vefYP`tn^K@3`54A1NDEn&s%@urA_@8>W;Guqv=ZC1mqY0`+Q3 zTXQ6>Y+P*a3{weXd1whBkWI-@6d672drsGYmS}}a0~C`sLJmzfXK`rLA1xgmJEr({ z@O>usbn=Nik@?W7s%pt;nbIBT9n*cc%beKi<=BheXkt5y?B}%_Qmm(szwhi{R;n)_9h@^_eQhR*Z|QOueyR9FZu)nO{Y@m+1-EITdN}rVY59b0KoX z5aMa57Enl(7G{%BIPW(C7D*2#6OE32q-o$1f<(Kbj2y-LaR!J_Tz9x^kM#01bWhK_W zUWQ;kZorGvRMfHQ_XJ?eF2W99|81t(KnD8aJRZ0b> zW#!Lh#JX!X_iEe{jXt`L-k-&>3EDr5I-_^S(Z&Tps50}3strd?+*ILHJtD?mQlFICNJL+=CdHp$ukRoJksZd4wpWe$r3*i> z{(IKLZ)&7s4#a5{G`XBY<#i=_qWgxY8x<_;pr`EjWZvCFgMawWCAJ{Q)g7%j&xyIl?|cYPYZ`m|jx9lL9|_e>lE)PrHO z`uARu&(hMRA~9sV*zWCEg3{ z=7J2=H%NO?UuHaPl*cnp4n@z~sv`%$1KyMt$;P)5{ph_N|LU(Y9`?U5vpp;jE)3G| zqZGHi>5tywrrNML!n2iC>`HV9HOZ9gTR^I1();+v+C=t8wx33XNx{w-?W4O|oJe&a zS^Vzj7V#~-^N+eiH|{Pk242b!C!3T$cW;k3I~fOlc~|>fo=qt;v*PPqdhQ&?Gly^g z_#}Nn9?s}1+G(uTeKSztx&74D3Uk_JyMl5ut@poO=106@nm`;8!SFeU7$CGg ze;vw4Y;(VR%eH^VvOI6RQ;q17CMbsOwD8S=Ek^PKWF8NE1K2*38L&_ba)qc)M$2-C zg(aU-XVjT0KduJv8hP2dceUkHkJiV2wMS^pIL;yClIV6|CocaLKEA$0UcfM7(ev$ ze9VUK&JeC66l?oBV3zJTvyoT13ob^wU4#*qfVy#b<%a>`(mEiZ*_0=H#^!4 z%sb-m*MB^waHk+pbyfN37c0qDimL3R>`!6s@O;Orit1OKa=4K+I%HaN@p5uGc{!zXGq!T{oa5q_Eb|hmK6oPp0 z5IaFHGcn;HI$co4(q+rY%E}3gTbqbwP*5m#5@!No^{qlm+RDp4O-!ng@hMp?B}EET z2f}zZ^C#FM$FFp%ift~Xs3hh!1uI|?%&)rXfClD4b93?DHJYF7leDmt@)NXl4pD`( z&h@wD&&q~&hUi6DIiU}|dpk!U?Acrca4}Bx#>T9yYdbp{CrdkL{Uj179C%S`DHsk3 zl+}q*W6q|GbTiN^A&Zjmc;p=Jm03||yF|v?rkaP|PJz;nQMcs@)5mjfNO=z8=i-+v z4$97>BQTUx_irScu68aotUMzz#UPRK((!UoZS|0yTBq%tO zJ^G4b0<@+r>Q9WK*54v8CaiJ*r1iO=ZNPB8TzvGFUCB?^P=>oRG;?}^&mR%mV97)7 z)bDH_CH)IOLy$my=Oi+ZfGnu}Oh%)zx@&}rccS&C1Sq4^dZ`$XwV?}5uhxD+G@Hh( z-eznE3CA!G4|0JZevALQ8! z&Ye4aI5IJz_OKtd>r@fG_I#qY|jpf&zQkWCfP}7 zk9pVqx2Ua3zSHz45dmj7m1xA3DnuceU5XF$EEm)ytc%cHmfBO|0^c>~1LV0=eJ8o- zgfdZ_$O4k0Q;@Sr;&$BQ`w>3xE<)T!#v!=lyNr#j-IbJ4fQ7e4Lti?kVG_gVT$sHH z5#_Gx*U1dDLR+DRIh+cy&?`#1?TmlOe?_gHK8~ z^k@oaaLynHSzwvDC_lz=$iX0f5BX~^KluX*gAB0iDjRBEWokhnpztIvrVFUuUX)l{ zh4Qq}^vRCmy$QJIBKqgqYl^YczDk^uLL`v2UQ3ec_gZ6s9rT#0y*2iJLU61(cKv;D z>E8*y|9eb@g^Be)0%A#%c7+Ux;g>w2ap(CU@~{m`A;|}E$$b}USr5QpWa=cagK?aO zR%^`t?5NLy@0N3F51EBKH|!t$(r=p?+#qwtEw6mHPCa07vxsvcb2XXXr^YRdE-z-} zH1V7f9#6;8I{0HoO;bN(trt1h#``MpE{} z4wcsq#kt>Y=)YSp%y!0&_WAgKqud0(e2j!UUMfhoJA3A8#0_7_<j6$2Ka9$rn|m%N#1w;ob&sL3JBRnMh0bN2*RPN33S7d4na}#@M?EQQy*f zLbC~7+={spTc)&UtT8|DRw||Kwl>VNl5<3dpI5_#FZzzt|GPJk1s`7ZJ|mas4#y*T z$7EYkz4wZse7d(Vxvh3s*mz5k7pAW-vNAM02{R}>$(hn~XkFn2K2h4iVMpMiQte#~ zEbc@V6HhxkT$u7vepv7^RG89Tz`+3vG+gV1n1f>-5zCWAfxvGHTNZeP}m|KX@l(EAX_*r8VSRIvT$TOxuq~P796t;XoYAd+sv)h2l6)uM{Q#u9sq+k@*Tfq zPluL8kbgtAcqkc=&$4}*qohlY5C2XP>KJa8;H z`3~}c+~)u3KN+Yjh#pY4)pzJ`89cD_1NMh#1jHx6A99&cOvnRYMrH|785uwsh=l^w zV;~DdaQHYGT?Axt2y%tE0#ajv<2+Ut2`*3~K#q(Wgxs1-7J3GdB%=r+xqLw=uD-CS zUnoLIuD&2ju^=A^$<-HxE`&J5c?h-jE?FQA5Y1?S;_8cxB824fwS?dbic2RHtei?f z<|K&sE6x(i5Ry@>}5ih zXgnMo`v83bYfn1|646zf;9yQ7st`fXMqIYFgduU#`b0NpcUMcI8w{dRANJGImf-B_ zxK!dHU5n#HOVaA0uWM7bp39W`YgZZz3XUCAee3tJs}EdI)Z4X7S_d?Iaw!T5(%|5x zrIzPv1Cv%K!hn1mT8l}m=!1CBN%t_QUivU7=D}SARRTdlng9cU8A=;^N$bIujehk3 zVJ5)DRu+!JgVXwvXgG9GKN<4Q7L(GN1R2pNRfYW|Wb{)ydB{vr`*I2N>O6bcUBAFwWyAr3;2!H_Hbmc>hJ zo0DAa07j6hG%&}7zK{L_;rF^r>$y5x8W2e)(t0WcX+xqH35fj9%KS@!Bt{rV9xsC= zKH|zagwmt9lSYCo)41)XwltuowsZ@L;eh*{Go(=#4v9g-nGL9gE#0UsskK95B;kFm z`Fr6;rZ#Yj18SSn*F_f`=kZIXSI}Lu-2SKN60AXoiN~%*8N7D@j)1yHSv(xF=|;=I zWkHXIMIhm_e}OX8cGrMx=;m!jbh2`G^|7@hdPu?)z1`hx?S6+Gs>Yv?%V6+u*`JUj z|0d>m^#6a%m8o|dSTa$&QLh0#DrWe>`R{|P-B1&2)Nm!ZdC(Qy2_(CfKso7*|8f!>@9^i@(RvN zv)zA+^S^28VEzXOla!x$Bd~B;+CM>oAkTgQX>1W*P?a>5U1VHzGDDJwhP@eKM%Vp<-)VgzSv|*D5t3hH z`0CM~fB|!?zdPD1+e!l=k-^KLkXUIAFmN7~)^#D7EKLc>-v|U6i9nzb;8Iz-L%*@g z;F1Lwcy|pJJd_0&7K#VLp|}{urQcW_xI=NFc&Z>CScj3rpx=b$boiy`tZ%sO<)f^wi|sK25?Mqz~`%enl< z5l|Y$0jRc6PO>uK@8$dITmcaXG$p}1&>FM#6TFj*Z2(*MEt)%k)l|Ht`4X@Bt(b;Js+Mc8 zf)p7|5Emp{lA5*Bvl4%W*Z(5_wNmh}@|MN_JT( zoX8Rb;*#45Bt6gtwI4{TKzuSzP|cuxR-Qq5gTEo}VW2Xg^efLGX2w6I2cwinoj$gb36I$+Sapp*&@Oa&4IlEA0p> zg&Y$~4dt?2dx)x^IjrdkK;}!_h0;JAfVc(Sq0*MQ1*QE1*Off~RaqboxkgZ)5arPQ zkM^x_^v}68m^_0O6L3z11Dy^A4W`y$#e~LS;fQqySS6w>(azF#&5TMBCIwS;upwHw znoGir&21fsP9$iUwIjlIz_grg?CfFEzar?kJ6aH3R|evx2$sK(z3VS#Ww2lxur%|= z{q4mT3M2cUntA)hw(8tPu&RFj%;_0I5%@|?|6HP!xWwLw5zcC^%cU`TO;ij&1h#7* zNI(C8uf6lrmCnlaIMiZP(<^@W(vKpYR}aNgF<~DUSrWUOW&9D9kh0I1B`Wh}a=CZlo9(?; zQ^_6rcqSU+wM;V`eqq|28yV4Z`r{b+{PUq&cd}mIG5kR9ra;Hco1-3)HYv~S zXn@;Q8jyp2-T!=ER!f!5rZ48T1WnWZ(ERMJ3Bi7$>>gKBLt38{x!o;o;`n-Zd~@~r zln1t<1+z3^LjhOTpAW3F`bYn-to~OP2Qqjp9Q$jsh(_Y!h;33-4gNdt`IT*DLLhAz%!l#bHw@| zSB5VPG;((L@)U07__6t^kdsDc1$XiZ9@hJJZ*{rcpg{)sD>f)K9X@t}sIz5r8GHPB zl<@chMgn`R$n?F_Uko4tFa!$&FFSLvelT`+|E-rISK$8<_&D5u z3jF`RN+?licSy{`n(2s#jWwi@8}s^W7K|c+9P1yrfc{f405n@bA-t@$)3pW~9%xYs z>G!}AQqe#f1g+@zlt@m}+L|DNvf@q$!1!Ndm!7#R7+_$?<+MO=25JA05X3+)1Zn>e zXc!W|to=jDz_II%WzY@`S>?A{%||BfPfY)w8Wo&E`#;m8MxCo>YuHP#>RUV9%T+0@ z{&+|H9b)#hpy{ne~DZk1k#pqQ9)4PLe zqx)iy)9a)%+`xcHgD)_%_|O ziJQ8a*K_ya*-w2X)k&~LLVW&^#l*~I_>@v@LlXzDS7i#NjhCOtAd4t(`Rh+Uv~I|4 z`TLE$(iY$5Y~0<|sP1f9zmt=qQlxGcRsi!TG^#w+Ri{;(@``4j^C3;c%vSgg*4=kT z-Uay2y?XPe>&>epgs>h7C9PD3PORXuSflF~Hq?t;<0-J=3KbQXVqk^8rZklmk*$Oc z>g*VKw`K1Op_*;ux<*ac3>FTI?I|H?aD+BeykHYqDQKk_YM>fh}Bj8 z$f}zZ++}g5Q(JO#TK|iiGWfD)qw<#CdLP}s;|FxxgnFz$MQK^9qC)7l2;ZmXdrF7W zpHmZG{Km6{r zlmJZ1dSK?8q`@jVMn}{73VM9AipWM0J ze3g#jaHEJXleZziAKUZ(_MIPS*w3A?lSsVnC*OT7sHdjfW!i-0XuHMe(GA-_7r%ZB z=Q1plGkdbtRJDY^;i-bT9gMBC52b(}RG9nE;-y1C7c2KjYV$MZG)j-C#3;SWk^8fl84 zWjnd;=}ta2_`8BJ*CM(gor{|tH5Ho{*^678!+Dh4dOg#moWm>COjPqw%2{;PH#Zi_ zZOLTRW)SZzsXo;HWaL_WP%_iZ)mQvxp*>F`pCgzBqP$;Eq&B(o8FQp=P>-cf$;|QT z?Jr0xcCb&D$gbzKuXpqYE!Ukz9K-F&bb-POka{))=OilAJrAg2g>0VD4M)~wjL zGxvhaD*_U*_c3R8??FqyR4QRd>~cQZ_!urWFJL}-&&*jXy@KKUw;XvRahAqY+v`61 z8Pbu^Y&onebMz!sQhi}R@a7KC0;jlp?{<$sj38sZwz7o9lJ?|no3bX3HSx2Zlu zw|yHHDBh(xcSn~|W-{gNb2Ux*W}JS4b_)y>5 zIJ4R^U_#wn=(?4H$MS>BhV@Q7f6Jw4iVyNDBZ%bfYU#Ri+n6x!u$`%);|a|BDJ=u- zk-hd=DK{Pjuxs&H6+fAN>G2^6-{wgrSm2>HS)wf)c3pM^KEf|-ml7rU!E;O`Dk|_q z?4HH;b9IIfKNr8agwaM?cKWn#&<*{7B}wZT`L-CT&Co7wFRZgUHJs$RB_8u>(#|x7v=gArm{$1pnBf9oK6juXz7sIP42=>81hSry}2d zTtcSavx&n?drn({O-;6j@{~qirM~`g-;D?R4+yl>`d=nukHBwIfa9pSLXg!N%Z^=od;YMCbqUa?IZ~T)h@nSvECTKZ>uWYtN!2>=s`ezb&-Ot*3 zf1Rv|m7noaZq)va_wcLz@z4RbSAWpNaM}`n|HKqh`;kFWiG9C8W`cZspWDt0amdr# zOnhq-HJr5N?Mp@t-}9Rgd5ipXatATJT#gobTN8X(a*R;jo_d#*A9<(eBuV>}=Foqq z6U5#v#lB`ANN>1!Jv>QI*loV6)zDABZ*cnrc#qiV-E_yRd#wfzz8nuUnMr?^Soor* z#N4BQFAYmY8uG5*!=YobBweYGou@sjzJ)T^I=|VVcToc;rQiB|mqjOo#)*C3CzGG| z2nfnWW2>^+w-263wirD|xA&;sc$`V@E0x?bSD#FJ@2*p0u@`Ei#~*G~P=6XeL&2VW zs#oCdE&cF@3j*Jd9TG)fXx)3!@`0bph4B-WABDLtzRc~Y_Rr2eT2+60NAl&_iv+wa zP1p1XOK@%uCa7&UtGIMPT9jJa~hG%f9q+{3#PK?bp%aO zVi>C~yT9bldWPX`9Zo6xV`D=aKgFL55b730T6{r1n3*zz>*cEXp3HwVR^EMgRMzXB zGPdW@*f-Wg&k`cNpj#vvE!gi(_ zt5vcOgExx9ooKI~Id;$SZTr3M>0uYE4hA!&B!Me&(<}nk_q_MVOhof9)VI!_K^2os zYg#h)^b6lth}gkWer@)$Hv7{V|7}IK{0;?ff$YxE>U)D?UYvnY6(8N zci6M=HIa7$O-27rw7yd_}*EV zCDw>ceUaGxu7c{KTsbje`yS1GTb{hQt{r+LOtxg+v0~{elG!TTyGJqQfr*(cABk@gGj(DErJ@r@ z3$osDJI)+r;-phiZIR^ujjf4H>!izp6?;fN4FISesA)LEGd*@f2$T_-Q?_g5+yj+l&7Qc z_|t5g&civHO@33hem$=e~&{4MCAxpZl`91H%%Y1IwUtDT&09I_o}j#HS_fr8_#KsVO`C&f?{TDUQxW%F}}d< zoIec357k%5sFhNP1W(Z4x~kWa+^93jt808>WOI&iwe@))Vmj;7ehx3?L>}WP+B+{f z!#J3a_RYCAl<9?`ShWr@2j$ZR9(YbG$x!sDeCpP_JKx24CV&UvueNDmP{)4sB!rQg@bZxX@j?>IY77=5q z{AgJ7BUaO6H4!6=D07#@rZ1? z!?(U-U%rtDmNS_aZBZV*SqP@Vc%^q%G!m}-F-`8}alHoqdln9OD`tjESsh@z58v#V z8cyPwIHv?!8#av#Mprg;pAK-D0Nb19x_87wE|JE`E&B^Bao^Ge2Uja>mO2 zR1GiVSh0{ss$P;aZTOu$=9}-bqeh9BzEQE)NNj==LhPxb!YRK+{nF8QuEhmzAuN`g%Ppu$#02a zonXFiTqc7QvDcutQ0D~n^~CUepbvXq$Q5`=kU=ukYI|W*#M6zTR?iO3>j+WRO`;>* zo{jcP<_aD@Gu0DQslQ)2ZPFL~`c!*d9eZ4aL%FypIX0>-e8d?k$VYd&Ylm9Ybs<_( z&Fs{31}6RQGFutN8hsCzHR2~z&$fBaIYx8Ql))}!Z)6y*b`lpK!gZ^D;@DQbU5CI4tmk?;;ort;&HKArB>=z zqj1XD0PDhUAFsT8{VF)(?g`)BER_TMa8;2f9={?u!1A~+=7{#9LOs8Ao@LSC>YO$&ijT7(Qz*XI6&HG|0nVC)KNSP12q}+J2Fn%{AnMCNZ4u7}hv9 zNAi}z&b(HuIm!*f@s7S7x#8}6N3NAnFOFZZuwiYAQ@t^dJLfD4rx|&VHOrl&JKkAz zqUn)LGNqX1ZcV8zQ#*7F!-e|%sg!D!z8X}dO*>d!3rXM^qi!Qwyv5#bN%uMA#6-~M zV;CseAg-y!$~k>8l~jKwPqBRQe9ZW@qfuke?xicBY z)`9eUG}t(^H1;1BD$poa-W*~%SWpo?(vv+~6#s#t-Cci=Z|vpxM@*`xM|y7W6y0uG zjTMrAHoavijG+u=VzHw_U!0!Tk_h7v%(JFu#a;`1sPQb)r%fT}Vld1g~^jQup`3<7u>6BP3Yo_k+RhQ-ypz{k1$A zydg(L^9CGmU{l*IpN&L_%Q02wJ|iC9>sL!c=xe&z-1eq*ej7B=4<-c)`lm-jRZF4Bm^k@b%xv8+4}L(aDQnYkb4UZ*_J4*>uCMj+@#a)XtdP zm?7N~nB04vOIdyE?V}mFUj4H3bKX^L3GsX!@DX*TQ3;X?MOHw^g&>g_Cwbvjq-U^LN1<66jJZoyb+Q-Ql7~AYr0fU8)s$B z1CF}vnHhY{k({l{do<(eLWsXE_5e>nCv(89m`$Y|!?n*BL<&buuU$w^@IKH;^;|dR zTiDbzvdZXEtC{jm>SC1c!5l)`Wb0x|!a4TT7GlE9BErkG*-Db+BFljb(e)4Z#O!9+ za5y@H!}{y_=xgB_^^tEVU)_`J~eoQ)=6GOLExD16RUBi z1O9OUDwyxuHNJQrOC$NF>o2M6N3YG*f{*(RAmFz`maqCu=%rWbq-lX z10NLfUXe5bcy}yqAxjg0L&wrSqBH^c$1HCw5r9+0N?hPmv1EQGO#m(wE6IRI!b&pW z7_qbmB~5_*7=CR>tytavOABlFj@>#N_HU$qnPM=qq4`^KVx`)k8}0GnFF%;sHoX@j zbOjV`ebJ_f!fj0NgxRS-I7zi%_(?>FM)vzxUB{eDE2Mn`sxB=asXTyHN*kO~%F2*h zsGAlmv{GaGrWL7a6eyhe1YU3ivsty-!`Cc4-#MlePF=ya5)H=^!yQq1TH6QrL;(<480{5gfVOSLKURfIkxfHDpgAP+)8-@jrW^2Q6f5?jr@UdIVXCN7W zmMe?JuH~PMEDpFvttkVD%UZt3;ADWi)Y^Dh$O#Pk{NxoHIGwD`4-Ld%ZGC}P1Tbw_ zlNO1>t>q~ikn%@IS$BxfK0QAF!bKBQ0>1`lDPF4mj7XNef1SKWN6` zpl;~*GH~GYD~#j{?DvUa*x9vT0_NT zmnuP4mY{@2s3MhtQJgATNd<>eR6(OuRDm3$6tN2bJ_gyR%#CF3N?Pii(7@gd&&;@e LyQ(gMneo2>2-tdi literal 0 HcmV?d00001 diff --git a/defStableTheory.png b/defStableTheory.png new file mode 100644 index 0000000000000000000000000000000000000000..38e294117baeb5e532c7d034920af81939c264d9 GIT binary patch literal 32256 zcmbTdWmJ?6^e>8Z2m>e}Idn)FloBHiA}uM62#9nHLzlFagh+>glF~6W2nHGSVFlaW% zB5s(!pt|cD^JvjoqkKZ)vD2qKoyf?!pepi07cypIXDln1-kobxsPEd%5OgwgaC!~t zx^k)GyH?U%(0oeQ+I(VY=U>jo`Rsn@le$YT`fM zx6=1Dk3}~0EN|7dk0ZrXTR6f0J8wDs*-X829%PfXul2VTt9=hk7z3s1wXwVpQb!n8%!(p}Zurp&|StutW-bx&JVByP@@M@(-o zCT+UHDay2eQgsE^*G_*(Tdy8dJFG43XM`dtNWoIbq#f3WKgH?Z8Zh2e4M|1e-+#0a zTPq>6aXzXdC{MuTnGHd#qEk#`$X>29`#+SYG4V8a8&efM&$CGPIp~{X;tcsrLZhI_ z=$;7KTsa(q#Cpuwa{0ei&E&i&Yr;fws-^2s3fEy5-Fk2T4ufpIZx6y7QRd26iEXT3 z%k<6_Y`uE+a;u~YuG&)ln0SVTd%z5XY*5|m9Im}jFT(e7^_wMJm8;&gJ}?aIC-xFk zzntDMB5{2*HnJE7#tc{$Rw32b{qWA(o7q5Z_0G$=j2=_%sa2jkHIuow$E`PdZnO4v z@{`8Uj4C^KW8BFB90~5Qb(+9@npbqp{D{>tb;y^N+v{C%SGG-^X{B>4gX^4X#_##h zSiBz;LU^SM5r#AGt}C-b}B*4MJHyo^GX zhXi+hc~j?wP01Vq1zOP(*=TB$Ax^%4Fd#bWw^H(uaxWuSobap%xNy4rS zqnUDKn}V%n@b2f?e-v7WpnZUXDyu71;Pv=|f1c_grP~&j@B{9DwckTkx4+y2z0dfv z+J(W3d?MZVWO{JdW7b~pA4b-YG4VQoOSMuE=cwUJbSuR}P1IAR;Kt~il-=j~@Gz!a zd{Vl%|EPTmlb~1}%2z^p6hd@SD;$ZQ3fnBO#MicP!Im=%$FT_RKjgX<{Q+Qd83xaV zK&n%ANI<{asJ1sDk?U%zwO5*27gO%Y$@XO8shXIop)?F6d}X*ejET!77Mo1Ulq`|(w z&a=w^Wm|H@l~07;yB3_cE&^FYDOATVKa#GmHblK1U;p*P1&> zzssEw;JU5F(nTdgQg4eQc(X-+xE}x0^VWV?`mSzJnd1G;2g$D2-PDrv%^8ag#rNxy zVBzA$HfTiB$i?wiv+Cg@UL$NvJvEy4`JXfd7lt?Q6y-ex7LHktg`m=M*T1Su?H4@p z%6z`6ltMaFRa!fP0RM13nYM1a&97myEitJ2^Fwe#bmg8OOP*rviAZzpV2=RICY(S%TaiLasHJ+kATLm{SifQ!)@ww>&E({K~Y#aiJ2xtN>BBZDO=g4&+m8YgYkauaXIIasrcGFH24Cc z*5Bw>9V<{hEb!^QwrqdQ>;IRtm~dLVm168+`_U_ey7U=~Z;=(##Y=*P zEdtGm{AQ7{@{5WmOTT-VwjMqI@FvL@NiNIs{!%K*11P&RG`n2o{l8y20-v}YrYu|PYReUIoAs6ZNd(~wz8>m!@j`WaroOm$tP(ywB)|JYe(w0BEgFdTuiip<%z8C`16eY29*<|msg zJxwd+<2fuC(yvC>xNY`yy28Bk*Y*?jM@~$UA@y5jP3bnRtP;Dl_Mv`rw3L3nsjFFq zo}WIW%MA3M4)IOUh(@w z`N1$L9?*Ix`S5UE;Jd{9BUMTP9Qg&mdg^AJjG>$Xjq=cjdk8+-R**MoDO&WruNoEQd2-F_RsyES z$+(d*Gp=TNbKG!Z#9X~zNnU1Q{L*74MD`TZM5h1zoN{kAP+sHwPLU$ zy-uFWk;G8~84p#j@VxU;FFN(w6O>C3PicSlsu6LW`~!Y?&FYX}PK_kEsk&H}=xvDP z-W970S(fN>E>c&KLE4S{_?VM!6uX$ls|}mCD{p?BN^;4Ez7C~#aQg5*^X;3!>(Ip0 zyjZD51W1lfbHhxw;x_I;paLQd4vvGgA@E0o7hh9;JnL3n`DPj8e4<3akfO7|esgnu z>76zc=gAyJBY0A4Tp^B7G!Zk>wPd+Dl9?fAaFn#|+kfBg7Yn)Zbe#PmpJ_wvcP#S!vQ10obQvNyKGE$(pMNM&9bZ+YEie5Tp2o4n4?= zVXgo0bj?;AS8eTbw{?D&Gw)JMi8h-w?hL?+>-NR{PL#+nHqb!=^{GSCjxIX68b_Uw z3F{SY_naTacZ+8wn58ihI|_ zmEETZBuK9oD}fNd+K_mNHlE>Qc5q<`y8Q8hXIC}jkgQ@_k`2r_Y=*LI^}Bw281>$K zVQ;Z>&Of|(7F-HXFE~_b@5lOpk z7>KMFep4w1pwc;ixTn4SuW36R zk+m0{5g+V4Tl_T|3ZfJ0^_6?wxkI@YT%w1aBl4yH=x1T(rfLQlezBqMzZsjmUfD0; zO2QgN$@^qPd>6hP+Zbop(Yyz{hw!F#9a<((b0iLS=e%D75pfMfT6i%|1t|Mdmg8N#A@`kK>uRHgk;R6nEDxrWwM`TR+0O|6o&G*Uu`O@ zM6eCPrUeVtZB{boXY%|0iq3D#<_E_bIE#huoHu%g1e@RH)CSKTx4`K5(fZ(O__QT=yFuIj4dUNRWAx2zR?(s<+K&e_SRz(GE7aFYwc|-a+F!Y#LNEVB* zc)#DvCy*#swAvL5=<;|=@5P^RTS+BDXJ7IahB%?F*nCB%(WO*276Y{AyNli&yTKIgWFJ#-UDM=PQ2&`C1_w~vJ zl2U-{-;Y9L<<*hntGif9(H2lxw}}2DTdH6EZg-_Ae3lNA%>SZM5XdNvSPj4-3up3L zXR%&&ll9~9J&^1Iz~19L;c&$Ru!sE8^k{g}HwSkP5}=ooLs1w=)G!(OU*_GkK=wG@ ziTn*}J8+DSvgx)p^MH{ba{el@jo;Xvec|pYRTLd5 zBZQS3Y|0XLQMjaxs6-=)l+R5;UpZ9|3I;DUgun@}Qj@A*H~Hs%9a9tkn|AQE5F88^ zsQSWQ%rt>B^pN~I+jzk^%P?s)@l?XQ39%*i#BqZmRjw1H6N28zrde}YTY)ptWBD|+|mEEMkWI%P5ph{ z+VN<_4(T1?n*W?9D;@We<;qQ(kwS4oZp$ys+5#S*Px@c$S!Y3uhb6RQ*fCy@AbxP* zvQDz)Q_YL6%->$m^IF}vSEAhs?@BrPrGt2>ZqC!xsbBAuBl>yKR+dF0EMCe6dVAIb zQQ%5<3W7%DI<}nuN&7|M@Wh?sG_zJGTS^c?d6KNg+i8HN^i?tROuV}=kZ`@lDWqPnP(Frc9iUz_^u zcaNORI_?gC(?*-EuwDg z8ik7Y-dJ{Crx?%(DbEiO1` zbAO}xR}z0i?$sg@%e~(dC?p$tA0QRVuIf>DFhiGT~hk07}I!NYLZMoVR z`6obgz{t}vw?Y-&h-nn5S=3oTHn6Sdn9`d&tIxDb&iE9yHBg4}x`q50_f3 zq+H@pWJW=Vl5O*tdYOeByuBiErtqheEd#K>Mt@{|ZAy1o65Wx4Qq}CI2gYHul+`%O z%m5?qzjr`({bZu$$=^*yClvU4U9oIPA$4L)&vVefbYa=VQ!K9D>6RQb`!%2Xpv?E{ z+1Cm6+@1F9et_|B*;lS@uh9-X&JbJPTy5Mcla11)C>f@CvKG5WDqUgf9zHw~fprP# z*EP32oOo5z%RV@3)w-0`Zp1NVi2`?C`g}ZUX5rhGsc5Y~@S4R`KvsbsTI?d*h?QE% zof~i0<%b-|SN{6gJaTZXLqdlrjni4)>E_tTJ9Ou(+|d4-o4Se$X;13sGZln-ff9Tm zfkVaUieBWC(-xjsrasKYL3z!(HDNGd4BuV*RrB%_$~uM~#=6r~P)wA$cZ)#gyR)?U zt3R_ItpW`nsu@2Cb|Fl<)eu7S1W^MllYltjonlPw)VwVy$g5kjPR)he(}=>JQc2@X znDEFC^jY@I^jspcjy)e@sB1fq3q1?WHl}jZPlZGZt5iA=+3B@mL1N#nT5Rop=&k8* zS+x*cZ;>|>KbHy^P_Y)px00Xz!Q!0Fv}C$#EPx@G#?Y{CfDL;nf;vNAWl%t;N7c!_ z$><^BO_tTXHl_)~R=Vtd>pK&5;p{BupuQ$Q{QT~W)nvS(l*vY%m~PT}Y%{0bCC+2z z$>)h^)^~xM70MfAFo0c^;2?)u+ z*3|M$(8i((+q%UEEk5Tij+$a5=P011=9iKzQW7!uy zxS}*X2{ForJWLbuij|K0!#T3PeCA@32%mv*}I6~xeS^N&AoNgT|V){ZJKC?PB)>?4=HB=r4^T=^06FvisZF;H#tQvDbPoF%5H@AK>`QCn@lcCNjc774Jz(?A{^B^5>yP|n%dfx!U_#^#sFUsmJuBvz#;f(7KW zAwJ!07f02I!+tx7blFx+$5BxJPd3lLFZ^$O`~he?(|6TbKjL&4au~GnxOYh6eUjt~ z%c|p6V+iaweE7j6iNB1lpLBz?L~7k_Pc$$XU@RowHsrbt2p+T%60AI<8=}B{ws-`Kt%P0^Kk*i5S-) z7g|3{y{&jhHBIEj^8%JVJJ)gZ)K30vlU%=5yz5c_+uhq{t=c$2>`|lD&e!w;W|`$B ze=j=0HySl1I@j=VxF-7EfQ?&WV@rL1%H$2MpI8lbI(d~ zHJwJjEbG#|tk^btaAiLw5#I%)4=evTooswzhlaO+l=m#tBlI zS;w_KR? z%rwMaUGJ>JCu+FJQ{_WB(GV{5=*bG(mJ^6a)l-| zkIJSy9%|qn)NnQRQe=l-QobS{Y8mzZXnn+CQLou7hk^Q0>XO4F1p_{V%B~vzV=RtF z+DP#@*hRfV=aa@q!XFch`}Nz5lb6Uot<3#r6m{Cz89J{tYfkkxnLi4>dsP#O960>% zx585+c=O_(n?DQTs)uoN@4we9O#Hw6qfax@|M!;);Pn6f`Xhxj4Ma6<$)<6WhrJts z`xODkeO!w^9J;+48i^8Yd6eOeX&Bj_u4=a53Tl=FED{oAtNC~*AkxxY58a+a<|ecS z;d?=K!ZPW87aMmP?6oG1vOC2)q_Ou-%}o)Bk1j+#EmZx(?OqtfZS{_e`#LoJ`+d>} z_+F}k2PT5y_|Gi=+;`MYug7tAPIntsMiq#=WJ;bQ$7ZWVT$*LW$c{yJf{nzZMyj%r zYked?Rrr2WZXz)NU>MkgHJmL)WsGB&5lm9>Hlqq8q<~ucWAcZ5ihoM9UzHp1~$aO$iZFyct@>^?FRY9D^oyZCV zBYXh>#<{}&-=H1a!i-g41x!@)kF5OWO^Uh2une|f#q!^&5HY?xU-39&_y`?Se zkyjrXVUVL?Szc$K6a`c}ASUxplG<{id{5_Un@@IGVG5|PNWeWoM$Q6|f7W^NGmUP{ z*OfLL&{0ltsyNi4Tiwu?bibVd{5B(xf^GMHS?o~ZYz*Lv+AmQ12>WUQ6sk}PlO77F0;uCh$-Q6j=)q`lKke`@3eJER;;sEHFXkm8 zt+6x9H3q!d{8L<_dj*ilP6~XOw|}IVY{nV}1LfG0*64{&(u4mbQETc1L6B))WcfdQ zVwz0ES_K`%?Rl_7E9aR6O4+0l)tozRX-?Pb+^}N_d0tO?HN*)t7xgf51T4MV> z0tRwGvA4S^deBu)m2Ep#AiSL^vtV>5X(`T2UYza%W<}tVC=_Gl|F#tV_uJFFXJB8z zwZvqd&+YoHsdlHnbpItPOkm)e&;`ivJ2!%j>#V0B;3-&R@5+^r0!)rOkmvYOfV-~f z_OF`Co!jfqEf3I%CioS=k34P<*M?%%UT&~k4+c@iR7xwxs8Ng=-T+tJd)B3h!#Bh- zR&qj>A3GSI)a4dy@_cswW&-RU!SQF z?P-|CLT@&*Zu&A#W5h8<={VY;6*}mQZQ=T4>rGA7JfOR$8?&_uktd2b;PV9UVAry} zu^dc)fqE#vHBstn8{tDGGiG*zbX7l%y~5V-3a>Crv#)i&9aziq$J|6EZ`>Il*R3}f zTbS0=-dt_chkN}3O?-{JEtharB=gB8n!O7^P0c?q3Ed^#B}i6CHzN~g7252hfF?Au zWVYnpybV7bboi}}!Yg(rz+71_(l5wc*^(@fiElqyD=fh)o;2~c?@6`JGgpf6>>%F3wtY^ybd^erCrOI7X_Q?ajt_e3Ne+%@kas7&Hp`l98GnIK%om*67fZwJjs_;$f67E{cnH=EhjX(9haNDhtID#EK-UUq2H#%a{F(VCj+1bvIki2G} zw|m)Q-8`@m4=#INd_Ei$FGui~Yq4HNv+=vX>?A!M^0?F5Nw|6lIJaH29wM96Kt`bL z-!z`3PKK{9LdhXO$(@QE2f7G4KdYxP>iMNpjND%z$>Y7z*Vm*LzqhKbF8MDNu=3;+ z70)31T@S7`CmUG4XrX=}bKtgUMq9k+h@3yg>$#!% zDN?aKyFgznRpmi=$HzmX>DmQ(7yi=0)+kIVx@fh6`hye`<$*H`P()=vahAy0TCHXf z`Sh)BC!~}3Q_o2N6{V8NXHq{+PAuNt-1U!WMqobXyBH1iikCUB4y5Yr%f{(?j%f+L z1ifGJ-5mdkd9+5|rEZui0GKvS5&^$Qdm}}nu%H5vCzi8vd%(34YuzRj8~!Qy5<2S#?#NMCO)+YF9ALFVE~keYeK)ks#5GZWzR*wpHKmBtWhhsQ-(WQO zgslJl*g+GOa3JztPcY}KOO5wS6gB^**x5obFNR!KEK2JwZ0(R!nJp1Ij+aUOKnsP2 z_b@_@y2-3WKue~DKc*&g;at8{)b5uJYng{Fh|l2McqSYIvJ!^7VNF2{8EwbfD^3NUh8u20@MZnEpT!Fd>s*r?UZjGHEA-S|arHjB%Vt>lpK z2D=pg%UYC|-Dxa*`1HGiO+SR3mmBpK0`@(M7j>uPt-?TTDV(Ms&V5+}9@r?0ZbA1o zT70Y8l9z4v*ptUCzL#FJe}225U+WcEaLmlU4c>ayfRhe|FVu0vX4}}ERPPcTm)06} z{zrM>1|Oa(Um3|nyyXNYZo#{Gzoi{{AO%SNj;}wA<|_jv#`<=DSZG-~+NC$rTUDz=}}=-f+b>t}VMo1aJ9KL9emn`ts8+@24xRfS=4|zIV=dYYd%3 z-vq9-PyM!>gS;|mgGH@&p08!?s{V758Yii3e)#e4m>1y=By%lT8V2Q#KQP6=ld&#) z8X5+bGes!{pezXpW62d;oT`QDQMAE9LCMvk=l6K7yTgSg=E5yakAy0W=kA2A6S6Eo z6$OZZ!n-PNyKyo$Rr2U<3pa;@l|IxD*De}|J5gy>YD7623~4#ImlpM)_Gf2pgnS%D z1CXQ{xef-rjMisfy7*jKK9!=Md0hSiVqAf!JL@c&8W8@t#%bXCa2I{yDNJ9&eBBj} zvag$~O~_K0JWj0J8BqW9`xKC#T0hQq8OHHHYzMmYg6cmZEehft$PI9Kp4w|It2HgQ zucmUr#;=#cAXnx`-8824_A*bu4}{ca-4EOfTz5&7PxjZ{KDXCFiEu}hh*S_3(bx#; zm7C1%>;xuS=aWwUU`4w0^N#@VA^pXMG*>bI9p3ed(_j3VR{di40he0IKwctV)OTR& zlr9y+2;S)9(+yRr|n4qN=LFJb_{ zsl@^eAs4&sj-t^!4||v@_yyKVN%lc{TMYD6kkJDGy*pw6_R2U1;L}lA%>#rwAMqPr zOWT1=$tFq=^-G*>_Rf7Ez*43DcnpYgICQrp8{4p#F!!)3LH_RdfK8o2?N*$9px)+KhmwV7(zF{kwG_5 zdlGQ+seS0m91EJ=tMpL2Logo;YbQ)8v``K0*0fJ8F! z!{b%q^BBAkYtc^}eLaQ;ZRf3C#~-bGNRl0!c0{ZR=JuaZaV?r>~2!7?gPTb7Z>9NDgo+G-5IZ~z7v}4a8f|89PU}pU`xPX-n>zj zZmTBcGwd!#ojz+3p_QSITg5ZgT=7OkA;nu39zjC~`QD_7{Pk6R_)yu)h=jWQPvm#; zKQc}Fsga=|u!(_sT=FVQ9O&8KrHid{X!+PYY>g3m-)a8kU$ZcwKJ3Y;if>I(JXqLe z6sEtTsgxbZ`ieC3kPidl`;*u$Z(sOc93j?jrTM$TB(Gq^q^tXuF{ig@;9Iuu!gk4Z zUyM*;Qh7t?Z;!4hsTVVWXwUkvET}XR=ad@4pr=~*>buLdIlI(Z&!kTLtt~8|d{n>$ zK9$r|hw|#5El82vfyTj|HZ&Ksy zpF&Ki`z?MA{?jwv8MtdaAPUi8_pi|6Uaz0f6-M)@*Lk~r>$FdNt$@~dQ`E4R7MeRw zClK<9id&og{bS`4xu#|EtCReAvy1q2uA%DG4*@(sc}I$;z=mzuZDm5HYs5&*>d8I~Qgnn!P=GF%X#&}B;U?S@@kJZDFmKL4lQe>ux&iNs2s zeDg=$+|N1;Mc^^_Ko3|okcZ6R!jBIDP2P#P@n|1b~&2+Qt9acQ6*;81mX}MJejl{zhlV-z0SjVLMe$t9A?134;d_FaN1CH?B zqi@zA4k6{yf&s!QQsO2mdmd(E-BLqzEbxc#=dE$;z`&AT)uO`5Q38#aH|dNaiTqY(T@_Jtn#xDg-R(K`COL}}5N-GLw- zA4W<({ff40QQ~uAD}LsmLx8JlbG-R4Nz9>fqhP&*M9^(j7whyC$cf4U(ZDEx5Si9+ zoh3&O9zM1FBX<`sJF08F{>zvJ(01XJCjXl?e-CHXbg`$604!~`zYG+TNtK?yr);$b zG|5;$AibpbgX<*9v8(p$)S%1GOwGvk={)!gqxi(^$^C<4odCBP$JXmBP0JTRy7KYm ze#-Q?iZ@9D;s$^tc|f(#p@laIZQL$DB@(nK@AsSDJo5q)1i64xHZ%QiX2KaJJ)I?D z{~hv?q5cGNvmZOs7KoGAe2Qu+I0Q)1&d8mOJpdTMc0%4K+lc1ud4=nb1R5Ysu<%8u zOt$F^@G}pt^)oOm+3-3XApfN>1enZ^Ub+=kSx*C@JaLgvQwzRs&j3EScJiP0KOQQj zM{y4zrPfJv09D!8PV2j)q|N|>L}qKg9t=(zgVOPvwkxCRNITcA1h{t%M~HIzmGWKy5{>py%4)I#6WSL* zF;r0QgS#9CddddEzPs7i`fRDUvp_ZN<;Bs)@?fyXH?T#{^A-7yR~mlq*Q%75TUn=D zkS)IFw~@)%E%H5$yg6C>`un*uA7OiR`XnMZLd1bIiCPJI{AtQvDv$BotqXM7ngVdh3Ks{Lx8 zcus}iY1w}vkicv9iO-+{_ilEot#>D>=vxd|>EUW+a9Eu}4iz*Ue?!2b%6jOe_FQbc zqSL58|0v0mB}htSCQQSR`bV_b0r|%;E4LTr2ZLS&xUa0u#3j0ddYHUR5K>X5*PD7& zt(~EyhqZqL%fBW;S&B(h?iB{&5O~q&722F9y8%7W`Loq2 z>7W+KCmJr2dxvA--6m$}=II4w#HLUNfX^_P!&5K5Xc+ zExxNO;sLMo55U|peS2kfZciX}zVa2(Y<8hR{iWqJpQ3|&8)(#7-m@2ro?lK1qp$eb zVkE|&h38T<Qbb^<#)F87~fyXHN;H9&Z;o5;aHpM}4xsO*Xa zcYnA8n$InBtm#sWTp~m{9st>t$lU*em~`qT>ww$?JnR$vnBcbbu15E*bTFS^a0oSS z!M$53(iuo(ON4fz+h#+grNZZhL>!RoS9`}C-PfnBx6PD=gdNX)OsFI1oqYfjGKZA6 z;P{=!IQm4eQppa8Reu3s{qn#9&|FRn-rt3!9e5QGA|9C^2M)1}09@cFyPDb+K>fghHP1lc^{x>k-Z~*`b(-!tYv9A17$?=Szlpo?S z(@ft3Qf)Bpp#TZ^{vY}b+NkWRa4JeighL^&a;wHm?B;ApsVWHzOw6neOK(u4OvDkj zZM>yemNv_C53M%H>jD_?Zy5!R8^_O+Jgc!*WP4i(N10qwKWL;Jc9m{Dc@Go=szzMN z?j&tI)NY|Jeor_eWC{==;XKF!wDeI7&?w}-a;bZKm_ubabr7M(<*ycifXAfyOAW?CzN%C;uIZ6aVS=-wye$`>J0Fd}4GA4<7m-~lou@XzZx?@ey-AG70 zy!;+o7^-wsEdG1`Lz=zORkPReuc;pyAlHSiEW#x}Ah_Ecs}_gJ`TU1aP+NORA#W4T zBFzBYAmd@upmz}GmoL;DNvTqZ0) zti%JGk1HdXFtgiWJtn!Q#ve)<~H)sjFgs8^$8OT_M|Z zw!hq5F7V`(*7mQTyC>-dbvoGLEJeiVE43muWh=EZD4?47d|8Aa1oR$%4!$}(2Cfi_ zCW&M4Bsb;bvF(^@Ii{uW2-XcItS0FrL%t~>@Hhx|C$RmpmAsd80|DA7`EQb(>kmJu zdf3c`EV6Vx76e{CJ|Z6v{-6b?7AArlT3ZR@^4Xd=DKia9Q6M~YyCFH9gie1=#R6FxeSI65Zg*mr}3JWFXB!*^r&B%!59ro!W8!zQFUJr~ zQsv1=(=8QBk4R88|@DphhO;3tBj>y@9T6l%@gAT27Iz!$A zRYY35RuAQT8|F?|fj#8%IAFK`p*;=mLm zM1dY8#=IEF(VhTKC-z{!eLc05BO8zIue5NrE(s@e#tYYiy3$a3KOv+Qi?dARmMzm2dY^x6#97HCO>nd0oB^y~ub76cUNsAaRy_us8W zNGkZ@N_q_0Bp~^b*;#t<#TtX-Y(%1gq*hiJuq~n=5k(=c ztdgl+dR@SB!y#FZyobRpRLj`h4!M&mmpI)c)>LHbw<`{$K8|xc&i&NPzENJAn?yA_b4PD?Qn$Hvdq8sZxs|ka3gv2DUbz%I`51_loeJc^l}r1~nd&dCxVmR+v0)bX(*c zAZ4#^*E1@lzW)d;NQfGBtcQJ61C^~c-q6e?>tIs)OUhJO(30xc1dZ1eZj7N7t(A$; zL4ra54RFFB@9`5{{G+bcL};QxSr}}F8l@qN;9Ghi{`2<$%Stz;Hdwthm-}d0;yBm*RooG)A@88tc{&erXKsvM#cdd(QzLTP+6hT{(<6t z@Q#G5p77^kr38{oDTPJ_?Y3QeFBYsPN(^*PU=+7Xpe{Bv*=!0nQ{W=OAUnrv-rY9| zlF%#WpUc>vAb@&o&E+`hbZyXr= z=pbxVeIQTJd&FHWEx!;(^$o8@?`LPgEJuSW2E^iH959Df7|UdfJJaewLR-6b=wi6` zdA@9`v16kh7UUY)oUhoN?zQ;$-NzZZe$wQ8vn7$}5!KHTGG?&7l38skUC2|{ z`GwV=|Kl^GdsT_-Ogimf8v~qjD8Tz9JR~vCc~M@8r$T+fXXrzVuBsTGQeD6bTDs7nC^Q3>x9J9iGbEBAPv1 zr(J`@2JBtIFlP;9vREkH-luDYOtk2c=SocE;Mm75Vk=4Mv2)!+pJ`0=Ur6m#kEI(k z)xRlhN08BZWhQHaB(9ZX&(>?%NcYDcBfP&qK_v3nfHiDh_l(K1@o@ zAxlf~PzqYNfOUxy0$(!QPAfN~I>rNq@P5WlzcF?aCP3wxjdt8@i@qoWGt~I?IuP>i zN$$ga1yZzb@qVY&%Ewg6AsA5>3m5t;rN+(Uro{BPdap8G+=otl`^wR~b*_P?x{a$` z5UW~3lPL~?X)f8(j2XloRc%s^-N~NyEQy7d(pP)D!U0c~{)98)MkyU1voNi&=ut+O z*otKuCPFiGv2HaI5dq7|XIm^hWqfGK;seXUIUueTWX|$x2u83T7dW+XWqrH8usE z60!gLk*mbu_4*#+zcBVL^nDTY%PVAC zg69q|+kKZ`tp8@11kLAASI1f61U9u?y#jz^_8Uu~iBUOC`m2RdT9Q8(E*o;^2mm@GeGXhD3s?q9lz#DB2&*hW z838O`2Fy{#v9MOYQ?$uU3JFZa>q(_5cYDa{38-sj#AwH zVEi;?Eiq4X=c2`)^#{oMgzUwC;q-F4(KMPUcf*K>bN0+3x)*LzX=i7fU za1!cCe}~RvHDQY^U=1!n5+gfcxR?DFpTBv?n;O^=X##LBp!s4>N~q%{4SJ$!mv3g1 zO14blp1(!^{Q(xNhJ9j!6dD(3^;PxU#ByW&Ba?XltvAGDT1?<87gMLB10Tvl=Y_Q+iA|`8@nq7)T zx8m0U*b3kKLs(n$(#sV?HGp3Is({7&4lb*8UfV4V0uFb$xS!)=f{clr#{W^4K%>jR zR;&AmZA~yFK-^XQYodA((vj}JVCl!onSlRn?~iP6lP!J>rF~Z~3GmjQ%$!wrGUg>Q zzP01<3qL5}{%=|Jr#OwVTfAse>`mw!U4K1Z0tTmm%UH0O5xsu?UqM8@^D>+VQeVa% zlk2!1(pCosc=l>+0u0!{oAbYVqN|K^6kO9WDRCE;f6b|~+lzQ`{wDw#hQ#RyY{K++ z&DEs`nd89f&1*J)&q5{{QmDx&9sA-P6)oVtI3Mz7n)AQC9*p)sf25)LLv~4t%@Jo{ zG7R+V>L8`nZ52?ASU2aI>Yfk%h?ONIV04QEZq@Om>8`3~^^nx1r?#_+7PzH;F_a$u zQz{PgM%PjY|7s-9Z~-LmyjDVGJ{U%R=c9wA9%k2BL$m`h>VhN=EfS94e z-AcgoNN>wR5rIP5zCYzeQc zY95u}UX-KWUdIf zg7S6*=RWXp3#_Z}NDMveYgz6WY%TFJCXUw=4%n#)F^S@AFaKunMEyZX*}cioOY{a! zJ;BYRFtS4V;d1=n&IMio4-M)>@KE~(7UV{HgstwwoVRRL-EQLYbayyTj7+L%tw_#iuu;-BdmhrRyDJ9ZL6nUWPltWLoo<6GTWS%jd{-%ZdrZ34(6YmLGWMdzY@;CDwQuVH9E* zHny=YsboCl18>-znFWP^9~iAmz@=r1Nc}H&>Y9h%yIuRA&OtMpk8H`auazMTynl60 z?gM)g1R({g#1^p^%tEryZI)?6CqobSiMKg}>_~j8<)9xfE&%CFo2stOj;dOT z$zi6t?=$GU?|bK6x1baZs0kzi&QTlXLT&1tPyt z`&k~rsN}t;@=Jw9e^=?NA>r{Y`IL1A4O+$Q(s1!4F3CUvdFV4IX8V_xz4(UM7D#e! z7M0;`c`-&&W5#6A1mc6eUK0FQ70exWZ88_+xbE_&KfWw^pGBz8RQB@D)sGd~qKZRJ zDeBHjMIR0dkhe7b271ah*se=FiBHR&%c7&B8H`o z(%wL0R*fO6!Go#&Sgxs%>mzMoWne#8jb|%b2( z-d}`2vD};nl5HE?0aEi>w^wW2y2)FZ&LM#NO`(%dFV45BG-WBLSt)@8JZQY1NZHz-wtZ*h)8brcL$xR zBNG3svA2$j@{QVmrKE%*BqRn9P#TnO0Vxp>kZu(Lk(3%hkdp2JR6-h2x??B-DQT1* z=?3YcIrroDeb4%x^T%0dE&tI4_%P4RbML*c>-uas$hfbXUoM%ao`BIxpMk?{!&ZG-kWy_Zy2IPYHdGBPsyw$_Dry~f94E4 zh**y6*x?Pixt6qj8N5np5>^s8mferb4RCQb9y>}HFfEM+cjvyH_l-6iy8pwsIaqCO zAPi|nKq%!U(Lw(YKO|dSVCjF%q5_k+|F3`c3jJ2nG`Us9%j5wGb2r+$vgUfuAQv2f zQkZE(F2Ac>=8qwwyz@8|jCz#wh2D#SF4m+rmIvsPXY0TwNhQ}DYZSXd-P)N{4Yc?k zXYE_{2g7RIR*~$mc^V8_$D&t!G~s2yKz)9$tt5HRmD|Q|#F)Si>k^T+<7G4O+9lS$ zzj15cUJ@!fxE-Kst)_^it{H@phNfN{W-!XrJ@S%&l0@GPDmeJXEWWH0Q&7UefI|Eq zJ;xB|W|ysDzV6*5qis6Ey{E%80Y_P{V`FTxjj%XVYR6u(+D1x@99aMbvu-h7O=2E< zHKzU;cs)u1yD@fQW47^6`y6^*4NlFaC~F(J1>*{n)c)}doy?H9&K&RLx$s;wV(}46(+tE?MGoIr9Y6E?bD*3fz zkownkOdwsMf9OF6Aw)!FPf@8?;El5S0Wdxiz-^p5TMdwm0wLob!nrqR{YTKB}rre zl;hpZq!vPUrv+z5+_-?mQOStGbx@A)GLBW*y%0Qr#>7h+wk1~3L|X#fe{HyP)7snY z2%_<~1kR7vM)G@P*g_>=z`7N*uB>o6>;M*ESNYK2b>Xagq}s`wfRi%1X0tZogP8NP z`I97mb2B&Tg&$G-d{Myz1&JO~qb(v3Y?|6+!Kf?+?R^3`I$2;5)OLkiu7Y~xT`M+(_!fzVT-z+ z*4I|_WD~^D-ur&iL0~+=3|lm+jQ=?cZ)eJhV{qwW(On@jO|IQlcsgMMfINx&$l!MT zHNvH|-UdDNNY88X_oR&L^Pb0ZA&u&9$bw&}>7dzt`Irn>7Tpb4EmMAxzVZH`yS?3f zb@|n^1=RFkksjTC7lRq9Z-`m8oXoDQbdKucFcjA5)wyv!l1MF%+)$71cy@HP^G?bS z5aj$brMC|VKu^yf?8*H6O|*jl5RA2GoEt!n5)85659f|b;}Eo2+k!&-&!Sv&MhKSh zr>xyt&L7A-As; zxmOjiK65v-miAuch!2@AP zKJKa*7?SPg%U*O(+=Jfs?C`Gq&%W#ZjMjOWxW^nk#cCnJDJFpgn?gRCJT84KHA3^) zE9x_0i9(J&%kgS_APERu(t4F`q>{(k8taBW0p+-*JDZ?W^jIE{y_!~~1~uVlQL2y; zVdT~3B}gsm@5#bK|N7&@otA5LT(6`FsktpJc|L$s`%H5lD7QzTw*v`okTU(Emg)e` zCi??$Ce_zt@A!eVfkXwfudofy5eWT#^#cC43l7Y8?o?6EZ7F7kZP@`t2fyb+l<0J` z6R`j2QMZG3efVN5V44`$UKtKlwecceD>04GaY6yi#@GOpTb1D#7~M4eG+T*<(q+iI zlq8{Xb3@|4Y)v_pQa~nbEU0iSz~fPRVN}Ox29)VD<%?u@gXAA|FTwy)AEDu1u zFoI7xdX&+@&vQt8TYplrspkD$;_-K8oA}wV@XyDJ@k*L3p1N3;l3k*Id?-y~^M+V) zc_8e^{yun)dmi$4pl?U=$g;zoT>Sv%V51 zute8#VFqpPt*B0RH5^-_LDL%E=)O>%J?D~qbnvsJ=^^b;=U>~m#r&vKeY+BP#EJw0 zjPEdDP>B7nN}uFe|1vwca{Id0sbiN|vp-gO0QfHZTXOmlLB|PN9#|>RbRCk()RQ7 zLe@LXFV#te!cIT~TQ{+}b>Xr5>xw>+#0BU$HJ>}s;PPO}DI#HU=(7nChmD+)+QRNB zzK<&<;~9P4E;9;usTFdSETq|D)f{Kc&Mraig$stPvm{VaZ(%i5IDPCG&5UIt*but0 zLcdM8+kLO+YPm0^aXqyf z35vAx;rg)8xUtEcOd5mrTZkUwikn zN?tp^43rslN`WId6kMyR_=<@hWyE!=6LK;(z(H*HYhI9m)tyC=BW5pJ|NXoy?BWbl zBBA`zX_`4^kCgqv`J#P0qU>9-A6dqhfdOL0?nhP7dd2%0#oAU7bg#io1lMMwh;5A9 z;fRufw7XZmcQ~c}t2HS&zTIe8JC1_`c2TvmNnzmwTvyLc*mwH^-$7|87Up2%A-{I5 zJK|V*%D>w6;`A`l-Sb;f^aA+B?4klenxoM{Ala;Yh^03#;2sQJvcnW~ise@(fcHQ33N%(X zd>8%qn>QKzU!2lSIx(;Kvn4Y6st}Q=VAsxJJ!YNDI1>r1H_8rydwp?fB@?;{@}@h* zX-@uwngyBtbKt>1!d3iDugC>*yXuq~*SX|YJkQ0tb!TT2)Ok(jG>tev~=I7P?> z-#lE!o4ucSx38W5A%Sp~$#%H}3A3+wG@Gl@GGRh8@V(_zbZ=tTs_nvZ%{Th|BybuoR_d{Ya9mj=%~%F_aO z8{Vxoil zjUM6<1<6P;gh!cN;B~~Gw4l>8$XD_VKTd?<@X4m{UczUw1~OGdXyxcuX((x+$URu$ z^D=l6?uK=2P7Q5U#y-T)zx4YFa*Tn#rD-(L_@oT0_H?lRyOKD&!rdDa zK-DixF-{N9puYr}eXSe{XM+zFv-(O^D{jLV_ve#)T|*TksCCcFk*yH;X#P6~ ztl6wD8>MiMOg2`k)GucO((A1FgVsxxM6<}?nc#5}3tB?2DUIVI#@#>Tj(ykI~DjXWvxqMn=8|lQp9}L{^$#+lR?Xm8sc< zLX2SBHF<&Wj|5>p{HCONy); zATH3Dlyhd)?wGX4clktfXYxt(M&CX}HKa)PW&Eg&z@Nvzz0-7f8=Anrq3qyS4SK?O zy_OH%7cfQ2%QBuuCD7s!InK`cSM~N`#>9@WP5d+vlUSzgy0y`9j>GA1YK6$hHCCLn zksh{c3Fo&>+f9F~U_lb-tvh43drsmDvM%STUwriv@wYgG)&)aZDZt8Y55 z-lxaLux!@@`Ia0_h#3T=NUsz4`S334wfuc59k&(Kdv!DsBvO`0sOFz(#5f%(g`znHvvW*&FtRzBkI z5cyGx{~VYB7%w@(L15)(8bB*vetDA|2mvOyL3Eez!sD48b3r+jQKv znDwqT7BIL@v_`WQwSy?zg8Cu3==wI(2@`ipA|t$Kwo~@9?Cc6SicDXjfY&)k)NL1n z6r>Ed@)6o*%(RedU2_ZapqH1HKY3p2eQm5Ji{b6T5E>a-$-;B(aJJzmz)I=^3XD7b zNiO7?t~roTVc^E;H~p)VFzf6ibWmpg zN9#(q7oDQgItNgNhDW}cC;~9~%L0H8DS3wPpzEv8y@mA9QbD8)Mn^}l0=AvIFRheV zhA+7Hty4lYQYsj>qCrx-@|*2SI|n10!0lC8bhS>{n_((%cr&)2qeh}}&Kl$~F29Ja zV)l?8sVP<<+$9|^S``q&h4|2N_$Eb%f4KSvtpM{U5P%T$OXf61@Y_8tCxF_uyzN4> zMu}65-xcO7c62mNFgyVJX%NaXALtpE_x8FsK}Zt)l!S=kAuFq1)G{z-9^?tsn)`oV zoM^h?n%&SRGUchW4@gRv@!TbL{>ptX2QSNAn$HD7$ZtiuE+f?N*j3kOp?ohP1`I!I z8~rUwqZn-CB`8#3)F^R_C()KLc2>vwwGjR5M8d@%C5H+RROrN^szNk4PTF6AnPiD2 zo$9yyOTgGm^l67*ApY#_!WSj3ZY|>6%m4wBUyNYn94L}0{SBZZ5+zC#k}xcuC8sDy zyFm}36g}IJB}+A08J}8F;h3`Lo%MdGFhxo1?z5zt^wI}#jXG0#PgUztdbuW@VS@5g zze?qz`jv+3j-&F2pNE$C_-$&)L{A6OeUBZeb26;qXfOw3Ku`V$@Q~X$zo; z`gwHbULez^o*;gaJaHGW!s-#}>_vo@B6>(5TBElPEka=NJQ-#uoB&>`k1x3t0Pkqu zzxN@0oiGKr2kz%%*U9Js?z!z&rtij6+@XkYDdYj05e-F;=MGYa1jlqZ?@_~#WuC#8 zOSh)K2Hzfwi#QIe^(~L`8ug679HW9{z+z~-x>0b)UmK;d6YVhGroy)Ori&< zuX^HYRWEzXR49NeK`P*ksFgS=HU=^48J8q6BL+X}y&W_yPa%3P^AIBthz~24kbO9K zL}pf+H)AkNElK51GdTC0{rCtlJ_o{u(s-AbxdfFz+xC-L>ajXPxSV3HS5& za7SC^Q~Fckdy0 zf;-??Dy0k&>{YkfcnohdWldQ+!0L*F9!!%ps?ob!`b(ewK{*`@#pcytBp1Qz7=H*8 zZi-)jr?$9FyIjO}VGdD(n%^k&sP4leVctFlrejON_LX;BoS}jLE9(N-I_CHQ2gP# zeMp_ps`rcdNd;a+H~k$~vuW1BKn|nf)1cdyZqhef-QP18pmvVRT>1hkuj;QX;_L`I zVC3;|PZnDQk-Q}{6tNwIZ{78S`Lo*%5;c4eGf#sv_wlOk(n#75lzv9VKXtFQ=h8u} zys=&~G;0d^EcU&=bz>NqM28#qgkIsVg%rr{w#n<{_X%O6eB;+hJ*8m_? z?);U_-M>V2%RMoS9^1N@%6CRjJ5gP+pT;AA9V*0eZu z5mBBt6xg=^!)LGRQb256kw-w?jVYhxHlgf~NK+Y1Cq@+Ksu&!1j2423^usZe zH|m1}z+apNc&v>*>cc#o8sp6%pD^=#IOyE^p55<48(^@zgj%N)+SBqHqEY4?>H*E92ETQ@>F!5e zdnQEvv8jBkdP=W}z>e0cb<0w4l2opr@Ln|o-H?aSHwH@(uOT-7;^0PCKF|;cn~0#- zJcmgi#M0;f(8+sEX}gFsH92R?6fl&lH%HTa9DHUDq^LP9QYH8G78@|%Ff{C%e_+OD zgM?L|CIrWOp1sqO1)_m_uyW<$9h|BiKpq*qh+z;Pz7VBA)3Vz-+pEnbdS>H4*b7+% zu?>vOBt0Bq-J1IM{@jTRPnpZ&+XIIC6#jK-RRQ7wnTUWWW(S{{!=t}{{!GzE$x|0z zZd%Lki@ew3liKUgqUlMNTa_Yv-iv)2u_*2O&M3}}7=R&?!AKk>P?v7!a0g_A0)u3T zs$AEGzZT(6-TKMY#$d)Pi9FXL{FxuqTTYq7)bD?C1VRHbn4vcoY}jLMXOC&{_Jvvc zu4OmJ`zk$eb@$__c(eR-7y3_)?W=TiXROwyYDzF#@XUP!$?_$v3wFD+pHdbiWRsl` zfnrLC^rT*~W$9{-VX>8qRgOkVG14=ISaY?1?>|4Y_no`Atz_CLP@5U_vU9@N7- zYg=dw+RE|!_`k#rTKfR?l>dYjf&X8u_SdbiNI)#^_J5Mn2Z(Wz@)ZHF8ad`Ig>0cO87tCs${*lI=~02er*c9k5zE(2SNx~p2CEW?k_aleCl z>i%8Z(vS$4B4bCI`GJWkI**d01waELK$w|^7oZ;|TA3D=Wl!TIUkc19Dv{Y)o$M_+ zAPr(}Mx>=vzX8z#FzU0PuDvG#2K;Gt=_LcXoKK2EbE4p79f8rcx1v@+7B7Ympd9?3 z@`chIZZ9Ti9*O)*JR#MMIsVdGzSq76X<`^y#$W{Y`J`QmBA~oKJpcpj+UGmx`vb~Q zr79cF)gvtiieFU0F6w-*7my7g`|=xu+46M!x#LXmsrIPdXE08Y7x8&VNCTmtHW)3VZ2 zZ_eZ|j$b_f`}H(?V^I52W_r`Dpuh(A0J3p7J_=dM24~3>dQ|M-e4d0}#8byU68gCQ z1+t5MolPv2$Dm5b1r+Ox2b1c_T-m7$&_W$HW!r#+Rlft^nLCBAQt6wJH-e`gx{8+e zWO@HVxhF_Yp$ax8g`Zvhpm+34;cF);e?4*EkzUc<@1m-LvV$?S85QbB(AkMVm zWW%$7nOoe?NA|yqRR9-j9c2VGXIYPt=P$U3mXR1>vj6B$x({+@N|1L+`7q`|o~gM_ z5CZ`8(P+r=grjU*s$-$?zwY_g{k`Im9Q47;(4tYRu*EA%S&sW4=^MF?+Sl+ylE4em zKKtr^Pf2c0em-Bkd-=uND}!NU!;@8S6azxO4!(#nn!<}gI}SGcgdUcb(;JN~MhVoS zDiO`5JwQ$cY#d@<>AmQFH8<}Y)uM1%=V%P@Ns7CeVD{c_})bu;m!3?%BZvu&hi%9UM zR*o=IXW}El(mHV0xGwW#tcK4=qm-p!GRGN`*TKBV=U3bHWPRqbR!mR`mR77~Gw3_S z1o@3LbmA?UPOm@si*C#Y36qoT7v(p1D);j^kN&;3H}i87F(@X%df-P(8+JWi%lA$> zpLQEFML(5!;>CO;+G@_+OrQz}1J)qSVu?DUZU{u-?#f4t&4=~~;g_k!>tU~Dj?luy z$?Rdxo^~uM;{f~%LirAoL|9KMgF!#xrE}kNd=XzmTy`D-U@ED%oJ>yXu#`?L{rZH* zJX18t@HfRD>zO(hwn6*sEiWpFG6k^OV0<1B4%tB&lC_ns@U zYar?6KHC9;yKd*Zi`P}Z^cbP#4haUkg)Y6%KuRv`@((zTAJzbU_WI0mIx~QT9`Tuu z`9L&|6mXO)Z9?!2`|vnw3|QZQTzv^Wz?Be{9eQyVP-JS9@uy`cdW}q4G?`|YuzbKv z^4&(K$cJmjmPy^f8j&?oVJ#`>j!zEd($Y*r0sTVQ3($4WwH6FOZfuHQ%1)-bg>{gC zc<4>%J=sejp}V}SbL<1^?Z$Gmg6BTa!YmTj$zO0+!ytOyzKch>Qjv2$RRYu+t@ICj$l(b46f;7-m!r`3N zK%GgP*!Rt5ldoUke^g>_n7;Xz;NOxF*5H1u^O$0@B(E7_V^+8w+6Y$kvH{3tl%947^Q5CS(?)2iW!0h~O4 zoAnu^QUYi+o%f6Z#5T8?B8;sE*l^yD{ zLpmyOup32(>Q2n){XO(+r>N8Vk5zVK?hpr{=K=(!4~tJ`OF^6E?(WIW>dqm^0ws;U zmd3}pNP(O2SMZjJA3&*cSr*r?b6Ep)^JzFEF6-7~V1xxa#co@2&6-U86)38_lQp2R zN;v)b4;XuYD)LTbv@t)kEN1!*w*yD>ruiNj>*cfLmDGP9HrM=I+2J62LMyCS!&Z4) ztWj}GgY!>Gb$Yi}CK~8=@0|2XSf?Kg(;oH-N=#E)%za7sOHa-^X=5^;KTj6wNC`A3 zbA5UJO~r^(Z-j}m-lemNL9N$sL+g`ljh*UMaB6NIxtWo1>DS&JrED~ypS_GDWnK%^ zGsOHjj2*K5sEaOXI$gH`q!nAzo4xdDfNMhsgdB! z1KzW2AaH@;Y8#yB!)&3V%^6ZJO3G9_KwX8KinL7 z{OPCcd7Er4qSGpBbZ$Yqe1QP@F{>ez_VC|Qgu36hYtciNJ{J{K%fVwfF)lUQ;%#o0 z8@fJqRj+rPB2Ql(_CP<5PNA3kuhddjq}ozkFLkrqzbXo3rL&eiQsPePnT0ws2&5=_ zBm@6dh~OC`IY@1+hz3h%wq@78ArWyga~8gDzVU7Ud*g!=o6X2~GV&e2_p>Hf>EsAb zF{nQ`YPbHMZ{L!i;($Oo(4Vs0{j{s^U;q1yrH}sqhl%H(ap(W(?J1pk`DoVB@67lh zx%s?<$<3F@T!ui{b#>6@cxSHv^N1{xe#- z6YK-fy_imwvA4J}-YlRe0ENYw5ViUtecq|(bdk6dYH+w9=;*>-&8Zf=I z{{|J;k|5Kq?*^^*nQHh=+KK-W1QtE+$=@vC{=;4ynL+Y}N>y^SQ7`20t#}&JeQ@G~ zbE7@nRhI!e9XvQg0G+Ou>oOL=8jHUcD*W3D!!C82^p{A2aW4lie+jCfiY$FFw)9J; z$VDSL1EJqmZBfePVA$^3_NPBXXVF`=;jt6+1_u5w3cVwp|fC*ezuv;+-_?p#ZtKiHKZbQYVw zpMmGeS+>t6Sf8|g1uV4gSC2JkMv`vq%|V5;@)p*54|pxkwMN~?%!!F<_%`E?$X24L zEd53ez&%=87I&L%L)?OtcS5rtjx*Kr5$! z2mqeE2%VcGa4E4#Py}UzTR%RP)3$FEb;|KPstZtf8VfEw7vq#c$qenVa_otzq~Cg| z=S_+=1|DiRSTWdiQA^%50ylP%Z8@oK=@_dx@7-$VJI;- zqB@Ld=ktx-5h;p!jORZp`AcEG`%}Ok#N<1d|AePG_O6Zq@jYC!-G-;^+30WE83!Hn z_2B#fp#-Hg{rS=T(hjrFnw!x3#@>kOr)u&>G*br3{_U!50)k`xk3bV~<#|^_e9Qh`e;Vc!N%qq2BOkTz+19qi@dEWMmk;F| zU>2?qrXd#@s8Y+v!%FPH2#E3R*-=p{v>gqdOIbERmm5m;E!>>^j&JDNGM~1qKYZA~ zt#?&IsoCR`p6ZQIc(d9*gn%?XG7wybya4ScbF> z$nPxnXZ3D^%5lAzWsxR8R11pY4XP6>b;Ch!WVAd`YJeCG51uywjv9>C#qT>Y*X%o4 z_LCnRC8R0p<%Q=z@ni`I6*k%Ha&&sg+nL?AGVt)z^!uY2p0wWOWP|+^4 z5%t;Z1+gV$2;>sYX$2Kr+AVu)_?^ceo>1X`XN8Z-X8d_pv6FIrhN*lLkj2pY!d{DM zXUs^$N=v$8Ke{ydZNw?Cs9M!0A5qVxI5w?;y&a6)iM(MD#l7w?SlvL?9GgS>;bJsU zD68US-=4@!Vj|m;G)&4gw9TpQWW)TbegXX8Z+rR=5uXLEHP{(GI|B8L5!xWK^g(eJ zpCz=(jG*lZN?a%Unc%ni)(MUbh7vcz4a$rtPFfWa_m}8Re4n zO?WxzuN(HU)8~U+{H0zrBaj|?SsB*?fNfE4GhF7O9kg;Tj5wa=?Nxj+h=bIA^VqyD zN4GA3Xca*c^q#zP38}_83|W{4&6){qF*gCXvEeIrFJLTj**0-s^jGQcy}UK!F%4!2 z8uFL>sWe-boI91z@fGU6+}Ow<#O5cL@wtfI#U9 zhEw0>#~!qD-M>u}9+CL|aAQoe0od433*LXu(kptu2|3~L*s^zK5jcl{C|yfv__)Gi zdi?U5d>Ey->p|o=as4heu$j?Tj&<6u;**m6;g=O!^j|QocP#)J=nIR7k7hUG_vOQ^ zuWn2&Y~c^~NR9)OSlTTIZT)e^)u9nUQAQ*Sq{5`Ue)QZyGuXD11lalh>sYWAIyn<56#(oKs#~ z8kga2bJzp3aOr$2_|YG~t4HJi*&siw4J%AC23Z0 zFmt(ZiU;qo28P$N=iW2uTS^VX)D3+0Gs09>WJ{xH*rfo|8icA!cZ1Py_+r3 z_CI!=23tw)Ph#7KuNf#g0e-Xm#P-}R>%LD*>Xz}#L4b9Yh90f!%X_~MR+Mb0vFdpN zrfS_$^W|Yl*oFmeQ!yFE7^p4&+V8a@04yV>iPU#w3r2F4s-< zuZvyP_5J+HirC27?!A$1YD2svUFk+meYN8ri?R@iI_{oI=~)88>p`A|1LQN}N`~y& zIxD~58=!(KTl|VLSlaLY2nL;RtsnaPCda9(7{5#u6Yv*&O12>u)JUm&v*M-Wi8aRW zccSL_)uGmUAbm?cErNpFeQh{*`@_O(_Re1JuC+x!9JH82lzy^=SC86jpx=)ps|Go=SF;!QAcIXB$b z5h`L&dvcw;$>T3t*WQm}C;yg&t4;2C=HpG!TLz2pUBkcgnmhFu>3V&rx4(tC*ZUfL zkx2I}UZe+!$E$1Hr*76*!8a4#K>3c&D_ecr=Ege2v$vfDpzZIrWOQ?|D{GvPltEqBrt7)l)+=xu2_D!D;ipgqoU`y0)p3kgI z)wLqpcaR@k=f3K$Y3dtuZ@>aj*k#))7ql5cYdA;OEo@INI>?!IQ#;gqX)v6OTyDGk)#PW{R(2#mmazKDmxC9u#`9$Y`b4 zBi-ZAyd)9^*=kbid+y~qshB*rnT&a#s5nit-MBhRf1NeVQxa=OcNtKwrapc|+5V#3 z5h5xm@!Y^6f3eX~SfH`D{DpwR<9FaU6faSgEMh}j%c1$g9Xv(`RNQ%2WmFPYE{7+1 zS{z%3ADqRU@;b&n$=e;w`4d0?ZMDiLG_v)ej_0^l9XANhaU+`%yi|M0i)X0YYL=xo)WyCT2cq z8^~VVWZEyy#06`#s<(yfT1aG@KgJF{*JE%tzpvdJenX-OA|2LcGeAj-0vMIztP~GU zx zt$eun@2wAdIUmb6np+%$%hxTXyABuRv~NB|ZrxT%2^K9Sh&gIdVHozykP#S$DHvMQ z>E^lBji^i|uBfM4RNvBtF6;uFqASr@e!8N>o1xhQ z^d17}DoXbRQ}exm4Pu@}+{w}&o>!3qrCQdeJJ`25xG(X<-!q%n7BiEKGwwJD zayVj-;bS#ay#_iHmA6UuX0jiMlId--pps>$tmCRRrPK#lPv|O7Z`Z*SN8>2G{}^JH}X^}(@dy5*pBP4Lal95 zyC1TX6gymC;yR?L%M>jC0SvLc&C^0tLO0iX!yBpViiPCon4e@B-g_aZ+&e{)=f82I zV;6$T)rCyEdX*BKwyNO5bjR`GLDMW8%AW?!{=~Kh;_D;d@x-Dt#Y&Uwr}<|ke%|-H zJkO9On8@b2vlJJqCx$qaj{}#|UuWyhTf5EkBZlb@FRxa*oAm5~N+xKGd3yi@7h;Z%nw*C4FE-MiES~7%>=D*0&D%9CI5w2(f9-M4#JXM zLj4s>(Z$$G;*n|eu4x#Lm{e0o#zJf>V=Pi59>!7=n{iH@>5IQI7s5Px&;KG!fW?Dc zhJR|M;0o+r82ud}6egA3EuD+PiRNajiqAo1lj8{BaHMahdsK?4lFwHTM{$U{zMEOB z_gqwOyJVTZ1_)m>q3dVCs~eBxLnyIq!&yA^3|C7d-2-P)nce{cUN<9@x8%N1s?$sV z!WeU(qCT-Lr6uZ8la(jC5DE^i{90ovWr{4lUy38O$K|d#H1{y9$Jkv=THfi>n&r~q zT1_q@mwJ)K7)KJ>K$a z?!D|@#=*nSaYsyZ@jW~VOXR#oHv`+%AiK!4dWk1%Yd8IP(PzaIrF zx)=SghMk_b#KaFfV6y!Hu=ZyqR6gpuH!+})`UKWg{2NqOGV+$7nt{qgh1aw?HbFaq zLsRl|@3sCv$pw5xk&^M_&C?Ek-#PWFK>qM&>B7rPU_%G=%}SEPdvE?XrP#LGp7iwp kUP1AHz$)>y4z95NUdJkQfkh#}*7j?viW(1#ug8us;P*5>C$dw-k#kyvI|{94 zktFZt8DxikPoVkBK>m*>)N|PbBA*HwIWaD)6-nkr7iy1XKg@^V_xuh^8A}0j-*W=93X?=z9WVaJFy|x>6637`U?UrmGbVvD+DF~7W z5-Tw5*-Lx~N)ICQLNY~`RSCA$eBb)+{V4ckgEjM6mAp*1hdxfvdx`=MmDWNYxKR2K zENn|GL+Av1LT(qq7XsO!-pF8sv3mY2CHq0{Gv`O#_bW+glT2Juo85onWI)je8esZ| z1X{Qt2^_>f?a+dx;v4QmW_JBX>a7ACK1Utw9LPtfD>d_*Rot2CFg9jF5FM?|HFImy zGZQxfh#p62u@dq080+m&@2OCSl-2|Gs8N!Q7nX97?I%a93hQ` z3bZ!`iRFk4)xEX~u~*6ehAip$F%`^DEAt8HF<>O~9wzzyn^spd+5moL94{S8WXr!U z1Iw`qFk1cQSHy)IPXpMH22@&28NgJLKW=IHIr#nIWwy-X9<&n&26(BN2#PFd;Q6wA zpZ(Fdmf*lmM^H4u4+iIC?Bc#EbX}hdVY{-_s zbwJOzE%hbXI3SsrwN(Z29gJcJePn()MAlIq!(t=Yb8wEcVy~p zIJ0we6D}?WV9yf%_n^T~|LyhS0>F-_m+ph&fTEAp!Suj35g}Mbp@n?MLj13$LPk_y zxDLj6YKf`W)6Gp-LN=Y9V8CyYyV`K+1Op%W;;1F4#xl6DUtV5tNJvo9SU-dnBn@c#1?7iR|34v#}T$E8|Wey3juy46OTcDrL~;X!{NrJC&LH_kT)a0mzx zu&G30B0#VzpZP*x{ys_Pi3j%1&86h2q2N;gTiQ0S6Eeru)}-Js62ZBpY3%xVkGCh| z@ELh|)M^b1YHCp%8)iW-@suJojEsodtb~n@%gK4`9o{a?nnlt779Hc?qKCd?sc+#W z%2)j&JT&)-m}_diS1-hVp^}t2jmxDt`1%0%_*YZxYfhK{9mv3d%$ASLcD-BdRY=V5 z8b&}s09auK6ChrEWaH;2YIa=ihyU@TQ2s$OsXqc;T2c}QTgK^EBW%;-{9@Gm_wOO= zK~K=vXNlKm{A)ik0%mm>Veiw4;Ghgnfferpw>^<@IEy0A5f?2-OB3 zUfb3x=zMnUe|Kut&HeKCZv7dWbTg{I zMq=3FJo$8tLfZy-TN1;H8DjO;)Vh~3ul8q%2&9Bpl z9r{FwKSh-H{kuZ0_pRr}mTaz0x%RgSjnA0m{5y7##2jEUWS}=$b=|x~IC`dJM_QIH z!ccO7Jr{A8&I=?TUtd%k<&g+<;`_5fIdFach<2HJ=&LIG%zU+Rb}25%1QRe{xKbe! z0y&R*t?79glNaN;`7^(b9Yh2(mdY|Pw-chGV%Edv(B0{IM5I=sQ7C7fU!hryrbZ9> zNDW*}#-x@z5%AqGz1;%a_cp}FG>uJn&(3YgdB}1k{=%Ubsc3L;@Z7`HbbTVQd{8Ey|} zrBJg>3|{{-B#{Z2FD!3hgcBjwq1$Z@9S$r`5ZsNcUU`)gkwn?6rRWHSa2Nwz<0zuvLa-| z_37x>dpz1vSd?4i>U9y2<*@$B(IgJ(p*M#3 zPZoxkdg+uR;0?*WdQ0ODuieo2s)c0o@pxQ19fDPb_&P+$a<0vBU%Sh?_*)W;fIhQk z@LT`ddWmH>y+Q7mr?Z}k-JYdXG_Tl(5~YQYqvF^LkgOEMLewNUH0PbP+A348)74Sx ze8(f=FRCNNNX=`H5gZinFBeW$T6nV~)p7*;=9Y9M(o4*n+m*eVA8BRmfz9q{87R!2 zSclAr?wGD3qQ6e+uU?P*#_1P}$zqM^ejeo$up24VEayD%!`}wN z&jY;c)9p#8OBB@J@mC{DFiriBct=_@Iu2m(ZsoCL$K&GS_RWo@v5k~k)=sCXP%z1i z0k1x}++!7k?G3-e9Qh&G1S{VjTTmDA+v{=Q$6wx0mY#tqV z8wZi(=Y1=evr0!FfB!2!&|q|!p}5DxrPWfc`GDnL4o4{yWnO}t795Al^)!_Wv(WgP z4)K8d#7E;8;0PXPGU3;pnx0Nb@1f%wDhWV9M!s^puEcF{9MJRj_6CC7C2$0gS_Zy3 zK8X{HW_Qn7g6lYj9i)=s8;RLLnDk_@kn2;iUiw4e7_N5PYhIyM+l@c|hoEw~4p{s~ zVZ=HSgW||&U`LYrEVPF?_N_YqZofcAuVPc6IP^V=t&hmj_bs}SjiFZur!X%p_TAoE zU?Nn{y0?1-xs&8-S^7cn)>a@q5Qu%h-$794+LUgM`CM!K?ny#IXcy-%`F01=yoU_ z&hoE&U0od?OvDl}KveTU;_-BjZ5LZd5(!#2@XNDrD|izQgXFEG0xiS-f9HgscVzx| zGeo+N?bK)v5-0FMX`%&74#fr572PvE$~2X++^9Az zbY@Ese&u63wT}r_Sk>b1d^g<3)@TonGi)4%gxg0k~*}Yph8cR|?BW z@Z&e(fyT}KP49m9F>b&2A#sKAq7=mD_7h-!^7B9V*%}9q!?_rBURLeFK^VVXM}jus zmwiB!EX2h)6js+cMUocLfibYi`bduMEQ5hTB3{Vdo*GE~s(_n3;UO<)Y1PE$Wr7;i$$R}^L-Y_azTKfTndwX5HS6xW7lGk{1mS%Cp8(vQ7@->(@;jkWd-x5D3 zV=Sh7!u(1~TnY=zRw&BD3NzM_Es%YZ(-&|By?s6(Ck){UnyLIcLu1*F9w|p}F7vnl zc|eQk8+Pb=0L+c{-R4$Xw%K>VSezfYc56%L)i^4nEHM&#+n6-N)|*;=I5p)97J3qKd~_vzuHR>nk-)>kvw-&_`UIkbM9RUWSEDwqF3Vel zW&UH}D|RH6H=IC7q}OPw3$=tls@H4a%xM;V|?jYQ=`DpZ)KoY$UCgpi-jSocNYa1%`yW=}Q6B6`Dmg{a z7vd|W-B+UpyEK=Zzp}$MIi$g-Rge>WEhVgjRoNnnX*49>C@;smPi^#Q&t~gF71&H4 zB_AWyLT4dj!QsDi$|QKAt$b+5?35D_!>v0`Kat;00Qr0yp4q6ISMmUx`C$4`XACSe zI(@^FuZMcfd+p7+Vs};T;t&CO7lQJZ0y~rIGQuw)%hLnOzj9>>sSBbk&=rj{S2%DpCeys zh(g2#UBK_JyvNLQ#O*&h(H{K;Hmd81FesjA8`&Q|9wE|l0kPM9mRib9ILx3Bw#fj~ z-kpM%48u%eF?+0${1Ekbt#vT0H<=Uv?FZY%TDk_BWcyz|>`5bz+ zFn<&sJu?$%n+latT=c>$P+wk8tT+Kfz01Hhq{@32^%KX+(05Q$l9If8|P ziW<7yU^CFnbp2%FQ>-C0y`uVi#|bjbNR_+YKef3FT6 z84JY*{}OEpjZwxZo=WT!0BAl^;w*Is`al1JEA;wPUqqrj|NPwC=d=HbQe)IcM?ovo zIpJbs8zi#5+x&4fnS_FZono}!exB9C-Ca5Y6iP22KPaC-_0L#fUFni@bK~)uRAthX zA~-oYTWx>P@nya5|52K?esDggCLvp_IXZ3H=~D-W;9M-Xxik6s`d;)d^aKaTB_t5X zi=I5*94&p7MGtZYfYJHRXi7gWs6Gmq1*29l?9oEixXWH7Cb@--3^K@n)r z>t4r8xM!PK9if0n{|$0`bp{ z-zM`vN8(7RBfsxB>mKh6Emi&Us3ZW^)Wqw)Tl3GtPE^U}|7Vp5kk1TX?vC%5Z4I#o zb$53^+wj@Wz;GG2Gf>d(JTSNJ7Gw*!SOACUgNj2m-gW4delX=RyW%rr& z0$73U9T}#ukkF>UdceTkF$Vx30i&nJJvaL!d}WjVrRwhaKxQMZ*95#xyhhe;W~O%j}OawSwCD|8 zw5$i=$0t6=hZ%A;Tk@<2T1!EExwqk;P=FcJztJNl5J&lfnDs#-0BjE7F)E#3&X%fC$Hm6t$49GaYZCwzKVH(bd%IdNw_ui{+Pr>Cc_L4W-=qg(67_9n7; z9~u$(6YYOB+VLf_QWtDkBfDj)4ezbjZT>ull>^L*xWOU>;?59&X;I~iwvU$^^g6tp zUPNXj%b&x;46#H>aopTN&4qe3IUxL=E3WZg`f)5mbYjlbYd78FyR5h7pgqa*jFVQW zqJ*#&Hj5Q+z0a3x0aq&e?{*d2V$yb2Q~VJ>xk~=5uz>$&(yU9DgpB6QKgJdQ_PEIq zHYuLzscc7h*|a<`dXS%B)iIGeYT8ikndqnyDcOCY5Z&QtS!h8)K|k&TfUwo}4yL;U zpFa6rGu2Tdwm5!2!_TwZYU$M9i>M1)05}Cpd;4;*%!{6+WhfL;km$hcY>k70R#U$3 zgmEc5w)mB{r>AXZ(8agS|Bln^a5f@1*J?a{C>$9ZP5v?u@N*&ep)~V>$cqwXIwykF z-0&NTiCnSl$DCZVE)+hM=k#h0!)DQDqV0hw>;iLUvy7HWmbt@F#v!!8e;ct0Z0f(LsUpRIqW2@N0wjiK6X- zbyVo+@AQ)DN#pDCRb9+lP*BjbK^^LbBb{Ip5t=icS78HrF4fQGhTQwVKjf)3A|yXn zdRJTL;aBt~WmwM9l&Iz9wl&2Q4*<%0&GnL70=_5h0;u&x_TMTrd^T6M#kL_@_ zR7a2L&_d60Y{O(j%w;m@ck}1s$h0RY5Ca>VI6g7Qf;_(-s=nNG^79-1I!#)%RyT&T zqm}zY@0*d?$fWqb$Od9&^^hJRwJe^9wH$XT3ky0d zQXUAh;DUsjm0=FSvBVxW%esD>8)KvG4>(rcYWAYURq*i=cQkNJ0-+F%g`s6KM+o1b z#Tj$2#hNx^ClUxxQbtA;7-W133bYo}8uP7zUD!*1 zKYXa1PXQ=b3ocswzaM{d;k>EXE^953CpCb>=aoo0GZI1*HC2VM++^Z2OQf%gZokO+OE8MMFZ;DbJ zc>s!(w6<@CQvAS}u7QO{j2%H$bO!XdB*-kVjh9irFZ7+mMz68`LS2N4)yn5h3BjHt z8x-Lb7>}U_Hh-%X9}bfA$uHQk>FnXV5|tr@Y`Xnpgc7}%#jz99X~neyW0@D&F_x%O zs&XDaj*jmt?G4$I=tZPiw4*tRL*V%{=!qlw!ud8oLguwD0*!1-UpM zmeShl5)e53pdtfkeT9$>>Yz|Ib)@Id9}v9JwJ6VD}ioGH)YKvKmx-r6WJ>OU_i$HW?qfR>ZsPKw6q=Gk z9{&2>?%a#?-%!1Df8$(;P(*7={~m_&WDg|AbB4-3ZNs9ygIM3>K(ygkl^kHG16N6S z9wBM!MWco@g^{1SCNFuvkCV`B-NEA&SEED8txTK*+dtxdG&;3T^ljtNjPL7IIX&;o z-ks1jLbQh_s+zDqS!HvBb}n1YHdH0_p65``IoKIe9D%WyI^^3+n=&&8jAx!Yg=YCX z4D1*F=}&2aam83hY#E$UkM5mSZ%7w;-F?s9VLs)I`SW}>e7FVmzT;yKaz0WX?La}{ zyo$@G9+-^eznkHApVdPr(q&LEp)l;m`1WmA6`0%|`@PO8nCG(&y)7{kA5EM&DW}+9 zaKSV3>QTt=5Sb5#I9BRSnO_YKa@|*2w%Y zvam#|4|#$pe7OzBnzf{uZ9kANL`+6}vk~r34K3ciyQQJ!>A00s2uMVDGlwZyd(KNj z(28FkPmcc5GTlEUkHWHqKCp?bBZfb$uq1B7U%4EJw59D@Yh^}n`}dG4Un*eP z>^%fo@y*-cf-vY3#Q!wGL1ZQl0 z-a6)bt2_=X5!{!@D{2KT+5UwH`FzQ7Z}UM(Q-xn5gnlgn)L}1${eLx^Q=J?l!FqgN znTXhC5>Gpeab%6Y+SO-(x>kI2v-x)%3xfkqN%pxd@iNjC}qK z`Jyb%k(ZpHMxjF(TEF|L&r-}T0c7@fSlJAxyXo!WT%TS(?7hHuif3h$-Zl@8bC!pt zd4AK=diCne`FWkiC_9_EzEq8@Ez_8aj?jf~9PDisQ9D|58=m(4zHP_pP9GG@3`Qy6 zauQio8PY)I-muL2A%JL@m1POhz8ogm&Pnp6(#Y8o?kir1;S~ zYzZEj_Uo46xrslSxSh*|KT{uM^3B0ZA56ZT(^kG&jZ6Rf6)ENMQ!VTDl0Ftv=L+T@ zBIO7N^NhZq0T}NokJ0(U1iVGjjIkSn#b9l`szWI^<;s5g;#?o%z))kkps!u4*HUY- zA7`(UMSabZ96y@$w0^GffOM>Oo?)yn6T1=Jh@6r?UJ4@4hxl=N2K*NSd_x~edpK1&x7K#v$Hen>v=A1rumYv zqOMyIFk~lkG=<3~{luWje)B(x@8DX0fBy`{&za@rEYmZ^lsBmI(Rw=-8@GUrS&))~ z55OF%b>DqT6J~gL_=v*6-1l$rZ_n2AOt%40Ms93mG&4Sq?y}a&k|T9|Seh5Kwb%~m zO81ij>*qb*$4g19E^QmPCo6gYaHU#W;*BtN_v%`#HfGC_8l+iAXo-$S`3KX9IE_fS zOgf|ex~NuKT&B@?bA;R>4bfczFAw|AzkusAklXX~X|!3>uH}-@0TTz=oc?9|0K&Rx z{Fme(sig@#DJd%U0m*3rsGt|n%`W-8CYPIR^7;TneaS}sALv@^{tmEyC?Cuod3nB4 zqa}QhZU#`;b3q3{r_iSDq!u48PETWNX*D#z-k)}y`3O5;S*M{VyX)4N3|S0)GA{r{ zoC7i^i1qSlrP;|asB3@f3tLfgj#*k`NC-@j3P2#R7Fi1dno4_HoB74o5H}BxrUIj{ z;%%Qw>703k^`uYe^JWw^*UsR8f+z<{)Ao#g;-`6^eqsnWyE%?+|o2gsPb zU?S>(^Uy?)$^74^yE-?k=C*3GU_e`>eK!vLx>gQKrtRC1av1GI9$5=~IZm0~8S|i`o;wH{6FHySTXghwjm~s2I=SvP`0ro%#Kn za$sN};^#=60NU-|usHth8+jAVipF;?YdNMPz+9t#Q|k!&E9~dvqrS@#rBiJ*TH`ra zqVgd5ZC}6E3|68BU`u`qCyjihT(}Hu*^hp9x*16YpyXTRGre<=YQvFfS z>&pNdA?tZdbKui0>bL3P&*A#(@ ziiy?Y7|+hSPC5(Rv6Q41g30m0kHXGb9Y8+qbl;Cpw9f_z#*68r?F0!T&F>AJjx+{d zwP@K^wFb7fWxyR|b^18O#i=TEs>bBmPkwjkDl}1&A8G?S+>84^h+UM-B57(0sBR4|-Oym|QKoR^#n>3TZ8+DtY2x zGKQ$c{FaIz7G~EEkB(vi2_M8d>Qs;FoW7S1L=#jNA)5qi8lifR`i6OvT!H`UXt^?b zl$g_qxo9t^YYk!78gRxoyl8gV1|TT>TtB3#M{!P%zg%S&6guq9pf`+sUinmlBI{G3pRafC?bYBqDlDto1dL92ZOxjZ*J--m5zVgsN}vG z-54f?&meSR#>>bt~B3o8>a^fc;H6g`0iAvb4juf_7z zY#=aRtuOyjw$hg)Z+JO6WhGDjz$u0$_(g9aPPJ&$z6{VIXE575x$ z&g8K|<4OezUcA23pv$`sCI%ah`hE&2c1gl?#2I%c0EqWp-(uvYQfkw*-@-O-96+5IcF^TNAZtx{Fg zZ(Dt9ZcC?~$C0?>hN`N1kitaPN9Q+4-)#ZNndGX@n9$h(T-niQ zegvTYAPP9Q`v6KjLi?iJpouk;THA~>4h+=A(0&jGa+2QpdBWS{Wq2woDp0u(he0FC zgo`s6@C2XhgQP@O%)O_0(`|q$mjV_RqJ80a(zIv>i00}*T?*LE4NtRpU~&?3!Ua?t z_~Zrl@*>h40_aDLe??j*CMG}$5k%X94KWtnzb-rSY=8wYxd=@L97WNl0EI-rWny%% zYM>VpCicCEj)f&g!m-JqDv^#-t`HYULC(MMDR55{X^xAa+bb2@u8T29{rpEEq4*MN zzoYqo7m@wnm?tbM4m-&An?m!|NQIe-9LYi*II`J3m?`zD%54NgI`1!U{~1AEBV#&plC68u}G6 z^FPmhiAg7HwL!-WOX(U4Fi<3SAy$}|LfwHuQ5FWxNrB%f@eK3z9E$9%LZ7)=@LG@_ z&0rDphxfIf_p@S=infx}$_s|S!FAWMW8lYu+;X`sG}F7BY-^Rt(ybQBY`@NZNT}Q4Kbd3vqYag8B^u?Fb~G~6Nqj( zU{35%Qj=o^FU5P@rI=~}wTZ86=I3zCt7sRx)31n!rKtgQkqL>rW4LU2%>b*N41g)?R+F~E2pAdTpPJztRhJTnuv+E?-Z znTYkzL`vV*<|156e#~AxRz{+eX1u~G);GgTUH2MQTYAB(L7iO9XtCT#0+`I9tX3Mw z%{;%#iEIa#x~R>owr*TkU!HtTMFNs#uAJhQA@E9N>iUi3)d8J}8*2&n<`<9K;GP4t z80{;SyCQnUCP!u2HO?GIlo6Ng_OBpgM0u+BQwnp&{l&(eb^ReXKE@PJ{Nh76FC6@y zAM)GB6eh-QHIKK9VUa6);^`)vft&Q6yJUZ@06{;BWIG;(k8O{d{JRb6t31@#WI24WvU-u&5{ z@aFDrn`B*c$$o*QAmme;%+;4h>?mE$!u~44sgClIr>Bv8mv1_P%BvAF^$#Wfv!O)> z&5ShD;pAk6t{?6!%Cyt^tHVVshlJ_DYH|0bL(m@;wf@|U#F%BxfS1LlZl=rkW1T5ssgHSth3b zo3)}dh3oW(`No=0Hd}&uRTRAWiphO^+e6_zae^2SOwv!-M{zvOFe`-;yWFh2m#4gi zjZh3=u827z{?VUlY(XKr~<+idqaU39s6IQ8{qS3hwC1 ztpUFcu*u;m;Am(2py&0SGr*)7KViD>ln~9LZ?UtksDmhN?{l$on!rV=g8W&%gJC!H zF3i5Dhg?~Z?MJbN#4~q)ALVbkg)=SeaqrwP{9o;bnjeUwL|YQ|cr7Ms z;OkPA!l5>Dfw1KJv8Je^^^oxcZGffkCCf?#|qm_{1#MWUo{q(H6CC z&DOJysxQ&1M@G7N3(q|GAl~2hz1XL1dwcbQswgd0akfQaQSmyK=4@ZIhriBoBU@Y$*!K6d&7>{?FD zr>!=FKMS{OOXNa-`DvXCEl(w%Bdhu}AU@jW)b4g>@2&SHIZk?`RUfTj^>n0PB=V4X zWTt=q#PZFq%=_c8Qzw&^Sl(jA|R!Et;#h!AMgb z%6GK{m)>kJNeik58;5^>)Vk;lH(7I>ZlRj4GJ^P5QR_Uq-&=`s=ukXlggZ0P4pv1|DZ$L=h-Eu{*68COL~`Wv^NjcUkj8e!Ap3rIbri`S#JuGRTIW_meyM+RV%yB zJwI3Hte9PIg|cvg_m>NjOPNYA!OFN7+3CYa0%zQy5sbayhHh$pwAI-7nCTjIIgEdl z8x<4Ucb=;3h#Q|paB(P3!i9DKD?hV^2Q(LqXhK?n-YFWn+UXVjJ1o^ zy?Rk}XS;n@DP*o|EInv~%@c;I(?%TH2U3d8?cx)GP8=@h3fVq|g5Z7~$RcQ?`T<8`jShjAwzbJ!20X6V4Rvk(TQLn*E=o)% zi^)dPm1erypY_~5F`9g;SWiK{*GdR0W7kGp!Fr(}c3KTxNe>RIQYzChexzI_%C2Z@ zUJ?7&b5Ge^O&%RA_!VAM-fCrnB$jslZeW4Z-#mLPVnRwi;?xsqbId)VsSb}f3Q=I7 z*i*3HP@4UuT(WsCzFCIS5&s-(N+SJ(E|1agkZt7KK4;9XABwOjd%t2bT$qj}{5T>F zTOdO0t)%C(?MZvjsdBox)Ewz$b4c)OSqb{f{2TL_+pcDL&Py{ZF$r#3ww*IATEP@u z{Le97VEVP?TPpq&aq8(E`{9!>F0nGJ5}iEd^B=(1Nk(PcWSpD->C$WRdqOk9f*pRy z*#t0@LVlwm%xz=~YIprhuQ6t2GA`5OpTT_9?}+iXyG&gNJNAyq@uOT__iD0Z>k5Th zn;uVjhKC2u`mb`qLgrBc60zJ~Vz->-ay8!Gdt;y>p>C$Repf$f%<_u(zQleP|j?^R>QN9A$1=36MHLI-o^#RM+m#BFo zf&*=Dp4dFS3n?8iSA8FQGqzUblGCD#ccS_$Y(D0{e#M&7QWnDA3J5iOGK{|e#`{n{E=U| z56$WA+s4=0ZRYFHHrL&o%;d~y7CW81V0%1qpUy;-|6JD?$Ja%rrcw?iyPe^cko+ez zjJO6HzOws|+I2^0eX)jitXYH`6gb*Ws%gV{<*B~Cim1zoq6l$cWpHjn zZ*6M}(W$anK?+kkL6|~B53fi8=hWqF7a^qy*(jxvpdkqVz>hxr%ms;%#Gdgl&WEF&KREWdB_Jb@q$6ULqBYGd98M&VsTxLtd z>m=dNUGfPvj}|5<_t%r~mSC{1#4kl`tiMfIp1Dfj-}8b@o2^NT>lH zN_o?3t>t}hCP}I&iZV|~F4bj0ytxs&R5@?@p1an6QK*dj7~VFE{6+;;t9DUf^9=7C z=S82FI7~GsEWgR0MspipZ2b=$ra?C*zW)dODcr26o`L8{F|$!ZN*8kf9HeI(L04<0%4J-v zVWltT>Umf==bK>LBaUwQtc$J1nXgw^%yTX1KRL^z`~^K7zQp3Ie*vvenkmd!s! z1g7{8)NY{R2=c>>F;RrQ>lv25^Hny}bJE>pxKKnVMenX64zc)2i}KXWtw7J2xnXin zKq9z_lj`qI;!$lI7A?`-Kl)YLeC^s*C=})^GbI%L zQaoF00YOd*9!P4qD==d;wNg7^ozuAP@*cLH?yW2=om26W$OR4E%a2Cszvs zQGpa*zR>W3J7`1sLZ_>FOsRV}y`VH27&yX26@`iVgXims7g$2gU=^;DiRr_mENojw z4o4S%?qwD@l9EV`2=Rm$9Ld$s1V7Zvvt*d;JDpXxiF-%!J|cYRZo9X9=*M2gkBYsD zisBz)XA!DO?phWWi_VKeSC2=+R|d>4SsV;eh^XzH^}^>Do-J09nKf+$U#2f%aWrCz zeKMk!s#dHHec%2mk0(5`dtcppX||ZaBMZJyN(vjhj-J~f=y{}LS1di_s$OGtruHz% z1LPbS;HK-zFfD@R-dHr za%wdv4mq$5T#lEZm`?V<4N@B-Z23)`EIT0&?fY1KG9hwOh|H zIf}ycq0a&iRl#2q4448Jo|h4KzvX7Z z2t-+b7k1}82E5BhZDkSZu<6*m_yx%LoY|9PC-2TH7dC5FGb;M@^{I6S1BUV{8Agw~ zipEOxWKkIDuCaFT?fJ*oj<~Z#p?G!Dlj)wIs85qL+?`-Bkp zHqQdy)h;_ZpRe9$F^)OS=+Q5YXW02Q&VfDs!F_(ppo8bLql0uHuvaR91=23-=RUjZjJ~Q%=xZWgB)b~wak8%+8 z-IIbDAb2odE(@uY3>$5M%wvw;?PI8^MLtjmS}NL+k~V0R6a|qdD=t-;+BWr|z3;m(2MhCFXMr=#S*FjP%^`so zbu^iD3741H!Cr3i&k(p;`4{ly4>Y%jmSc%qMGI;K>nT?k5)^&TKHsSg#GPWp<3EXk zNgqlvl3V8D6ng^}o|GV11L4cw#$f@Mynw zulg0Iw!Qn*hGs(TSN;+d;>2m!3CS?>myYjOt~UnmAisaG`!AgpmT<&Ts=!MJ(hT83BRZM5WJA6m^Z$U3#B-d1myj@sc=8zJq0Yuu5g1kc~;6V69c z#J9sE*tmc}wp9Xu<@p9sA6G94b@MC}KNCN;y143_O^+t1QEA1G3x1i(me^Qu2DbjS zKJrgye&i`^Eo?31U(2mg%ZOjb7!jCK6m(=Q#HF4G?+2fXY~7V?FuD4bYZ(@6{ita* z`&>sg);ShyE=niXE{=gu9Y|XibbFXM?`q23;?5MpMxD3h_ub%?V04Lraj6DDX>v`4 zwwNj!xFUFCc8Q35*#-O&gvi>40k`ZWOTth?RMItjA~rm>U!q>Dsl8XHscZD}yXH*k zczpJNui4mgolhYlwEf{yfzX$}cNaH1C?tMYD6(P--?C1RdB$$A)y-1F&-j>V@-W3xX0aDlu@hUFYL+wQQk~-1c(4?9IVl$Q$9rymG4lU#)d*zs&KKF(HXcm&X~+Yghu~DiV8Lk-4c&CJ z^s^r1ZCZwg222EK=@6%8jUf*9li;;6bJ(@$en zlHLNwY*5>tpCcIDxWHSW^J`h4LQq4g=@z4^!iIJ5 zmpX&5K%#i6imEjaZ@Lmg#_*PFleEO49?$P&?)xi#{9a>SYaDO*9!Wqz+p0r0?$5^73v+_T2mA zJM4HQKn#WaZF8`Vox)@&AFt4kTmn$S+2Yb1XahqyLre&t)mxTK{rGWjK%JU7Vl`qp zZtXU=D=lHjX0f$>S~p*F+^~h@_`7J5tN8F3qiZUbFNm&F1=F0@NhGUsX3riC&Fu!_ zZ^iJIDT$}`xmfDp=+LnB3=4giUPyQ$?L*_$!&b{|Dc$v)Tu`}vUGizC19R%2N}=_L z1@CsZzmq__x>5YTeLXwl(K?zq%%sxCI3o~rbQ#?gm@5~kNokw*Ih?5ZjiFu^ppV)) zcZqEFWJNbOx7ymXMWaHr-Cg2*EzB>U(;isCx#pdWh{rkp-uKiFZHj<`Fa3m(@r^pb z`FfeG$s>6aE5pBdZXi%KCW~6ziXdx>{;iScuZfq6Xv|(>h`!q&NVDS$jpy=uUyqHA z!>W*j+Mrib4>iad+y>OidjsLl=G<}(aTgI4&r~U#sI9I2_3H-qt7Ft`nG*y5U<$}? zN`#wjnwsA;F?)RFav?W&tTSNSbe(gj&Su}Ny)j^zv*OvUog13V&;L+Rezf`q4zBfA zNZStH?jatN)!??V0CJQ1v31sX&Br;0qLLdxvKqfB1i4r?&}{0WgpRNA6}{Tbbn5A|3J>0N0}g#fwkZP%!HmHa*Ew}+NkM%UA*<)U z7s&S9KNrA_0n2Jkwv0iUqDgYtM5a5Td}DRD4#h4<2k`0V=Zg++kWF%f@tjZ6Z<-)= z%}JYVHk>$Y;F6ASVlJ(|iNrL*(lBiCIgdnhZEHn77=}=7tO;T9QWDhf)Zv zt*s~0Yqty94UO1o5WqwwV+=tYmn;eyX0~>YP6F9k!l|Q{iaikO>|x7^!%r>gyGY}_ zSd%5J(WX_}er9eXtPIGj!!x^Ld}4y=Tej<-QHxTN~;Y@v8_>y0Gt&=oy;uLWPuXLwnq+ym5I{8%;MR z_?wabpk-m6?Yug^w@GEJyK>`Z1`-?u2kyWdRrN(M zImvD8U?20@jaasFD#vCG{m}(GM+z!y4@5ZI@P}pOHbtXx#gMEH;XXAA99z-}=9{r4 zr`3dPR>*HI>>ZlGZ{gd9*xpt6mc?q^tnr+ zVsRQL0ngl!Zbi^*UQ%*JwlA<%xKJ&BQm|MbD!1*<=M)}6?a%2W^hUwSLqlfV?Vr=r zN3FILdqNxp{4N*YqxS6j_^q|(`61nZfQ^!~fR_%FkN2m3Cv6Q_tFUUqDXS{Re#e3Rc>o#2;xXH9&0oWnDAp{^`{?q1&9gz}q1!#ZDv3 z@!H+pFZKgLZyohnuwh~MIL1F07II~Z=>@_VlRNsS>TcIN0p~bk?X6)dk-@r!)+5c4 zk)EFJPn9U~mc=S11r=M}OEz1>*`Sr*vdh)L&(@YYao`sabbF@gvMRo0ZJB%atd}7N zWo3+h-XeJ^cG3H7B~{(MTAS$XSAb@|9-D<#!Dve4O-R#?dXO)Ea2v~JZTk5fkhkeE zzugOLn@?qQ-Q)n0DSafpA-H9o5B%=%7A$s_o*V&NLstpRpYx@2HQ0s-(au8dAv}c@ zRW%y!!*y0Ry)XNW#9!J4^Phkyn+VN~of@M+a!e6gJ$m2PuA!|p38NNA*;$XCKz_Tm ztr&7+2JP-~31!p;(zz1#3vpg_!{GBjiTfs4X!SX|02LLoTG{Ultm25`-A22*dNIN5 z(XE1sU0c)2$euartnCh#&F$AcJvVb9u&H^gl5+nJqYLYpz42UkvJh-h)KBL7tiSRN zQo?WmSs@&}g8BvqX{-dU(jZRGVY_(|cc!~q)WhOQY0z0WL3g=^HtI8p@-htrj_0X2 z!8}>omK8c|Ry6>qk)~PPTBklTOOCBKApcRLev(LiK0EtJWSMrYSP};iB{$vD9jq8K z(g(J!2)58Z>tV*#3IW`5iz9;%@>hQB4v&u;)d8+P4 znp<4_Op1Y*HU&I#`gEEo%3itwYm8M8^&4W}+fV;J*`pPn>TZea;nW#N|b zkkJy&8SB>}NW92Qq*W@`&;x$-4N(m$yfSi$P0QQ9GI(kD+_BFWy923` zFQyC8=QkGKMuu-vrl+lH)7?5-60(G8MUw1Gqe`0Pie;Iz3vj83@%W>!X<*17ks257 zS|;3fr$(DVvFNyabbRvtsbGP!A9|KfP7)a-UlgoI3MPPhgq@A8zvjSKE4(S+&RH7t zv2AaPWW3D)@Q-gcgL7Y3MS&NpFMJ#w-{mHa4(C~qgtKP|YqMBsYZEBdB9i|&`m$E} zA#lgow8XTeC98ncHNQqcP*9LJQK7KbdNfP?{gF~`nl49b$%Xfl!MipVufW{X?R}Ucnas$|J0k(k(IdzEv;Wue zewc>agI-{A<8E;EFE7`+`qp}Al|h!iUKV>Ln}&U9Gj&TW1#VldAoCs`U?+!d^Ik`3 zm3eh*=yN_)lV$QB=-1OfO1=AXJHNNS_oMT4{9xS7HebxRGL`&Q?&SJ*un2>}`RT6! znPjzRcxmv9hYyDhdW>Q$5()5S@oHG+cyE_HOFvg@8KoO?q!OfF*EiSa+3^P(_I9fH zJ~u6234h@&ib4nP$-_{Wf)y+n&Rb)b9(xP zrqY*U^fQj^2quL|m9|Nx016$r@yL9+c0H;gq=IrbQk^q3^~bOLkdUU3p7HtH54M#^ zIwXQsq?%08LSP5~6}tF4o84SWeOeR8{KB(^CBrGv%HAjUyb z?@v3nrxuAUMPWNm087%NxdTyqlHJ9~NkwemHSh1#v+EbEH`|>u3dSyReQ(%TI~}|v zRcCT01WSX^%%982k+md=K&_i&kD5Zw&pgLGEJ^la3W$3|8f>|ch}hhsqzHYJZS+2> zv&KGHL{|RtZMDuX)?BW2jmdMfuz-97elt%UY0AO|7(PTl!|uwjPT+$ks}NC3^0 zsrGEGnNkD3o1LfghaBnXS)sE7J~20UIA>HV4-KJvDkA7{asi~eoP*ZG3n^qFahT1Y4hLtUN;NY1XfX*i z@W$bk8y|Z9Jw3Px2NzZnr@u0K{QamNYC&+{+i`(!2Ld3|U0=o}*u<^&C!_@M>J&cH4QjT zm6xh6hP`^mZ2d)zc1Y)1DSchNBXd{S1KylvHgu+H1jcvkl_B>p7tc<&quJ z#SM&9==ig&JDo+nf?!T(sGD&jgi1p}sUu-!c;5bvTHV<7k8ei(nj};55Z=2uI z{Y@-GO3I_xw ze}`<{eeGTgex$B?0_(78&Qu>$rm2lDVau0%IXO3ie8&`HX?Za(xow~r=E}L3TDejm z02l94OhGkPqus)z6%SX6lyxmZ0CzAY(RncXIta9EnYic?gv}Oqh(Y2-HAWLpv~#!) z-+)1~I2A^->f*MNZH1=j#|<{A^t7E_`>qTYb!QsQ_WY?wXDgVUeJlsnX%Tm8r7f8&rLi)It>~Y72WO9mo(goLcwF0CB?clHivNuc+5eU_dr5u&p?ebc z?0_pY+DSK!cre94>BZcP2ZC!IYzFg~r{=7FKSK$3TCqI184stPx5C!m&mCsXVg+6bC{E!BJJUBY4&bl#g~89S%PpA5RExYQw{! zC&T~w9|$23gbe~q{m+9Sgxe2*oKUZ!FbEN%6W0IrfC~s{;Q-w6f1m&FmxG{GAaElm z#TguWK1>w^_rDj$6o&g#=m!1sWq*A+hZ7lK+@ks*{b8o7m;YVxzbha~fe?U($Nyds zcyI>|fYjYOHziCB^&a6LQv9{ZYCNDjbTHBXCB^>}^RMInf2aBXJ7`_Lqo@rX2W+=} zx%VjaYdEF|g!_;U0{?Ap{{vJc1rWl?PXb9KUG3EdOlr7DO{K=$!`Z>Ke*A{3x=kHlpMF1G)%&R5Bx9@23_JdQwp(o|@9dFX&_!{vbM zKI-9Xa!sC8D~vV$f9*hA6)-XP-$Af9^i^nZi_A{%-CCLbLWqvM(U6}Z{ByTEtbobI zm0a(Z+M$Llr2x*tu^JZkuf?QH7=dSAfZ&6^DVhM>8kF#=6SlP!P?NY8IQnn)RuY=ft&Y6C61+`BeK#UI_3?EiRS5}Z3oWEFi4rRakmmnP|D z6|!+|6Q2n#c9N11A#kNV`{!~&%Yb~1g4z3UMV!|WNSRWEaAcvLMDxhI$mwr3`ALE- zSzf<>rdiDNqohC!rJ9&Fnz}c>qB02NKbFm~_%BxpgTwx>6af2eKRmCz1!ANyS-ZOs z8@^J)pM68bMZirE=|^VTE8PUGuNN34swvy^1g9Baf*i2_w|f-g`s*Bpt60F2?lvfD zY;W1jYhpmLG>pjT9}Ih?NBKvyZbr(pZ@cfFZkLYzMn#<;CK-=ft}=+4%82*$V$>NU zzmOxi9FC=sJE8yE#TtPB^7R0m#$-XId#L7lI2*plH@(@5_kF5Q>4lllTMfko^#nc% zfzu?$r%Ch$RD7e5H9$)>MKh*m{iMNdTN9f%KO4 z@%8uUjl(Mq#T^G0{Yf?8Hic3AcW4qF1{TH_5pRgQ7ahHV4E#r0nJ)8hUCatT zJ2DlI+X1&WWVu}KFF=%ANEla$2>;k^mGS?vLPA(xsIBE7pGg+NVB>by)9qaLgYDXG z+t#_}`s!pv;>Th*j*m!hX}dlG3tt?!(!|DFP6;A#5vZ5|9Mcp_wJ`>~0n$G<-KGdw z>bd(LOO>i7yJj^tkg-_07>p^1jVL4iMWvQ?_N7pA9jEYZ0w17|SE0CYVq9YVnXpbq zF|qFCle6rr1G#9F>Oak*h%ncG8HzhD2o9prqq_Yzc;k^ysyh0^6sR&3Xz`W4lW}Xi zkeh%$Tn31E*csR?CDBE!ZYOm=J2}b0?joHCboRN45}%Rk560ekER$BV`-csjll~VA zQq@Yp@CgThdZMQwhci(GhDvS{^ucP|s+HY=(XMTH|lcLLyDNN|@ZQ~BN zfTNn~mTCG2BtQrve|eR{Gv>~B0k}CjF*58@b&Va*swyhELLX1C0-U{UXxDYUe8Lbz z`{a57NJOxvm9A$PJtlBI^$~7axkckhE6pUo$A-E7DInng>Eg~={;T77uRssUqOe?r zV$%iw-ZA}^+k!P}TQi84mpq9Q209jI3}ze#271HPag3luHNBtX=vyM0&-KljpsgtC zi;}gE|Hi~Q<6m}nZtWMM{vH<_JbO`MY7?5fdslK?N_jUM2G}sq7dz`96--1xAHSTyS<2`1wQe6L)a+nvj9yN6--hTHn87#Q(q;$mv`(Q0S<~7|fxL+Fa9Os!|}HA_WDG?w;#c zl1MNS{xe)i1^frf0n^${9*jUhovGj>i9H^S_I{BQk{eTf(SZeZhCsUD#YA|h@{VIv zeSZM2FhoNW?!C8~;2*9Nswc(htC==zm`;F7!vhI#E$E*nK9&K%?`q5KFiF8>u@vZr z`!$dVvdxq-fOT-ZtK9t#AMc*-4xOJ83EOrEjnDS9p&N$*mupyltINL7pW)o*;oPI1 z(}_txIWRnym?qR#SOOO+OuR(@1(`r8RUmLJzKyHZPNqn**9V(nx-3@l`K5=7NRIs= zvJc*Q=YSMMfS^~q8z9N6^$o|wfjaLF8eO&Cm<$?F-nxFV!!SAFi?6S5vApRaTAg}?U;LoHatK0-%0(xcCi zcgS)=4}+|=@FLeX%^7|A z?;I+?w-+>@DI)#zAgPeaY^X335nA)1GVC7Kt3`5!pry!13i`qqq>ts5LGA0z=6?Bb1pnF%UTAiVGNd+8mU zEoXsS(vv%F^BG|Z!?7BN1*bSM=R+%hB5_Ktt3iBuoa$ zqe~}-hE)MoS;J%a%42i_VvHfPaJH9p3bP$F`bdKLUp*NBWvqm)&3+aqO@G=UlIC0E znoOP^9*i3`e#$B*N1QiiB?8jr#Jj`tmeq1^k`a=_CuIy!7I{v!NOC(z+w)=(AZS1u z7KJNh08TU0biZvPwcBSnoko6=So|L4D zim)8PrIVU^?9EdX=x9-_oj?u|!(&0$qs@-U7A|4`6rzMqAUZro1N|T_%pmviGoPAF zo?+vgGVZPP>5~0vqO;fe=}-5g0iwQJ3(+BFXMRiX_JY%5-+C;fcK)EIhHrrTkCdw? z*z)uHXSG)0125}qKL_ikzbQj3qA6gQ8?mFEB*`Vf6Q@Cy^*GRmf4}s;ahkqEZ#6~6 zz*ISgyN-AOM}bWEe@fd%9)#Fv5N5oRjA7mxwMOj$|AgMfJ!%yH^q6iLKP`WO7>yo! zc@RiK>=0pbfCI%rph$lsp8L(ltepHstBC5Uk~?(gjRWr%ZG#FVMAlO&8dm&He9An>8q8hSXZhwlxo?5&Q9w@YJv z*ERnuv&;5x$9o$Fv+`Zywv|U-1xI?6(fP z2G-(5+K;l_u*R)9%Nf1%gPP;Az^8(M61=4IRTMH}xJ8TD?HP18S)l^2S%o6Obi6mu z@Ajd!p{=NwrDorXFu~WWta$h9mbf59czjK0fiXbgtzbw48Fe$-wS(&Wpu6N$xSgvuKepUNkfv81` zTGGkrDi!$TYu8}@X)fKayrS4v#g|EPMY0GqRi0TwewGFw+O%KizBEJz1dOiU^7a@l z#rp~jNQKA7M^@p!S$aPsUWgku;L3?1st{9(yx_hDMMJyB!}fAPp_|g|wQzg!%|a+$ z@Jp7qGhZv$caJu+&-}ge_A-2GpY)y8co`6Z*~-QCPWXfQ{WlKF0Z*BDc;m1@_k&p% z#RLY%>&Gzvlia7@lnuP0e2)CcNepi2ZofL7f!qH!#8qtE*%zR*%g>?B8(L!R(-xTK z727lJ-vHe%6wS&FbMIHsBUQ+O#c8x?-F3Pc#)NjItvEC%kp%Aqr=?+K2n)r3;;coCLyjq;@VbC)2s<|{`D_imc;OQV8cpe# za`xRYA6SGRl1cq!JIz))qB9%*PQdM`^gU#Eq|&bmD#6(b?RzE$x=Bs@geZHl}!g4pmkzArY5fy04D4zKOs~ES=r~ zK)C@mI7|)1_?u3j7xX*2aq{aV&+w1i+b<;*FF)b+K`k}4Q%-yC-`Dc4WU)(B@nsj6 zJy*!#-I}0_aI$Y_4z0v~)yRh32mzCV)3mtC-LHe1KyvchNt)4Qym{- zeTG@ZKb=PrM>+&vM6`o zex>P3|NZiBN}vquTe;H?_+23B({ z=TxItjVB(11mL}bSfy9{kxdpV-q`VHK*R6zCT|)7?iNdpE>0OG*0|%mC$S#;J+S;1 z5YPqw=CuYAG)DEz97PtD4E7bPV#24-hI^taY5YcagGa1Tz zSlrX>M(~2Cg%CfTLPNkM!89;(7Sr+}ol>aIaS6aVSy<>{nIK85qqbAy+RtMAY!F+8 zfG{^?znl_HhLl`HS1#M%F6uG_sE`kYrsTSEC#wz>Yj=4mR^gAE z*WO9q(n_9xWGsxuP)wK&rL%Q)mnV}v9FV-J4!DokGd7QY+5I9*XLv2r{oyJEWPpH7 zW(y9}1VsgX$B?WFs>VS;G~ax@JHEYUr@R?*e7b-2w2f79mrIFFew9Kb|3Ucecy~9< zW5)1oOYq6Gyk7p#U}OZmvgJ_i@D%OC_th=m3{Ve`IU-7FMT4SDIycf+|a7wk+T`8Q{7qD+8E zg{KQ+$xKCsZ?whLKZAZ(cLXJ!muR=O&Yg>^nhr5)oWUb^d>Hwg1qnJsao`M0G%DTy z5lyXYWQE>Tao@w~fBB5lD|V+iOU$2!9wQnv4iYf(a}{)4hlz!O{(Xx^IU1||I^e0~ zIGy@}xdsNmxL_#3wDj@yA58T2x8DykX5S_OWxRM_LF2++_dAL<=K7!{AfYEAR&h{N zBq2#Kde}=PM73^IWm9WJXJE-)B)wn74Kqdpi{j+ycxLi!3^M98SLczw4n7?kjm~v# zI$vn_nCQN)vf+`IOIlzJBAcxi5CBY9{#eHY4d4x3>YC37Ij@Zmm!D3?0;@=5WZ?VaR5QiAUE>*l͢f4ryS zXKH)kbh1L9b4r#g*q`YdLx5{F)koxan*U4rRp*-xcG3?iD?^F z{OuJJx~Jqqy;aKeoo-Bs=AoRTPS2*{makr+6aJON2Lb&XT-c!|sleF`wi!<-Hc!B| zW_x-9-Euuc=0tIEaZph1z<{}o3~g&Wivl3dx`~Mt3CZ$Khs4qEIIT%VqGq5%&B>C& z!DJ8mMiW>*r+yh$8Q`UuppprkJcXFQgE~=CP!PshM~^cLzkmRb*wBOSjKpSAQi79L zXB>g`D4+*!N*oM?lic!f7jx=$-YLTt>0%s&$c+=lK^>O`M@rxEM2c(##ouy#C~m78 z-ElsfSONDbalv99d6YEDbR9I%PMI9iBNYmh%^CRarS=Mad%h3J$#Z?;m!Ceulj`QY zW!`NXeb7~8U#Ore3q&F+q5n@Y5QK(u@`b$7ZLU)pE;@eM2BH1#^9t_LWW?{aHR@#u z;}eEF?s1*O-P|a2w;;oRL(u54CbjLnSk><|^recz23}V&oULi~&YcMIDq3|Hqm)TI zGMO~o;wM#SH_R%2-iNl*N|6*~(9zzn2}X5z`0-Ux_A_BFF)^R@?ug=IW>XV&`1|NJ z99svmix}r6oZgg;sn)=|2^jo;Au;Xnt&`|ftmkTq>-*EC^NQQWRATXDuX-EahRiow zg9nNI0I>)AryEQB*=Xu@)&e~SiR{Kf8dBfW`aNyB4%CR=G{QasY9DN(cLz^5`c6)z z`yDTKXRABzj_xXj>c!i)ZtDCvX$`RdV;QhFi~!FjnDO|>q>;R_G)3M)6y0?z+qUc! z5_hLG8>>1s=?G_VXYjUhi{it55Fk8rlzs6B9ogJg7LK-{#Tn&Q9(O z`aj6l*4p+;>l#&Gc#srf*qN!yIkge%8S-)Uki0-O&nign8e5cSd%q&c*c&DQ&V4(+ zQ*<6G*!uaE5&(%U$-h~U*;v>Jc-F=6!h6(r`Xt_ciutJC_7$6A0v|Uw^*vw1;^|K- zUMh)|UcggrevH@;?9^UFKA2&P7v_AI!M)Z%Hp=0G`N z8_ohI3~02M?+cyryL#jNhT`(*Z0+ork^uuFdFqn9Z@am1AexVW{MtvTnZk)%2O>l@rc1d%T(w+yOtoeDkJ^AoVrJ%u4=V4lPBth5+P<=JZ&8;WoQ|yV z{asl;$N>Fy=+*L*3VlQ-pefn+W_sTIP7gA zW55-E}A-CZTlo_1ac8QJD;aYeJ;y7;lTJ=s~_SeAC- zMur)*|gn%AMd@t}^(%#`TUe(YOq@)kIy+zWdpj7^nOb!2+vzgh;O_uG0DfHjkfv+Z(r?2|D|P z=;$fueJ7V!`1o$(N?+#^YD}jWH_6>$tt2TMWp9fvKtO9 zAVrH778|WKESy9!h^em97;4`MY5&Zom}IvtMoFnE{`gz+G=vi(63IrgXKE4r$#jl2 zwxvG9cSo%7MGUM|$ch+=$6jQ3R-mr#SIB`3rH`vca2%Pk5++uhe5L;|D>2$fSWb9h z^70_!Aj98O@Xk9RAyvUO{xp29Ee(>~*A*;KPmrJel#r)=zcnavF%TCQgIRc;fCdDX zE_2$AmD}E>vVjq?6GNN@A^rhvL<-_h6>XQ-GtkQ(Ay0OD^4rqPHbQ`9y?eb{g|eDi zvqv1g29SKO#bBgSp{lWGvVn2R6p|7i>(`SJ=810s|40^+Ktyqd(v#U%b+ptRiU$Lps&44&`=gn&& zKOdIl1phTc|B)-rUNMUNXL!>9``2jphd`(=^ZAA&_G>^DACD!0ISK+}BYv|XVM_+i{Q$=NH0Xz&|-*x=-1ZrGk78@DwhES;5wlGLjs8k0+;#pyiX{=umw0e zW>s@#XLxV%`U}uI0)vJ3uyM42!_4 z*6D>?k^U-Ze%D3m|FpxD3N^ch?b@sOKU7q56MO(cHw&?h|C5dw{b};7xKBiNldaOh zPtUepE!NdH1EpT4^`Y_?c?B6}+f^K_yADd|kGvLoe_K64>EsMBHt-_=P37#f10-cvz&rg@x(a#}?-GNj~24 zT0_&>3if>bV}QvkpUQbNrWtCwv7b_rw$ftP>1ZbEZfyXinQ-A{Ih}X4=r@Dsbj{6; zD;B>_qSMXOy4lk%!h1&E8(+fVYqWGxl2#Ngj6CCE4!5>v^m>@Q{bfWki5c;Y2U$N3 zzs^J(;98-8*I=g4N6Z^2{u%UQx9#|j6&vQ;gSP!w43d(>-mzI3#R|&Gdb~t4zP@K% zJejqAy60WK%WBt1RwTWT)e^Y3I`o&`;dP6F-7? z>J4|1qSfT6PE2rsaFoWK$5dLk_X9)nG40dZwDEI{Q19boO{t^k^ZaIO{*}f6OATYq4*%HC0sV~4zzpwD@CD0@ z5>t)ro1wzUmr0#i_x7BS7xI25z?JH$zq=7qgkVu*6N%jjZVi@9-_;;rp7i5qK{&ET z-*6zm293!m$u}g{ip~2N1PPERNXaQEN!M9%3i1Tob}yQtTg`P`eBKp5Kw>c8<28e7 zmpKl8xJUPwC}aX~t)G~f(%I83rWWMO3aRsW3Dou=*D^p(e~v=^J|xw_4B~DE(ddqf zR1FQyTe&Syy@t*^G($N_w@?}E5{1Qruv;mlR&$U~EOA9%R>ngIj0$p9!bga1dJT7-?n37cP`xR#_sajd zTqF{^?z?5})N=7NZhfC5vKT_!RXl(qk$imp`%{LqzhSjk3U}TP#49`f$WeQ#!* zKYsQz_lx4vgyc54>zW|u-I%AVi(!VEvfJBRgK?UQ8|ZRy z2JxqQ2ymfn0xwuje_7!zc`o#YCB7Uxw1xdy6Nq$5L`K~IAwE2SIO9a$q?F=2EAJJ- zuW3l|X$V^R*@`~$i^YSqbk$Y*f`s?PV8BC!8k`0vaB=MEHH>2=bn7;-l%Ut~+Z##8pkAfNuXY=Q4s>huindH~D|c5rwSn z>W<0Ybt8D@-KAsyjFO6wT;*^DU|3hB_@|8!lr!v8N7_D;=7KK0M#Q@KE52|#9msRD zZblGZUhqrjmyn#>mX(L;E(-scqy#xRBz1U*!!CTl83i^>-1v2F;9mu9mG&Rz%RK9N zFn9;YS>I1qH`08@!*Yd}7%i3H^$PS!Kl^r*{m-5jobJ5pnqfpd!;#xlK%2_L{_6}X z*sD?%VFU^6OXGr%;8N53d3%bPpKBUo97{9E$NKbmob9)?Z{*j75%(t$2F!L6cMy-H{!=y9#(J(}^q>Cz+|n#28`%fstMXnl<5+*0ZU7dJI-9yrm?FAnVuNzAJaJu1zo^Y55qMs7l<$lA8f(MYE|6&+zW$SK<12flY|L zB{rSR(+1iXVu#yVzxmb>C@2(^m16&R;dx~8-g{Vab-^o0NDn5421$`&jyH z|4e4w$pZQ9kxiLC+A~IubqloxhP<}l+)mO%d4uz=429Zw;$zS9;ZB{JlgfmVCCSS;7R2;qx`8)Nx1f_ zzzSRX^iDd;TL|(3Blo#bT^iABBIzXhCjvZk zYvTViY$p|mH){lP_B0UeE7ot4w2XOP%I71beBW%{q;*CsM!7E;b;#BEcQpiAZl< zQ8XTJ7Ar8*V_>*ph{Y#JykB7d(>}sAH9WA*`2dorVnL8ZK=_|NY*@UMHr%3CJ7lUW zRvF^|D0K=X>_FY!353?Gbj^3?@ z9R*@X`t@oqQ~(Tt#FIfIHV^vGkb^{x07H|2E4 z%lb^s(MrDbDT@?JjmqyJx&FM#cj6oLoDclKVW2apm?+#%5sGD8EAoDq&a3Vx027J9 z)Vls^@8o2oxWGk6v)`2JHCZKG`jp-(^Ko@f#g@mO^iJEYgirvP`PC;s7eDx*Hax)o zb+on&oW-4Nl&$za`+O^of*-9MQ*-2r;%0Qx;oD4PwJ8Ed61G!z^^$SHx262$Hg1XLI!v!LX%|O z@BK|Hg}=BhW_6Mnd1PY50>@6 zz}yKJ7)Zs>k;N-RD&?jEHm^>bXK+3A$1Af1>EySKHbu&?e%dF=Nlol z46KAIG2YU8pN(vkk3cWcJm#nPXeErvsm-b)PsOB{dY#)=QGIyuQs^lLw%<=3&r21% z5+8fus{QA40Eo9x4W~_EL)qB+FyoO7DSmBgW$(^8!JkdF=Pd!&hWjmK=3|?9KAO)G zh!u>pbZ>xCFaFI^lyE7v9<8^beeI#H&XwDvg{ufclKO*|8oZ2N-GlR%!vn&1Kr-O_ z{6|(7ImEYpo*q3SXn1J{zxc2u{23F~?j{tl;IOc5{BcVG2z+9qqeOMJB#~R-#od~c z2v5pQ*5}0Uz$g)ih4f8?W$`K2V^&#r-S2Ejaz()hB(4B@l+1d~ntAW`;`mN65|jSj z+*qdJ4QIroCC$~*r;=Qa;6qxPKyQ;i#%CTlq{vtu|0A)X3WDUcwrmdaD^~@>4Q;F2($QklR#k&FjgcDK zd_gJK&0|*6_q$mm?oijS?Yal;HO!=&U*~p*clB04*R;O{mYKws9dP&}!Iuv4fz4pB z7ho6rk@_ImembTmOH8sh#+wvxaJ#apptO`{WfnZaSBLsDNbK7@%E0RR#Wk*%fT&eP zf(z*!%}y+;x)8jrA+_y%_Rkja{1BdGlxaFsCAUy`KUd4(1Z>YyxUy|Q?OJA7)YD{{ z!S1XB6vh9!svKycP*+d!K(n9bVLsOBc1*(R6R{~jme5uOOp)|lei>3D|f&-J<2CV*q_2>5Akg&ES0S^oL zt@sa-ayK6p)2gQ`6+90mN_XD}49){J+fJl_QbpRj7S?n7`nwf3iEI>wGL}lCMG|q_ zh)=tw-7b~C6c0w^%kNq~JF0$EN%0|%VNh-*$la!2r?sIeTt5KF)Utb$HAQEKi*?dW^yc=lv|y5N^G?6Kr&&9!LRgbbvDyPX2)Za>>ClT)kJvVh~fZMsGN6 zgV@9uPdiI9hAIMU;ld12L7A`e9;$hS|6xiBWI}~fOh@vQ&F>0L3h(z37GX#G{TLz7 z^Db^C$32`%2GShYH^2$GOkp^KE7Ylz?+SEohamagcJLU@U`%!*tp73s4GVsL$( z%7oJ7*GJLc0pvcvF(ckCC(`IU4{E`y@Kfj3%(kkvUbip{1xe)`y&@iT{#0tK87M~i%AQ9*SWRS=m%E*fkMX4t`~Y@_ z;)ubX`-HCg51!tnCcp9nARPM1*U1>)3D;9+SPwYZMP5y`n4Vq|%AJbw@4x0l&Y3By z{;9>jqCLFFvm}zfM8?=AW(m z&Xrqt-@5}kDCq(JbL{Maq=EhNIY0p#*ZzFsVLnLzig)NG_9;n7VJPnbUPtg&bK@Ru zb^>?t9R0TyCXV3u@r&PYRtQA}MY4!Vu&gQnC}77!_VfKjPM-uiW$`kgh;NU)`<0N| zp#Q~M&2+J`#eFQ$r+k|=C&vNvw2<>9ci+2|tcM7yJ(!Cr11%s#K4J`00{M<-7__&1 zih7>BTY;-X|J7G2;>*Pif}N)>xmdk}r4i1PruXyaW5lBXNyY#AG8_t^P$a;F@N2nt zUv>rk9NpyQQ-zT-K}CE@^}%~|@CTLE@Yx7f@HA#A;2!H5*I05zkkTuie6# zg_sllPQ)4M8jRng2YhV5IlguOm-d%AQTL?8i1h@hHW&QPvUdHp;ux(g->*#fVHrZ% zX^%}~>7!%XkE8tjtG=ZkHsJRNNo5xOO4{KM4LrQMZ@jj(XW5?9xXb{2*+)q}4k_C9 zzjjex1An>&Rm|u)xGTk~!{YLlRz%q1;`wiLyC=hL)Gk#)!uo!2di%u@Vc+N-#{U2CfOa%ur!G#Sb{^YTak4$41cQ!k`|)EKRPBj(x9vMlZa546qU(MfYYu>UpWl z#{VgQ3MM+Ip|K`w<0pd&-sVxC)p;6toSZspJMtoaUe8>Tu$3iQ{%i zG~Ki{RdX`ov00DJ%={)4d1%D+*@8dZvhcRAv)JD*qbyyV!5>ge-i&MT3J~ee`mhGE zp|E)qLP=czc^qw_6!ovY`8#!jh|%9ex0$>b+iDN4xA;AK}q2@m3*@4E(VIto| z&ApYBIVi%xFGMCjqGI(wLr$bfi?Yee96jFfW|~*?+npNR+dJ5+epJ)UHC~&2KR=SW zc<{WfzDeXOkW zT-$k3^9JPQE3BCMc7&?ycFwN(J~oAn0ZEyWFk1AW80F!ZSC&%ZF&%S%{(dABsbzOA zpDzy>f&c{vc3|L8yonCoL3tUf0pd$o!7})%E)SImnI~DUs4QeMCp$l zAOlt2`8ge3r3gm8VOC-2@gz=HynWORe6GM2E~mc48Q_=$g+rgYhhtQAV}gyn!p;}%71~TU`bx0mQ}UQC2}PX%R%lB zy?!kz5j|397sZK!G@x+g*KVR&D2-fx!F;n%ab}0OboI z^v(r3|ChGGDv@zsrwWL}=8+Zo-y2>{g3SVHhv`ehE%$b){`GBVQI30x1mK}3&kla{ zQV!EX2mgP^xOL)RfbJ;D9^*|H!1+-!N2ZuZ*P7w%b06oBxw)ROWQwg^P=JCeP6!WM z5FR~2r?*aex3U>rAy>QkUM7s|2{_RI?-A-^QM@TENmBXl_S)2pw1Bl>u_tQ4?`nYj zu>FBb2Hf3gnP!OU-)2BZ7{hlvs%w8&bGRGw7LA&^AbAyoE0>57%G>xjMESypRGdEg zZeb0HheSFT?<37+529VKPi|c$uFO5FrfK5sR(T=~h=Apj`;9HHO1N}hPW{sW0$^O? z!(6&QR)_7~Wj#C5%7`O)@R88Hv2#zJU$mc*w3~Sx3eme6c9ii61swXP`g7)EywS>d z5`n@4YJp-ACWKVory0pZJ&=S-g;{Lo6|R4)3hYp%6^q?#ekodPhK%tkQ9wz=^?_dG z_}&;B?@3O53e1NVv@x=q0Mcsc&9d;>P%X>SFWps_y-O6BAADPS;G(b2M(r?3dx4X5Zo`tuP1e!u>f(J}{U^t3Y1a0= zUYSTC`*M*lSRKkwFOdTjAi@50RQ9}E|%aBioG`ON&0ehEQ%Ow}d5Dm&hku^*}AAbQihmM0~-9b?Ld1oSw?yE1Q}#Det5> z5@T8!+pT(2n7_)_O_K!^H*H_NmKm~A{XX3ds|NLFYN6|jD(a)WsIlo11RDnHpHJ4G zVzd&{kd$TwtNBpYxG z!Vkot)F4XFQYB||GfLZCRYR3wicAb;mrDu8C}8M}F5q=51r0yOXYP4XQ)A;FfYt1{ zF??3baKeDTbXQrQd@>l5iISuDVuR*rrsiH%)l5ON^W9h6 z9~%p-^)=|6&fj!zVANJ+CqpNxM1;6f@A^04!|q-XhWAeqFSfOHhYPLIddpw8SqCS( z_xrW&x83;MQECNb?|SQI2q{%k9cO9Kcu_kCQ3s()FJkIF{194sqz&<5L6KoMBaVd4 z8`s_1z^4riyoJoh_`jwYcbZ8a66eau=%%7|Ox}A@Torg8N?R@wfD_`jJm>i8{p7Dh zeV1RpHwQ^9zlU7xkrHL)Q7_I3M2^ESS+!5F23(T*2Zr|Zgv51f)F@^iqG!7@D}1j` zNt?5dQ7?Yhc)3NWcx=-yF`Ao2Y+ewYrb*s(5FYw%E3v*^Gk*hyEbs*q&50Z3mnem< z-#FoEzqP4$nG!F%OIP;7bpPh*M%+HZa>`6T1RhVSXUOT(WW^%it=Oxpn7XA+F&GO#0vLE==s!|e^biQAX z*Fb)G^d0lMn~jxc@SUu1u$lVY5g6`3@9iV>!nTH#STIXnNwQ2^|MYy^KoevXb8jpT zKJ^r!1zq2G`X1dySQ5Xcoag%zGB#RgCgE|wicE*2 z>*98ZbD`Ekw?}Q?hCety2=|hoz86WDeaip_0eXg~msfLhGZF|nnKqs_TxbRVV|}{1 ztfW4C){Scbty`$Wglz+914d|}=}u9p@n19-!%7W+yhdh6+aitGAXVsnQ(~6-$ai!Z zM#55t4S9{%`TW7@`%kz?NZ6v2S&Oo=A~-X%aa_r7DKBPGxDE5pX)xIVY^~k)vj2CHir_R5507Sh z2IPwsx>VJ(5IQ#OiDFEj)m=l@4K#iH4ZNZ7JB@2kK{-+td!?%}x%PJRA+E&hca|@9 z#6atO93=Gu+Z6BW+xQznbOEv^^gSUJG0Hm+`v=c4X8mG>K*$;pzNLk36|swRHP*|i ztK@zS*Qy4`6_2bHn5@QQ?b>~To@=|-+HITXE3Y8|o8mxrKBl&@2Fnx|#M$jqqjDTR z?CyK9r7x*&_dV)BcF0vWYUBj*E&D$LfeKXKf*UJkEhtk&H_iBiCW|0o6ZxJ8kkaBnUSc1zfvV8Y`$M|T0^A42B z@CVV50dqs%!+l5V+qEjrb^|mM;R40@S!h|7=%WF!0;@mc+4{ABtj`{k_x1g?b*1O} zFOu*4AY zoU1nC*Q>j6!63WC4H~K+|00tcI6xj01Lq=!ON|WtEMpxoeHNVSwTg})^PB%Uzsm#w zG1~Y>5zyFfcdA2@Ttsp{AT*I6G{*3lRcIp}MT4&efNVp@R5M2e}vv+OH?!0s^UI z2c<4Gqm~q{*XkdcoQ42NOq0>|1B!>ah@qqUzclUa4-(Jg&+aW9jX`|Y1bD3J#Pwg~ zh9`GE=LQT&qvH$xn%_?(q;J|Sj{!Tw^WG^EU1$9yEHsIQ>h~cWo#W!~K5zGo4(4$; zf~MA^60ZZsO?OhRf#?$|Grn9oXU}(CObvjJ!9zyZFYn|ujaw*^jRJ5ANAUsZMn)qzPT zkyxdD)|BuMcjZ{dITUc@1v=D3s1?T)bysKc<^5Cdu9f(I_t;zzDR8X=Xh}u;9I~nT z{S6xRBa=*(2Jb7}Ll|$FYnMd5z<_sAjmisx4%nuT-Q6`lR(c(aWN~lRbI7bE9WeTg z5{`(~K6=JS{7DZKQxufdAer+^hqC}Ufd{uSnO<2O=Ldo(@^=IgIb}=_hlen)R-QLj z#UQ8L>9Eqh8JX(je~i09+)lqo1L2>1V)ZWSzx0)alkPc->)Z#4DRv z(NNt~Ngo)tIFQ8zvaX%9JRJ+8&uZ{EHYT{8SN~=0--vRVBu!RWg1)4Q4QOAV%D}0R zC#Z>zJ_GA^!C#?Prt+xHu%`>=%iL~<<9HT?|Ana31PC;qvG)BLzOQoL1lE3X{r|iG zj;)V-n#^9>wcoMb>^B$d85=A`8@EloWmqeaZOm(j@16|!eYKg%)81km924QFFWRiq zY0zz}p4Z`unNx$Xk5SoJ>7Y~YmK2fs4(Kj+__XWm!`hrj18(kmr5D@1XH*kI3MuJj zVy|M&mMW>?Ng?LM>GRbiLKwz5tWbGTBuf9H?2;`(b8I9MZYvuKC5+tjt~|fPO1u*z z7jy@MA4nhp!5P_Qo1#HvhsM0b6eoL+yLMP5QZAX){GA~0E{GZ~1*Yxslz4iuy&j*c zD|>)zp3pn73fKO<)m`wf%orp9L;BlzB}(w=Lkck;BQfnbPpYSod-esi3MX-v{p?UN zz(*Uzybb@3(YSdqClpiA_!;kHrJg882gjpPLh%A3d!mWyF$8)WODC^k{IE;_*&k$8R7$dt9f5x0w)N zFN2AiSa6E1HCbjX;K)*p13~IWQ)=-vto~>pB%=G@DG$0IH3b&=?R}St)OxZt8uBLX zJK6H_wE0>sxCm*1E}JE~=0#wi^_APg%d$EV8!ImMu+Yl@w13~aCm2#fRHp~uXmFKn z)v#Xmd$>peuqqI%cZ>?2H9SrRT`r?6)&S=corl$FP5qL&Y@m1Au5 zcRBHi4tMos%lV)r$L{klVglnp#AfzYvsLi#(2!T#sx!9H@?8C@YOpk?{llWnyAiZ; zu%t)lH?SU^#cFOx3u?Q`w0}!%u8x9^v*WA|ieWqMZWC&I%GV=sqQfy|wK6(kHr^B0 zT{n?oMf$0M>^~S8z%S-c@sg^k)HZ+OIkArGMjH9{&frD~SH!&byDLV)@Uh0tPnqg> z0Zk%LbBV>08JHrUYA_HnVlfUH#58)>Pp82W3+eo^2SO@pAU^|)wb5mN;VKDT-e0s! zf{hIPGgg4ubfd1*nia{U6Zrp?&hzHAi&j(jWr@pHl^SR*wm$>_|v;wv3 z744U91ZbS^^1QySDhHln5nw*`S#1UE0kl9R7_rQojAYn1i70&8WMqcFHXc$(5^9?w zym5*=N^4^1l)x4J7^^CoS=MAX)gj(mnHs#b;R5 zQsuCdrUh)thrnlZ?jfows)}Fembrio^^Ac>btiw~+pE)CbC6kbjY;&AWj@pT9#hd% zr{^*&{L$5(XYuZBtK89LvE)OM3rh&+d)_vAaAslob(KA0d{jOZxMzmD6T>VD^IjQP zSm1_=b;FFWC;Rhs1ODriGC5;?g?LMzB@g~kX1F&H&C#iOd%|EzCWddKAFOCwR1o%n^AANWLZB)> z^{~|_KfdjJlT-c<#I-EQ#hr6$w{vHmAGw zoAdOe$Xtn%veKYZfz%4`Iy|#rm6n~E0w7YLW+qX=qvjX7!?o9Fjs^zUl6S2c&$N!5 z2?p1Rs7G#)!q}dGYa##wKmt_%GJt!`rykpc`kfi*mY)1Z+E9}}dnUxVtz)4*>B+#u zr;*KwD+!U_6Zx!%NwxyiVOfk0ZopM9gC!Rz6$@0#!RmqB@slX&`of(An$NLGuUVFC zjf%T+19D4$JPLX=aDRDYc)L+5=XbN4z36#LuEFfpHStlhT>910$}RxI|CED3&N6xq z)W;K0i-^H2H{ua0qS3bca4J*fC+Ka1CxBiAN|TkDYiL;+$xL4YX`ZafNBWs8ttyAkwo9acvHmM1 z($JVSR=UiVQTa!$2xH-}-=HaduV5AWqx59;2voFT72QcgeOPy=@TMbqA>_4iN2~C< z>Y|HE4ZkH(`3uS(0XpJWETKByvYyt>Efwx=&EI?i2*t26+_IUQ=8k+`hJPx`_TB2j zjY+0aX65>xnV>bccQ9P}ys|lYY_xU_cxM9eVIbc)>3VI_fdUp56rrho`yPNfVR%XS= zob~&qfOtq&Ve9d%X-Y@NF#9FRwWBGlPxyUGub>d+c{BoQvKxcYb3MtpM}L#kT*R&O zRvg^wgHI8l@~q`Vo$Y2kyHcXu@=J&if6rsoi4Lp6T;zo*NOyC0Vx48wKP+r3?N7lH zb<6HTIiX*_?HL8)d8Bo5`vMgx#aw*&qV;9JpY3Y+9DY9BYxRhObll#V6vEclmF-2N~mSI&R%9klvRj{VT|JLI! zH#kIWWmw(jL>%<&1z08kNNjmXX#bjw$@VID?A@G zNBM%0D_i1svyW)|UEn2$!(fV>fYulfakBURE>ot-l85)>1XQ57Az{G*dEKzsp<{3Cq!m$#o=+msy@P${zaj{NvQ}EpZ%3HgLVO%VYW$oHsesltURy zs>~Y^-9m;GEbC&@jEJ}K`6R_^`Ezz{A!tT>Og0MGV^#22F?_P+Fr)6azih6pB1MKj zFyb9KH$9)HfCp7w9-!r08nmkn8_b8s+*?m8u1J;#;$Ey{9NaJ1FSYu5ZpVCP&%r~y z-~9~K2~3e%GM$4aj3#5oD;1fLIX9sWaSgJ5M=fE1-4MM${vm6o1{>FdVFz$O15u zBsH})lw+mqBnSZZ`u1Iz#LT%e#m;y08baMe!!Y2|)WdHxPNQ!4?PDqUqwzwCQ@@-^ z)N!qNqVr&qrYAneN{`Ott1Gk~GB6wAwt&LVEp>0#usULaP3 z+Kg)*nHG5Yle36IiD4Oh!{9fF=Pu`)s)b28uJKoVCC3`)tpAc68&aTYBrz5O%g+2< z<%8u{mB7tfEqC(StfJ|D!HMPhWYr7e6Dp$`uUi_fPkup>(MyP2z?Z$Ea$0qG|V-!H;&7`~__;&|*I zOE38#Y!gEuUdfZ6@m|LT#S%b%XysC;nfVSA!0mj-_-}`SD}kgc+YM!g zjmAfYGyR$npAWCymbvRI0_N(kh9=Fa59I#rPrxRPSS+!}8N13GhUP`+D;C*I2A-F; zTLCBsS`C2B*9b1fjQbJdbb5Wx;I6jlG@HR=qa|a-$NjbE!c{icmRDbM1E~oqQ9CS8 zc^x^HB0VEcdk)-83OE?64+mzh4YF01*k8wYaSUBci`=$(V=$+VC=))((SlqFd0hT# zR;VEs<5vV`WmBr?#n1+t^Y_d$=IhPxeWIs;d?E6yXG1zbidIElN#DgZbM9dofm<+g zndGx$0%xW^GM?qkxkO?UYq#ld%6cfC<3X${rg{j;8+etxyEEGhR0_11 zljIg!g-_X<_rhVP1R#)rfWQf?q`9ms{E3R8HM;W7-1Qsi%k=8bHxi(cegZ1Hzno&g zrnJ9;*iBR-u}rC#Z|3%79}%$*?68%WO=m)raTC^^XLH6@_UiI@e55$~sgX@@6*+{M zl0Ye^TPUGC^buM>Pw=ElxUq0VURFjwW4)A@AUM?w8d1*ex_eeTk6B(CWVQ4B^=fKf z4D*_JiR8+9+z+!aOTK82A8YiTfaGpSo~?pYD==`uT3D%)00OczyrRG63^WbQ2%V5N z)Lwj(B^+DDQVrgAO_&s(I8sG3Vp8VkEUdqfeKk?^Xh~{Rysytd7r&)@P|Si2Ht$f6 zzrPP%K6V+^-Rr7qHto+tA#bs->T`mH4$~9XR^L6 zQ`U<4rVx-|=H$i(uO15*JfElW=S^rU_wH;!UNE+h?akgNr+eeIk@k@(v-~%I9H8)Tr#p$FFw5}P^@U1b<=WNA-`SrJAo;)R@JuQfKIQyU}t&uSr2Ei z6zWzKrnZ#7UO&v|`@+!k-=g2%R=Oqo?!o|?3%TC6mlSc>Xrbii$DeIM+@K8d@hJd? zo&-gYa}G7_R<&>e!c~;38@YWx+cn@Kd~IN-wj= z$*<6FUOTfFs)M%++57S`1*r|n#V48t4DZ(>7C~!(2GIDpQcc$4)BUg1X}vp%`VT&| zl;)A>drZLnoqSF8@8jObHIn;iEQqc!Qc4L=!lLf+1PVG&?M7-tM43glkGUaWkl-lw z_3~=c(kVnft-M_yv6cJYm&a||wlwthpaJ22lDTgo%O&(b&Vq0KoS0lp;~LKTsg+rIT{hE(8IPd+!BuOXB=oDKI{a^A8qUtz5RX zG&+8S_m5N>fZ!O9PJFN%9}A(%FUaker8laW)JiFA`yAkO9MHwY$NUSXsLG#;8_E-8#xrbHi!;wufivqR58e<{t zDW;>76jG;!TEB4WHNNn}n(*K0JYTzUmRMG5>ZW>X2A118$}+1#JugtTx25H|$IEv- z&w|Lk2~&W(+$wB_>Mw~Yy!=!8FmJ-XZmK)%3=CKH*2hYH`)8FmAr`M+Hav6XnByi& z7~!bT14SF-VzU&G6||L3PF47wGa24dAv(msSKwk70)NQ4s1aP6{6?@qe7QE3{W8Cr%2tx8{8;3zHd-lof{0rR3prLVcXRB*7Or zeXSc?CI=07Q+yIcjqfa}^Bc(ql4_Gy7O3>B2gJ7Y-GaD&y_zE#$*I5zId=cDgMuzv z{B|eR{H4NOfgHKueM4R^Im&6j+%f>9r@y?jk_BD?vglMLK(I#v%OU_b_@G8Udzz*0 zR6QTB%lOOcc7Nzr5<9Jk}8v`eErvEfNP z$6Zb4_ZtouKA&9B$3HmR-#q8rxMR%0i2t0byayjfp zy`m-~V1+x?$R2v zKVje@hb4^#F~|4=%rBcOP}#qQaD$^1bnl0^lAoyszOIK1A#2>S@+?)49tnIdr<%=J1f%{K6kk&hs_&Gnh)0q&3UH**CvAky!W%v0ucq0r|MgE66L+q zVga2bov$!+>&}iX6h#>-U;T%#mOtQ5w`5xkyaOtfJ)&9V$S6K;{RCQXgX;-Nd%=D5 z)=Zn9R%HH8(u|l|RZADGyR9*Ir*G5g*d4$Ke`WeN-(R813}C)5x1qGd=~B@&*M*(# zlYB*}dQ#=BrVaJ5&p<84+&Pit0m(8bYbhTX0sq?SvL^e!SjD_*3kURpneBHAED4S6 z_B|dyq^hVtdwVMtsY)8lZZGxj<*i$i-3t^TK*JSVV0q=^-R zzx=)>6L{4AN}MTbpPgH{2pgh9+=#Wq9q{nO1s^wiELLnYtJz-gxVCo#iNSQo-9S^b zppTQu_o(%u&AeNMIFH={`c=Zx)JblLMk8T)qj=Ofp=R#WSJLc3Tc(p$UO~sMlTSA$ zWUermEAH|B#}ZS7BX^%5VsR|?;8x*5DN%U)%?RQy4ya$(QyYMCgyHP_8`ZVRM4dcb zT6(|RkLr?SE2j67QF|ngQo~XZqxZo#HKQA|! z#B3k#zQcG8dU0h;Id?Vjj9kCQ7&Xe#sEpEd{n2ZCE@$?T;(i0;PM2$F?4WIim62T@ zmsh6M@_W}iZHr7wq*25ie^$EJpHRKDbWq6s)H_0D`n~O&lBE15yGqIYVS_Y3UwOHj z;wA-5$7@#IuK-ci^oQhye4!X+h1B5`;}&dp-DT4I(`S9ySJITGi~bu({VBdYM>Pco zK>9qRWRdwam|_{6yL%(>)Mklm6}sR#fG$mTd~(b!x2{(S60^uXN{jLHc360y9>Ps2 z0Xj_o*g%RTA9_0CxA-u-8q?41P!Fj-azSm`UQ3v&)E2kex_M8O?mL<@aT1gcILn2zc^EW*uWuZLR>glrapcCp4?Dc7~MJmTOmWsQm zZ(nR2SwusFg(+z{6x{)iV}k)Tiiw0SKvwB=ir+D5GbEUNxq)PE9b@5}hp#z3{5J+_ zVObJ_by1fUvKEh1H(A^YC-@KcR+YAmyZ(3LZqEYB9}pB1tJAbyoRP#z=|sK0c#j`$ z%9ze|xJBu!k_z}y_i8NzfJa-=uG?LPH1{KE55(PwytCC1i_e}8!br|;#x1#_i!q<))YeuHX;j8lE4V?qm&?%qj6Y$@`I)PKMg8qBkJ zCfGfl&Gjs$f#;uoKuXhr{N-@>HmOklu2SoGEynkErZ*Y0*61W+-~`oO)M^ zH4B~RqatIzEqOYB?TSp&7M$ZMQcCv5)?xXY-5)b+$lODP%$V&!)8Ohj z0Wi(~;3vI|(P8T*TG?xvgv8C$j|}Hn@2jz3*4SZ zxOC-Qzhtd)O1}qd)h$Gt)EkiV?R^Ofmm+93=nHa66CT1<zsyd6Ej8qxuEq;{q~(tRv*Q`)v4E4loMA z$*J0(bN!>53YGP^6&L+@)Rsrb(b-qP7^gewJi;%SJ(3TH2naeSh119YmW}hKgQhaZ zZW)|lB&Ksgjo+aWi^u!Zt!PLs&iNB-=K`uF-EE)>j_~ulAK{3hP8{Rf{ zJ6^>r!iCgH`cuqsK4z>XsW&LA=r{fpYt@$+lK47C=(a=j0oHEzl0q#{t7syixGFQx z_RbJ!c(kD-k`Pw#k)>oqdj>p&Oc_jfj=wjM2+(krD->|E(jbnhdXWYX>3@U?9ac^p zJ|#Mg1&5(!9OKht00iXhZV@$(RO+4dbBSs&v!Bf&G)vWJDuZK$PGSWQ8jwupT-8TZ z>nMGAm9l6cN5juD746_$z&nL3i!1kCgf)<7|94dZIh|(grBCZ7FXP$xgmfRL z3k>L^B^O;a`6JWc?A0uj9`aq~emwX*@$+{8Ll$uwN05MwN)-E7ma=zqPRqJ&7C3v@ zd%K>(lz&MMw7@mb$vw^C^lRHhF$O&^=+bvz zzA5fS&0xI<(f}xx>ie7akp!ATFErQ&%5b8?eUr7Hl9gJST|S=b6LgbcENZ|Bmfn1P z&{cvAP%=PxnFzTYK~?hxoLg0ZjP7IKZeX|5e|Yassrdyxh(7p`Osq^ube-nMBW_o%h7r^T*FAS#ZuC zxeq5kMB1jUbpFwP2(XR79_77-6LON{HSe)?zvGCUZ%G!lY@gv6tw($0FspXr@LjFp z-rrvcGJa@-zn^`h@uELfs$S@V)fFH$)@wUUSEsNwWQuj&CacR5o3e^pR!NIo@X~(o z@9d?D!ll8>Igbo~Pv>DaM!!otAzWJjpBLZ>q9a_upFM&)!)vsQbcpuRNbi8Cac!bumV83fC=-Xy0}*jF7}do z$>)iXNPn3jF+I3b=B>aM#d2%W?@8urX`h{12gn%W;y>W#k9oqzf+3Q7DFxoJ5)Zpu z01CJTVbTv&Dc`!O_zqiY*xxeLGQ2F30X@$udK+#JKnY1q{?P1D`=yHmRdO?I1X)2= zu8k>LKb5s^Ym$fIzwf&qH>V1H!93Cxhhb*N5cB2)9r1A9LAakV5}+bo*$$7mIJ!Bg zIZ~j{Zm?T$8W~@iUWXB^PWNcJxAvS*z!^Nha!uMpC-i9$)!jU9yt-c$2~+3o10D^uDEOV_-oBq^K_;)FIynXNb!~#M zQ!2(omV_S4a6nfi)9%^bq#ukaF`t0E59bVJB)NK;Od^d8qpPw)jQ3-=QvQPW)Lclz zRzcYJB4(MK+a>iBvXl7k*31I$=zhw3z=l&K>Kam6bwvK%(#S@IxbMV2r7>E;ng+LH z2us1+Y(2Vx$%CG$gQx0du4xFMwm>{--cfkL8CiyBLBy}ngUw{`e*KzE4AHzh9J%pq zZWb7TF%E>N@5O>H7o`X#EYriz{byw;|fbh2Qb~$mH%LnH4^}mj!?H zF0797HG3=~taQWsu|^zFX3|gbv0IoA3^Xiw!A#spRBC1Uv+K11(@{Du9Om7=;A!F5 z{+H{MXA5xDWnY9xw*pU$rcM&gWg7`rkHpLpuk}N$rZpMPgv)&UyB}(nR_=vBSA*$; zyW0RwX~B5$&~|yH;bVdatE8>@6wzj`jh@aIOq8Ws6edjPzb^ksDYgv&(KyFSfJ9w; zmHa_Wb;rY3_-N;CIbB>B%AAUQ^{qR&a&>(<#kF8jaIir*7}FxO)cf$@XD4? zDv?zsyWg=G(|XLM(6yUqt66M$IMWtivqsZF_n-jIwy3?tCS2NpaD!PiR8wrx1G$6E z0yChzd9hN0g69;kD)_jcI`ef2^Z<<%&TU6C<^JNV^c>sGn`AyXpg+bsxSx*{9)IFB zlIgA=mYvS|vJ2`mAVPAJ!!8fkRodz;xCJT`6`p4U&h|Kq=bjNNgD=>zh5Z!*Q=gH| zIZ+G0IC0N6#LfO^#+(iW)nJFZ=Hu42xF=!TIn8m@RZ!0d`%){G^KonYco+lr(3uLF z2mk2()qB6#IT_9}hL8eVAFgj_(sF;C&g0Ktc&){K zoOd2ksF(_&snv(a6*McazLFa&F>{=EBe0}?st?TQ9=V=O(tHB~Y6c}#f7ue|fO&B? zk<0J_)*^0|B!Cf3@2J!?asOr@M2W%`%kcc`e!j0V$zRKIK%;_x<0?f&?=PS2Ew`_i z3g&#Aa{+IJy(Y0rRCk`D!ouic7vBpVS9%O%(-hJ+FSD##Q7)>$hZW=kn;IsnNiFd%XRUnTl zCD4qH>&Jt(4qmAL_yCwr2aiS{L-d2o`Kq)?wDVt85qAi@iefOg4&trZ!~MZ#>!WfU zP4VUQPfdDlC~j1TLxkU~C*#UQ6&CHm|~g=!#I!1E|<1GDlT0zWK2!vZTlx zp{$(fw?C+(U2GPrUXG~7ccD@zm+C;5N$J@{82_U6b5tPWWEBTEjyvu;0*Zv~oNKR@ znK?MaJYnqUxR=ZmA-JT&?0+2p1?}RKCTMv&596-eY{{Z2<(h*>-j!kCyruT{`l0-{ zHk*fou7?8~z}v+)YTNuw3WL&SI8(*rVu81PjrPWD$9>$X^g(Dh0q|t?`T`$5D0;+f zfW~wkaP%(DV9JsBN&kPF(g!)3j=V3vCe7@_q^2`YnBW||MUXh- zA%1lWHRnqhTu(iC2aU0Ze;S-yj%um~9JeoUu>{9fBSwJc4>2#CJ_6JCbLXHK{(#<> z>~<3Quj23_vP8h^(UxCzBokLq4%#;xObjzwkcOPC$0qxK^pU&&e&@dEiC!R5&{lwM z0;CkQn;#m{OOC=qx>5Gec_;(bWQFzN*KOgk-{@a4m${xzYPtd55lm}Pi^x%XooLgg z7yB1%<7fH8?ZdKEQoz)G+-?URv+NJY%fomUKY>9Zi1CUg zI3rQ9g6gLmz-o(Q5fxH??}(PToJfdaO%>e<9Y#u)F!|Ye#gr_nz{ven!`{Ir#6tq= z;+D}|1;;BQ_-p++$05S)ut7R1M3`@w1U??t$axiKrX59d46RagO;y=~&63|cOp16N z&P?{d*mT7cZ|vfBuqf~t3+olVy=e9@FNbaijLSx;l|HG4yQO#TW;%ccd$;MchSKXi$Pn!a^Q?O)sn`v7GBNKW8UPh zhZ>VDw+96``vU>0M*Vg#u!mBS<2$P9BVtx;Ue$K!Knq5|VHwdJu+5)k8_;yHrtnWT$mkI(Rr?#joS{`@G%bSf2bDi#HOaJopVwy!aJB@fq+*S~wC*#Zb+$B> ztjDL+2ih~wMvIPHASHF$W-ooie%&xv)E|~L85H5Y%m}jgn(JT3sac)jWSWvNfUON= z!!~}=)Yi0+p^I9I=R42}ReAv4!Jabwk2sL51Yl!~y&0i{8sNcIfhG;NiDSV!JB{_T zYpCNND&&-Z<7OS4N?R7&F@Pbw^$q2awyOkzP<^8AI(@1GwW?FC*?a$qh!HTe{c4!p z+!LqsHTpkHy#+&5T^lw!^w8ZM(nv^44$>*zAl==KbV{eRfV8yqNJ~q1N_RJ$?el)$ zIfoxG?7i2$*1F>g05tHWkQdpw=lh$eh}x)H^n$WO_ZAKR85Yb##yWv50Ha&P$hKiVe9qI1{Rkv1c_0&8BmlW-1JC&Uyle-Ac$LmGA_>)E`y z>J#n!`GUmwDx=Lr3JvB-5%fOUvG~AzHh@j7T2!YFOIk z?Vi*ry}vdylr%LA2J>(%$GZWmF0@panpEo8>=BFJQ3>#K7Ho;=0;(Lx3_z>vNB znBR8**GO?Wv#P%to$cdnK))%x6e{jT-`{p#oZ`DA`A)qunIw1=goN=B?@Q(+`0B2g z+l8SL&8&wyA(^uAE}k7EfQI>m;(-Zdlb)Ejyhp-)Y{~#+-^@TST{R@MZcB5kw>yJv zD%$iFv+H%VFzgZ-l6w7hRRS9D2J9lnz>K*wbGMiyHj#t7XQJU)uy{3tX>;e;o8(&= z*f=+=@8?a{nt4OEOZ#*plK52X(~M3bmhJYW1f~Ln8?GmSYw}tT5m-;(y)PJ zrUUZvj@i)_Uxj{l*?j_eK<<5UH{vaL>*i!BA!^C#BWsd zx@#i4@9Sso#%84Iavp~kG4sgsj3??fd*Oz-0ow7;fahqwuKV6UD&8Er6#K`HzOGe6 znn{nHLs|xkV8N{cGw-=3SC4a}&(MZ{w5F@B&rrKJ2{YTSx)-{UDf~@}^|>Wy!H=f` zR|z5gYAm_h( z_Z89Kv^8nbj`=<8+n9u)u0N^mr9przNEso#?#@;pKzTZZK|1QYC|3NA_Eda1Mm=9& zsYz7#08K_--ythuZ~z!G0BgWT;)(bU-1nxDEtr*smPH=;5T<2v4jtR<(j5v zA6Rd-A$yFk3hOQ9ei~SN9U^?bz>(G|htONxEckBRzHQC_NEuB7G!S<#(1B^3zYzv( zn7P2`@%@XHO*j(}uPs;s3##`JTr^m&silTeG`Nw>lx}bnGB!r$C`#VvR}0#?_I!Pc zmS^g#nw6psG8)9x@$>vQWD>IV$=mn&yUFhw4iYclolXvA>y%Ub7s_4d=nAqIi;(u8 zClshYuUDmObWsB_hjl`#i3ALY^m3r=l*JUmG+`lnMbAdim>gCcASdD2ztZ(o$A16k zmR$PNHA4ZJR2Cr`gF3Q`26$ay%BL^xpR_%nYKA2Ws((tjCgcJ) zBwu*ghRRI%;tcLz3vl6ku?kadJ`ZxxN%dq+%>zO)7ByQjka*5jcn8d2+GI2^@-Q`W zd_;3~(n4N8cTx0{R>B!@PSJGz8#+gkoUDz*8n6vCy{4nLl}pRMM1@CfdWEFe7;*rO zV)Zt!bMOE9aFFi~(jbXJ%~xL19zsJWks9(J#sTc7(U|jrU2-j3Khh~5?o2V&NHW7K znRU8%S(OX68a@ZHL8%K)ega&!T_^b^Iglfu4R77!-$V4FfhQmVRQk18nYRu_=}JSj1z~p<|~I6+q*XX=i+Yz zHk0ik#wOVdM`;XhBH6@kRcm>2xGP6^n=#`dP!F~kxw?k?t)<$iu}XcRom4w*Fn6)l zOuf9Q=S``vFY^}u)*Dc(ARyqd`dHnJ>7XxfZAId;Zo?`;%|$)!42^D^?2V#{p~8Qt zDnnUEjT%>!fdlK7io?G_s+})o+P4-!?Tm1vM?+MegN2DTC8F{xRz_4$eQmHshHt9Jp zgon8_Gyr9uo?0G5EJif@9-@Nj2pMEr+GzJV(t_!x91_Lf7v}Q+ppGpMqb_MFDBhZ3 zrvO#B1{f+C3snC+G26U)lkPVHb}OeX0d*C>ay%4By10V9h}rEbfXf5O=~d@w%hbRnynXIoQa?y$2) zIeYmc+iAX2X z@7?U1R_H#KJml-p{>I^~`=x4C$`orVdd9Xisa{-Q%QmH=FTESQ0M@ByiJ_iSr&fO4 z9XPrx+3k$;mcaTH4Z)sqe@Qu0*L%X#y>GxDlM+Oes;3A}Hk^CxkMS=9?YE zm}cvE4ovWv8yg$PZnc!ZaOduysCQTRV89a5tmtg})3r2Liw)=(g z0Fy$H$lbbsp5H}5C5`zgrtZf|-vEC?qm85Y2E6y=5H^TKDEVK#rt0sbix2JI_;GF!-+e7VW*ln;avI^p@ z*CH=Oq-Rsm1@lqcsMuIP_zY9@hK@p25BNw(Urt{G7S`r|A0o(rMgY(}vxi*%kMYe8 z$EV8~(mCPeaQYkb0U}v#qvK+`s#ESOO!%@4D;QO{ZxUwr!NsI5jeN3 zZ8#-*hlzZXip6!yex+dGFddGlRju7*azAN4oW^Q!Gkt+SUa8w*xAI`ghbBY{uW-gO z;K*CI3!8DcA1DCWQV*aV5S&2So$SCJ9t+Is23s2|(%FqVUABktSu|M<9!4gM z|NTn4?$UQs^icbra%p7O2%G){B+?YYLtfVV+uQb>#{hu1_U`SCTYBeR-#9M`DdY9O z(E)s+CXsc3N_H?T&6YVFR=%;Mo({SFK3dLBG@p__mPOuAsM zmqh~rD$u5f9P1ra|I3KLf9Nw0IO#bb8%j?@LX)*UU2*MhJI8L&xU-KxE>i1uUnHL{ z+Pb;GFk7j|#eGp}&Xd$j9HVdUKuqw7|0N4!qd^Z_cp&JLmf_OBBxVk7zBlwYDAYVs zS06|1AY)bql5jX_(hCZ&sT za>xux+ zmJ>03_TAoXr){pTUXCPic3G`)&epQi*5I4c2Mr*l*lLQlSr69!00Jq}S-T zJS}Jp=NdGsPf6)FN7b)eb^?r;rUyyI_Jw0qV_rsNJP2AStD>n$>%Rr;@VPG6u+^;A zZ?s#edjq_&QK#GJVk#-p9J38M?mz@dapy6Ys6tWW2^^&lY4(p(OVjlD!d@1N9M>_O z_$f#v0_KvE;ta1v^0Qz}Sau?X@me~0sbpkv`OH?lZ!tW8P6epG8>)`p!=z-T+x&6- zO$Ig8@MpcVJo_Ry+X~NF*j&PTwwe*MB5f}FYRc96wXyCxwwhJiwMUt6lv(v&ru%<2 zvJ%VYe~{VY9G_2b0j+jZ3++esX1gYWZhd20Me0s$xw$5;ZNS6)(;Z?C4TzdGI<0mB zwvx89)m}HR^|x<~lQgy$ZZ+NAuSHPbg}~7i%Epq=Bz%}&TggX`mO_hU`Ppw}viXJH zfhe{24T^JI{u7PEIxNl4qCy&!kt@)1AIQ4DU2zaf(Fv5p( zoh~(ktw(S{D~L`9xsAMu{0-5;OCTAfiRr8U<)`U+?G|m;oy&Xu>V#qZi+hu|_k6sX zY1>jk!b(BPKbyZku}?m+EAyZ+XY%ss1U%)ve60JaX5cIr{@9jxesviU5vUwl`h6<& zr(Kec%MHcvfOMR>KV0aBLjt7|l{vkzj9X%tLHdp(@$rA`*ZcxPb@%(81_vkBC!SlL ze$}2YL)@nu2%Pd813i%$m4fDMH+3O*8(ks{P|ORoO|dXTbZ^yn9B@`;s^*3IgXk2j z_|e6X7VU4+1uAkSN6RuN>mv#}8kRaE@ANEi!jpS{QDDEir#hSeUn~Hc_xFu74{#+U zXrW&S6_+FS;mVCEk8~ssEp^xw`Ej)V`BdM*%gf8jY463xe(V|zGaWoP3Z9fgk#ROuxL8MLZkk%KEmTP97!U}LA5NEtg z0*nC_frE-NJWXX!>B6q0{nPQMhdELDUIei}S2|g+9mVfQB)Z;@mxrm)7KG>%ZZLkhTOSEc~v0)LBP6ck42cimp_DtT9p+|cPAARH$!V&RpwXQDhW|IyI|AZ?T`dFuFH}BJ1PND;C9G`Ha6qACjnG5MzP`7Z4^&Ng{ zv&P5Ar_19OZU0uaPI((D%b{K-G;O7T6#Oe3rw#JRbALZ86@=Vw5s+&}Y6$`l7wav}kzF95T;C}EY_rWXcM z^F&c9mo_#?+KKK9q3uDE+Q0D>;8P``7~8(=o4p7;TZfyPN=~biQ?bDX?)+U1KG@QtUL?^w2gnl@hg};1Ulsby3;I0Kc)8>tUBRi|;_|fDC$I1P zN!g5F2weIg@vWNCeI{k?!;U=T6g(~C^2Yh|LlJN>lnQR&I#{umPQpOD4}+A zSbxO3IXNbj+(1_L8d2o)7oQ>kO=$CIO}f#36K{rDK|~Eh4Z<syx3euYT% zb!)e9XO71aUf_oLnN+7Iz3@JX6?4g6Q(6CslcaR{|H7v<=?yHISQ#-<^-M+%3EOtK z6lxz`E^r=w!AITNp8RX&ZPOqG7zOfjxfm63{{CB|9nO&4r^^YG;TzO^v!|N_n&M7P zIKY*g)Gu%{HoJrN-Z7#x8tXC3Kd!NkbZU>l?TP&z8;S3F;7La=zdbBbJUQ+e82>4nI50x3!CyPD`UF2jTWeYgs@Ok- z5gJ0lPJxuyc7S=+u2u!EIt(e`7++to*abrhXTa32iQ5+cc3df*6IRHOneZ~@hF&T4 zV$aIjtwEh)G+mxHnmf!tGnD>^k|8Aee_~J zjl2e|aU7*`Eeh#f%Q6Caq-^Q*dx0^1E=+u!hJWGj=!DoU>YBr1n_7nR4_djs>9DnV zyC<%MWan5?!}dK5?>$O9`(W)qB)Y7->E2az`E2rao)-fSR7GjBG+&2Ja)TwFp`5b| zf7gj@i~93YWG0-~iAsb-K9Z0Lad2@#_D@s_w24S5nEy)2$(Ax>Vq$)Yi<6B*VSq9e z7*)+E8#CUoezqR<5=mvP%{ibHk^rm-U#HjdK9Sz$5GP8mbX`-fg(jw_bWCXRrY?2o zE(!W&|Ae~W)O7P|`i)o4Ft_NRtOqBWe5zB=AQt4$qRb?tARFHO-eqGJiYPHUu4rOM z0SVIkj1Uu@RN(^ONnW3cy$D^TmLUZ^9dVq;UqVoQc-yLy=~4Hb8RQ?B2SkUTWN?Fqw+ogBe?^^tJSdch zMM<(hU7nbb5y@juAHIJAL&TnUp zBY7q3+bL`om@OljmCCA`$Ka%HGS_l5jmH|lOu>8^@NKIrJ9*nGv7AWYaeVYV>KGsu z>A1vg?jz9{2*(@#+b9fL$73DfQ}}fpKU`X_MQDam2JBR;ZRUJE9hFX*a)8TSQX2=V zciKbuvTc_=jE5$j@&(O+D5Qc?8S8Lhh4h%Gf_5PVDRwh)n3$;%h^W9(t4%b#dl~j5 zQ^p?~+<}KM8awUdqDXib!w^@_4Ven!TYiid|HYH zrP?l0+URb1LziFE(=sfi$yoA94Av)6YNbQt1;h}1_I-rPR5_t=W_)zXv`<5TliK~$ zAmcM%E-6#o7sXvyZlZF13YJtUX{o(Dei*}B;&p!C^@HPIDkyMKSfd_0c9vt8w$)mg z5|?$uhF|6WsJm(s^Z!OVd0r3HH`iNK^c#|ACH~QeA=sFJ0M0SF3>ES+?79pXpZLcqI_4Svja>wi9B>23- z!oosAcQHoG?!Vu#dG@f7{D`;uFv~(uFJ(m`uj;{4R>|_mej1-Jmd9X2 z2`z25*@_r#B0ux@r^&@$V2dGnp5&WMj9|9AN{_!^yH^ect(C%+UmFC}(ZJF*(0q_@ z@hQ>G$$q;n6;0bxR(o#JDTYb%s?R*-pvju*TD-}juNq*XW%^mW9pfx|-rTII3W@e5(5JRx!x|tdh$fg z>;VH2O#dfx1Rl*1z^v;{VQEk zQi2lJ-P_w642KjR5dmEHBO@c20Zs$Je)?lwDh$znV2Fm4s2z<&JNh5ud#+pyhc;MD zeM-_DsaWn0(BmC#CFQOn7465>-J(#>6yjOJ088j4?c@gjs((KTQRb_%Ue3hMy^k$r z9D-o+m*{L2-)j!=CRY4`SW#(NM*D|t6sW#68X>frzTC4aQy<)wz6dK&72xAclotCm zG=5Y^t*%!%QSplPdN})GosoJ1#G8~;9)Z_?hp@G`ao#0}MJo-etXb zQf1(@!->iZcYBLn@nMu7Fe(i=Y5C$iqVvUUY1v=6qcB0x|JC~S zmi$!#>|&>wwu>wt%_ZF|leAc9@B2`JYfJ)r{K)({zPe&-YpX{h3=;4;X%(9UEUcTw zlAd(;S>M6WPd%{$>uotcYqaq>)*hRETJxeuV7ScMy`mri=Kzw4^=8{-klY#Wx;cOkO!BCjhao;^LaRvtzgTKpMs(44i zPKQ~spc;)x)5E$avv<@#{v!3uqi7S&Bp22(_l9qkqg#J6sT1Pja$AQ6`*mtF|M@ZF zCnCzttJrxFk-CF&L1i#2 zLAc?4bk|yAeR>q8yG5_Tdtd8RcX6*pwO6j+Z(&$k0+n%KN=mSKovbp`xZm@AWSrct z(PpK0VWtfUY4A}jQzyz}oFPTUn$#a1E3@<%o&*!F`>_+ox5s=!~K zJ7pM}W{49LsY6dAULt(_TzX+>f* zO`&u!1?^tIxex z-!a2QDCqiXAj3G2^4P;?ND+Jh zyuhVrNZ!3uD=Oj^bv`qG%cm-LAiq1%KXi#Ym1PJghAQ!nbLJJ-G}q?tLS$tgNhCEJ!*lT>lP@;^ydBI4YF z9G?<@P_XIefYcZ`RFafTXw4SVN(LL{+$~(n`IFvraOwaNA8;mdD(eX@Ye+cBm+d;@ zNhL6R&PvBbUsDFVtc35*DcFu(mxpS9tbEMR{We_}X1Q=Xtnl^v=O}I`eK^k9E_Jn6 zz?*3Ir84@y1Tvl6uJxL{Q9Lf~Q7ECImv{&7?xP@(8x?erb;-$lN(Bc8JM3Tkm|Hk_ zn79-I#YtS;?hcD-dFQ$p7h4K~Rt{)sBxWWcJwj7{e+b%73Hu?pwfbK|DU|Ix<{Up}`c?5fOHklfG4{H2LNNm^MX`y6 zYmPwR8vPs!Qo}$?IC+RZmMib1Vro#^x0s1&P@^_eIY-siN=}{q3-8tOKop)-HjZV2 zV^UA#4$&Vd!^B+k?ZZ!Zr<1&R@G0xXN+!WU*eFvLzGV=-cfcY_(=b=hWRfNm4h}SP!^eY#2RGV_&`Lx`X#_^iBkCHqkl)k!6(5tM@zoZj9_1-h3iz(u5Y&JYwvm{ z>|-V!t+N`0pfL)KIlc6m{pgfKZpA&kK_%u>0mb|1D+#Q6*M8(C=qC6yQL|e>NxH=5 z;ikI-l%{=5=b(u11fN=c(fyIVR6%k4Kep!4B}h$1;gXQ(1VbWJv1}E#FeXt>r!k)* zS}kLdFR}J`@(lT25P+OASGo90rdZalHCPAchWZCJuf7otJdtJ`)>-ZA3nnMqw|6m} zYcIiLx1FbQvboLV#k$#V;HfKlqvGLyUlV{Ty#x9@2r?S8oYv!%f`UZ}dEN|XN@W~K z;B1merD9!Owgmvy1^X7XQg?ko#D|9(1~?1ceOo{AQ5Nb(+DueXO;|};kY!D%?VBMm zS)YR%kv|XS8xnpC)wX4T#y*=EI@svx!nrwpgtdEz(cWuZCXE0k5&ki~3AMxQi$Hl# zHS3h&#w_DmmvI@PqXQ;ULIVAdS5*9nj;;E5vKA#RF!-xl=L z?|PnJj@Jb2UspR6;TmR&?d`8NsH9CMdq^pf` z2|i@I%g1oqOhG|k3|nl)MNw#djnN1q%=sPTgM^H(lwelNA%9ObAVkNvuC}hIivXh( zq?NN-hT=xstqM3hmu!3n4^EUKIh9#pevrcvr>14Ce+rnZU_S{oC4rMdSoY6!sH2x3 z{!}BBYnfWzg7D%75945OC>O7X3K5RC2XW7(!f;Ui5dMOA44+s)?D}!)vv$SoK;A_| zz3)S4HN{4Im){e*(MzTE9L%Kucgb4EEWik&Pmv7;(5HZx>4#xs#gif#?vOPZvFZwo z>~!Eh46fGxE*Dvzja%Kk{xj8Ls%(aSYhEjLv1RuOaA=V(p_Qb)h2NNzH$0dp0m35= zmGK_q4HUbifCX9+rX2&Dqo`x26(9bcPTYta1T%aE7wKZ`p(7Q9&Cb`T$d>yC(`ggl zkOn$kceP@(Y5L6{QOxHDJf$uLa)tQ!cN@Z#GIm;Fxa%|h`y|(I1@mZU>dKuJiezK@ zkXCP+=8o68qqhCmeIOZSWA*P$~#z0JApP?|S3ZH_kJA-~?@p)@p)P)QA}w zonhZa1QJacU=HN=1>;faOzm(?Ad5E#JlZ}|I?L%|d7xc=L-@2CzuG|c)prbc`+*hR zA1MVim7A%}g~e84L3blI4A(vqEL_^{^6Rt8ZLpb+#+*Ifj4UAw+N0RT6XNwVB8s)D zul2rhtZ}AR4L;tJASu?rz<2}AXY)HeleFdRtgtV(l(0&);Hay8I7B?cYL~T*{I6wS zqI2$lu!JU&OdNy7#SjXKo$spgk-^x{mM`}oHUSM;<_0)LCuXUe(HPLrc0y! zJK&61BIGuCBG@6M*8{AvR?P!P3qo-^u$|1Ua!M>pce2VZv%>r|p!svV$8rZLd-8r) zOCsO=p8Vw5>N*oicq8Y4nrb5cHRP*l{!+MtjCR$?%jvG@^Al=r&kc%B?b=B-Mt{Kg z``e?_l^gp>G%UCIl742}508uISSOp>1M4`4{B&ki)^w-^Mi}3AFK1-E$PUkOkAlc*}MrKM0Q9-9g|CCv#C;nkZB-!Lk__4aqof{Fch!qoo!;nKe3XEn7!f+Bm zQ9Sy9+FDea&1^QoXjLQ?X>0Au?_8dJz#8X&&Za`?Hl=j!C#-q>y2aSU)>bVCF8m|a9=mMep)Fh~?8;`3)?_0s1E;jo zZ2ND#k~Bz@=)Zg0`7#-k`#4f6ysuc(cEuoiM?jrhFhU{cvotWM+hj8g9d`Un1ayZp zzEH+PeW;-ysJa1!cb2s#`272qIW@bsk2T6~TmWqh0p}y!&tUOfX|*AP8XH~Lcs*p= zDp`d{x|Iy)Wk79E{|mhwbtTSbuOh10J<-5@|I_>*j{dl6;buHIV_tvD zXpsUHBW=s;-Ig+bwhE0doc8OqA(7WL;dw=U8uR{IKqnjuN z$kc=;5P;tYT$hkKJY8IiK5QJ*(%xoTyop7Fkb%sHtMA03P2M@^#_JUwa3x~*S>R=V zG86mub9HCT-yjS$P;09*dF%K(77s&$FgnuKxjOdV;gN*;tlnZ5qj114hHRN?d4&2L8;ucZ%6hc-k8wkG++CM#?;iCa>k9J5*=&a zh5m{U6_u{94ARDMR9F!FR`kEJKycS$tRTjOVFaOkMZ8FIe_a8A z!c(8t_dY(VmS1acd1|~DZaZ($Ay&qTub z*`&+Jgfy>^87!L;LFq`OuTo&1f$s?!l5Z>dQFxn?8?bZxJRIN{pngwI@Uy5ex_aH| zX$watc-%x}?Yo;X>_XSmtRKKPgBwiZ>$%an!!wo|oJTN0fH zF}3mjnFxv>-^f*7) zm3oUpQ-0O#u}SmPy{@rxv2i!h2#IlTt-s)}{IFj^dHfzrX62jB-rYc~V{K;4LWqdL z6N4XSe%KPSt$PhItx&$+Y19b;j%{&zsA#&~ z7)Xo^d}Uic-S$ghBmFRtFGUsNzIU|wjOfFk3d8%Mn6;~tIXskG1{Rv@+d3lV zrbsE7C2(`k(!UsYf~O#XWpQ1Rh}E3_ptq(-fmf6H~QfNA9UO?*A{oDU2axOJz8lkncE~D^5L@t*ura(fF8hQIel-Pjc-ve?H$hh8F;hPKd55 zRXQSsL3-G{wZ*knlOB3RVa@sNMj|4C!f$jb7ZtzDHXeE-W^4{S!u+cj&`iUpCVvE| zTM+%ZY8bKM(su`kk6cR(!fu&XGrDWbS=dWOaFyvib+QwBEw8Sy?XnbW^oJc^L5_7u z{Sm+DAyglO(|QJ-ma}&G3I}zy8IAnT!^)-;kNDo8Fn!Dy*}%I*i|Ga|55ic-Y0Th* z8;_CCXoy!oDChB|{&!N4F~CZ{0nyc&0{%1j{OCBk^ICuV=`J61HSww0&=kv?z~&IL z$TU7#+{7?R48N~&8?)Hb>vXhE(=UN|7=B6F1Az|m)WGeQ=JVChdr1Y%fyvNacQ}Jf zjB`rZbr<01D3~J>3o89kKr6tAbTY#Fat#!_;Sqt9;U1e$3PkJF6zhT?^q_Dfev1PS ztp&O4j%d*#Lh?I1?1rtcse2p-2OL% z+SF1Za}8z79-H7w0a%vX*PCu{0l*WnrRH7zC1=rm})Mp&v8`$BMcEhIU|lGU`{$~_iYvc&3;${f-9 zneR4yzxC4?TUuNQbm%z`*Ld}Q4h~2``Njr!*%oZTbkq}ZjI-p;QjsyWFP*m?MKv`c znpXl}L6#q=llg=9^L$$CD=&_(=ls*K8i0ne@7e0c?ja}gg{=#a$&dxd1w)76p*$6% z(Ae4yB7Ds^saTi~T-4Ayx+%LK2R`D)0`YEp4*S&aV@bCtninDC9}V8aYo5G*1=Wyu z`(3g9OHQ~5+9QD7K@j`_z9Rm|*GOZ5EZ*C+=5`MtzKedWRWh2@Wh&95jLKXvh@N9Z zVAm{hR3f5`?KLpZHoi5lMAbH7MjFNa7gBa~|694iWa}IDa~U(`IP{mRh_#oSQKQa> zkkk8KhU%BAQqh2|IHRApt47+I!qH?s-zgG#>SaRsCUab-VrZS{fOQO13c4ROzywl8 z5f}IiPkvb25D;px$1(~Acc{ivb;q%NjeM~c%(pifBb#}dkLft;DG5q3F))++DQ8`I zuj=olu(DzhM>hnZdR*|WIUx4Kbb0|hp-@MApB+>v7LU8q-#@kd!q)z`BcBo& z($HU)DRXz6VV};{$9yk6#6S{nP}FBKTtBa|I?Ksl>D@|nj;UdEpri&2}^() ztaMB^|LbLODyL<8r$&m}$slWQhG4#*ans`pRNt@xVkBaQQQ`b{xIM{2KK%O;C0rGX z0Y&2fF9PRT!Id%~w?$-~qA+lSV`yh6tbIT^OwQ?bArMsU$K8TGHD zqrKTT(BqfYZ8x5AN2+i4ov{fw5pf~^Senr^!8By z;XGY!0jXMN^F*wMT!;YD&VRRgHVn)juZ&f=ihC>q{C9`K)4|T7hxkRSk(U+uw`Mp| zv4<9ds-LOcfIklpl;2$n^lT{INYy@=)WOAbvS@zN9&B0EXk^6RTzO~$fMOfWS9pH1 zdz5x5yzJ4z588byfaUC&P3XMycbNI00CFU`cU&PVn6(6<4~bgqq*8iid1S|iK->|3 z*t6QZylv)%C6b${fs?T`l*~b+r3GJmb{tYle%w1e#KJwuR{Hpx|`Ribk#gaBD_rdx90SIVh18CPSKzYszP z_0-Wp672cx+BUpZiLAkVU`})MSlsn0;oiFyXF#M6mUC9(yNS_FW%(&D$G2&|4^7sC zHEo+3{?7(9+wBnE?EU?HYLe&L3K3eF$TWfu?4dV&$NM>i9 zAVKGKnl*62#uAQOF?fGq9_@uQ9@;N$j1P-Or9pw9@)9!q3kj#&=HI;MABcocfNY>j zzyX~GVIx(C`x~<6S1LR6e;;Bwhq;D*8z9Ihi4iLJ zUVPArj48Uk?eyi`ckOa)&fvV9(D3f5x#N2D_W6aP?BkzlLF!1XJS=6t9ic7)zPN~H zxHF^w<-!B;V*gqQecGjDM2xa{+$1dM&%Y@}vn+EhEZGs^Ytdv-sd#03`klZH7DIA*qilx9kpX zMu&-~8Rh^`bl`LQHUK5lS%V03{Sa`0OX=NP*0vBJF8IbwP!&KAUbeCrJ_c8;UUn>X zUO%p_<)rjpmCw{t{iXPFeXxXSKC`j54ID0-A3*%>>(jDRFiJVhB=A!2uBubyn6#_?*}%y7r?&DB5+B7xZVQEofB z!1L0=R$v={H>u>yRw7&aWHq_@srTA?#g0AxxED@AS)tw}3qLl!aTCL|I~$u|b;ndX z2-nzw%H>}Pfrf98L(|L6c93AEJ5jyF0r-n^lEcqVOq{OXh0o;%EUp3*)T7lIb`*%R z=MMYW`^QCF5yOfx92_yLMGrVrS7$>JAQ5y3D>Z}B6M)b1alZDROZ{h5o@K8_p3Z+G zdb?n&yws(I7b>0GnRh>adtC5pKCmkMJ`VsfoOV7Ago1j$_t*L#sZqbu{dci=d12=# zjw|J0&DEDfleIC<@M~Js@j_4D>Yg&L)b4>+y8;7U(hiP}aNwzPl%`;P0lZ@w>E*~muvpRnl>Ky z%fV-;4kQPv+1|xeV6CSi@q<|h5^+l3W@HR@?S-)$>+@w7EI2Sxci0X%e3U`IVw;U0 z@+dL%IG1cS3{gQ63Xb?+azgdL}&n|3E|2yQ9dnPzl1`? z=#yo=91CM45o!ry2D`Q?4V6v)zGuGR*(<}IG_~{6+zDwl*TT}oo^nk(*eowN5oXEPCY zRm_zE4gXVxG-nqcp2fD!NjWI(`otTd;$A7cdpoMJfF$T1ao_DEfSj0xW;_t4=Jphk zHzh-$da0$r$a@9)`UCwL=t8>5KZ}+QCy$-u$}O>@@}}7+77y?E zLKY9tp9=LVQC)yW?hlpsX7k*`){^npg|oC_l@=jxW<<8l>M^OvNHX;waE4k8Md&%q zj2O>`{k!#!j9Tg1#T?`BN@<(73R@c+b-(GO&zSsdhy(bX0JWf7F~iX_$dJ*MR?@U0xxykO(VIw+ttuEF&8_f~%+b&IE z3D~!!POyAtNl1$VBSu1%d@lLwWz+01&yx7KZTKoHGomBj9SAj{I*=8DBeAfJo}%rS z95+F!A$d-cA;{|MfCwAaG7I&f?H@2fy(0 zx9Dx?Xg8$Sqi=bDgU?hkghq7UdcE`uI2Cm1nRl)?C5!BHey-HPw1g%&;Cl*x`kk(% zZM8w?t6bK~o^iqI#8zAT&1E9=m@pf;?V-{!zq6f^Ng4p5i@Zy_2F_S{xcB>;XRRvH zi@JjEuE2qiSS#&|7`@L8)dQ9R%hNtJ4N_2GaORZg3Qe81=bI^#F^NY82-2b3eloKn2HpF)W5y z8d-!vD4b23eM2y$f*%{6mC01F{VMD#+h55fD8FrGS6tSo_Oz?xU!yY<%q*VV2rK9l;-Nv$G_ z%?<-&d5`CVib4zFC)PMaagm zhFQi<2NM@GY{hqDk(aUu0jJ7B@gDil7A%3#@2oyiix8tnsGE&=nC28R-kcBZg16`JL zy0_I-U}p~Xm)&L3MNx1Y>i)&6-v9~yWBg)A`tEg7)YD4ozM71!IgM|MwVd{feV4!8 zQ9XHJ1CzpL+;&N`Rmx6U7Q0qf^Tw?0MhK?90agWf-{-m>`UWIu74Hv}!V1g9b(M%} zzTACG;Y)|ew`YUUR}|n+bvqPEHoZ*I7ESWxfUMepEUShwmFaGl)6|k`EvNma!GP_N zL;Y3W$XE_aIbZYM<4u^&>gl3s6h0^Wn$V;Y_{*4dzAyEn5~OJXFVSB-q=FX+2RJHH*z8HthIs_g&>7M@bh-U{l1qVCvD+ zot?w0h4Di`gs5YKaiZ&j^vM3dT2KfwL8cJly!af@SCjJ5{hC6tl`=EEn|$Uu`4?~Z za`f$FxpqZss}VG!<`8ZpcKf*G{U{azZfHQjthu#Qr3+pm;tyB-koL&8Ui&Hwf$;D{ z1#Sy+kg}m!xeo8G)!8;zeK$mM|NTAnJ}UO4^J~B5vCHE8NF+HwWFSML?A_$B`xAZ#&ud|qqr{X1Rw1sEQRG)L<b#6fbn>I zaK?WRv1kG$LY=WbF>v7}Nj{h5XTO&91x(s+E=SiJ68EP@RGyo59RD(BJ@F%^)K(uW zfFUZb+u|@#gvt1viC$?%3jo=h9aY06v+wIb$Y~|^6sYDQOasi$Z6}rE0XK~@v>!=C zG+}L(yo$xUyGxHTfoiWFx!#udU>x@f?T95vjA8)sha%Kd21#0&pZZ2=kSeNr&hK4N z)7*ucQuG_BxL-;RKtK(8N5I3=&DbMb_uR%3oex#P0)0_3$62o?h52V4lfyAO8JeH{18~ zm@hf4h|Gt%cOz)#c!SRO+H1aESk?yjI+#92&AquE3%Qe86J+#dskjTCL+D})ehcmxt>xQsl`v&6-}n;YS9 zCIG*Q_<^r)3dYUp+Hs-08KWiiyZsx~$Bg%Q7>;|SdJ-!AQ@=w#3pCe6U;Ik9=_1<9wZ+sF<8F7NUd7if zC3wUTt??tFntCqF@p=^gzE zcJVg`Bk#1+o#=0S4oQ$;~nf)0s)&YDfwP=$DoYl*7WA7okSnAF1SDEjS*rWoH- z16K-3-YgL+B)6+9(LyxotFNgNkD)9-`@J`G{hEKg7T?0|#$$;uKpnk~L@sMfkEVjK zP`sjkEDKa7qvI@RC<{>sj!`6j8~*gF!V91MqkDq!~(g#gG55BjoP~RD89ZlI4krU z99og9)7MRC0Pp?6G0FydzuEPm9LE7eWRtIiFB_t!(1F zw#U4Z#DwJ>9?Am0uxK8vejz0W@uZ%nY+Vlr6kHJ*38YoOiAK5l@%4?Kq8YUSMKSlJ zhvj!S_9}lui|hOvdo8FUWEfJ(hr>1j)wP3=en|Iqd0T(rxmx-h-NB#!&OZA|kTU05 z{wMv3gPz4kUYjmwP-&3bTjW>HKK*2fgfoy#Go9HeIC!D)BvV?v)am`a>lcY{mY_Q4 zlrj71fJ3qv=%)J`T=at;Z0?9+M)Q_0`*o^ctkqnlW^b}TkS_ceBWPWX!5PA#i<4w{ zf|p6Ia1C(^xhSW(o*xiU_`lzXm~4{Ka|j=d0%n_Vb_df)VGdW{IwhAk>!ouAf#(~x zFzWHsaNJuIRmN)vhh&CPu#+d>ff@-3vhXM0GuLY_zMNHjn>@c#mvJ0b%?=d$wV9n= zHRG|SpXlqBp&`yFLZ17>e6Lws6m6sQ1g&6EWc#f}A#Y|$=Sl?X z_~m+h2f%-jO1Sc62*fSB&#P0I-D=v;Dje1PBVP`*qRS-QnI2{s!8cdMavqzA0dbk} z1CViU(*j^uLvf;!&hO=PdAT!==3bHnv~T{>0TZq28KFn`k^YLfGPjK`pd5HX-&@1Z z{8pd24+A!XPQcg}I^*c)wr}Z32*L;@U4+xWdQEB0A2-TfXfSa1v?c)4jzF9cn2}Zb z?#olOBiW|u;7N--!QlegzKcj^VQyf1J z3V%8CXux!h2Z z!nbkDbM690Q<2Fv5yTJp&L=X)y+w;ta)C54v{4X_9t1SOIZki&PN-TGsLF-(vS85s z1^@4P2Hy1l* z4?Ofxu;YOr0J;PtXaK2BQ}}f@IWmB-wccD5q`0u-Vtz&ojjR_J%V~eOadb^CESyl<605)v@80M-b>=$F%edw3OU3v!r5M~X><|gm% zH6l2fzV0WK1~4t)AISHN&A=ro=~EBw+P~#dJ>+MvS&X5pT=3|bkO9VzrRLO~(s1kh zGy*L-^JtP^H_~cF|2z+Fb~zereB5_y4L(}bO5G4Dt+5<0y3yBg6n1th`i)rZ1#YjS zH5i_XgksqLVds>y(bW2$%YBVRF~8r0yQSzyBgbHi6%4Qk7!UZaMS4z*T2Lm^8&}f( zk2pOc%^fH!H@lkp6KDR=BI0|&w9*=zFS_ptG>Fj9Gz(ci`Pm=kc&{uu3TrsNa5EEr z1AU|7*3*?BigEi6GDEtDKiN}^L~um92n9k<>(!?QoLj!`jp{fAMuY+*<~RZD*Zll9 ziR)DP*g}A?m5~By=cJ&&(hZ{Hg{8E`iZVzqDx{*+t!h&6*up8|{@T^$c{ zREJIJ9I(&?gY1WO6P3&Dq@T1x`%i#4@Lc7iJ+#$5G(pyALOH zCqZNQwoeCbNtSu={=^*!`D^An9)v5aGuMm!s{Gn4IVJWg?3o zM*$07US?NQmy6BXz+@Q`Wp0dup(WELl$K19`Pq6iK!A#5+f_>dQfUl*FAK@a&H

U{?M1_U_Yv zc{T+(h@EhalzbY4!th6`^k-k)#J;gn(??Agy{zP!+(S6mo5xqHbND<2WC0AwHO#1~ zL}{zP+j!!0n83@v1J%_AuZbd5+UPl-Pz70{2*J)n9++|SON>v#v^51IG76S-SOZ=n zOK$-7_8CYSoZ-1&Lb3LCFB(HX%Q~FTEkw-3Vd;K2FX!>Edn(N%yv9+O5tDD;)$6@(*8U60b>AO z&DF6!89y0T=U}r652ez8KKvf7O((-L-@bWBA)Eb=#rC9Dr`kgqJpDW&cABEYmZ}yw zWEwMALYhN@T2NaCz_6Fyx26y`r@-8g`hqhCEu*cR)Htp80we&tM5+X>mJD%fM=nrQ zFxw^ok5R66KQZM-f!X~cF=59&SX^HoA4~~Ba9GG*N1i+Q*Awn%sfv6s9tHd*1Ui6l z96(z&*Qm~9>;xzwb_>O^v3Kryr)RS%nL7%xVG|!qYM%r#K) zUI~E)0A?CYDwJq#CM?Gok>xUnae{mIuw^6u?*nD0iQ^L#3KZ2k6`J&5whTx2YZ)p*aL!c-wDvnKc-$k&MbQa zMzkPTUT!|SI3)%jg4*!5#M>=2o)Dnr(-ZcdVU&LtOE35eWnm1L>0tI_3FemA@9Ld^-kxz`u0w}8tJfET7|6LgIKWH;ld^S4jmsRsnr@a2 zj`n-X092ZBrRri!z_o+vASs}8Ur@2}PLor)8$e%CQ*g|zsNsiT1O%7ApU3}yj+=78 zU1S0{?mAT{;yt|F(pL;w(w5b%k0%noq2snJ2PK8mvkpAl1A;_; zp==ycQ-h)}*l(7lR||TyNndm^VIcUv=3sO%2EK`&`1FaTbM1Oum5xl4HQ7$z>xtCL zyNJo|dWT{c1)WFmLqg%K=8hJIYDTJ6sD5tNymh9ps4AuVB~3-QXSPud{v>VD4WK{k z{x>KCa7-&APuGWE8p)@LN1h_f+!igSv<6iHhaN?`|9qE}&HQbIe!K-QrpG{q!i*bC z^s4|q67emjE7`nWR_Iq5E+embo<&iQ>tasRjhwfXPIIZnm8=n^N11@x^~{voBJ)$0 zM%7XZ+=Jhd<0kqnT7lZ`RH0}x=R%sI-C;W^#%0Q^#qo5UUop0mo7_hyL^8D`9yy;L z(oTFtY}7&Wq8GBJm>L~0xb}27@BZqgO^#w$10%n+Fj{{T}bFz`SAHTQ-M6LgB?ZQ~DsP%ho~Bw5>`whQj#m4D)l+4 z;JIw>QRd~tgG$J?KLZUda~t$VF7?HO#lnz7))fD)3AyNQAedQI0bP6+E8O8tHtuD}P5eg(8gsPK9WHAqV{LaOz4dN@AxZTFt1;$d z-&Iw0zq{&3e*vrla_Vf&q<>&==Se(Wj*s{Xo4vZ%bWAS89Y*KeJdW*5!;Q!nPvm1s z#MxM=)@K{`a;r8M({c7UZaja zsjx`fl*R7H+K%~4t6u#W3qtb+^z$#}$ofXPOYeJzSnCsEuS1d?`hQb9%ZDtWDEC*E zGfw=fJwYbszLX+HkoDk1?7ZO>!?TC#={V6j8^-Z4D}THV3LY;S7cHvf%_f+P-AmtW ziVr*9vXKaKJ$|E_g&P8+!@6y7nS&|(X?d+OoygcruNGH7_AdXh<9@SDY@@s^FX;PN zj!0g>gD>^n#BI>O#-rboKx>wqryoauB%}8z#_`aUnSc7c?G}(~ciFW3yn(vl$%oKN zQg-MAZ66TN2puFVY6YYrNM)&k`OhD1;w}Jz?E}c8PLfQ|^QZ&n0EZ+AxCX6idPTu^ zxPxxeSkPPoQglIlJx;)F#btLpZ==3{BfTmXeU9HQyt1ZEvj91+#(6|io4L;zb5!Zm z;Pj308G}1YvUkwa_aXb#z1&1vE36E;0s!h^k78lX=NkEw;)N`t2X?_hK-N;FEr)SZ z2vouJeMXu0F9_GH?7vyO>6v)@(eg#mj;uCrTdgUPE&tj>*FMmZ3pk<~*HZPj9ZbyI zEoO@FX-1W(XF=cLakt{BQ2?Av-JVXMy1YIx%83Da-Yh@}Vl`)^@F4SSVXyXfKUZse zg^zP#LJ?JDp6tHxnRu{82Wiv`3{HYY{KD#+zPgIM_=~tc_y)z(MJ7YWEWOi zIe`nSosvXgw)_{69o&Li3IAD3YPTuXyt2Z*Pe|c}N2KgyX?Vlgz@A5zUDbI|J`_E@ zb_$TX9$kJUE3b)+Hp$aKpb-Fj)OsqOZY#~G>#nIR#~l!oQidJR^Ik5wF7xwIj(w(4 zYw=V{N*W7IvP4iVqf}*CkGc`TKyxpF1kL5`psWgCb1U=I+??Aezh0vcGZMKJODq1G z7w!m7-ya`}=yMX_eMHR4t*L`l`mqeBV)kaTRR{PSf`cydUJ&o7o_lzfY4!lLOj>{c zyccJ=`C+E@h7T~dgdw4vXco|9zqVmoUIoHoxnop?dFS26Gkg$(9b260a4sG_U?Ax> zjgeg1?(Z0$H0}aC18z@e%f~9H9;V(Ox*p!Prz6&lX4dOv>lkLo2@X90rdEc{2=9&* zPq7y8rdl@u|J3WiXg3BFhymL#-kEH6GXlPHqx|dxBK3SID7QTE0a4B$_+W?jyCoh&j5J%@v5=wdXyY;;$b<~u$9iC z$23;|NxP$&nx$LhDJ6-(*N;Ww+T1hrV#FS8?ap!TJRr>&fSin-LXyn!ild!SB=?haj`rjI>(R3jM^f+EoSfX{UqD>&^KVm|^Hs~K@Y}oX zx@7FL=Sx%jh?K316M_99%hG{bRu<&&a&CSR6Bci>6bg9^u`-tkY5$OZrz?Pxr1{c_qd55C z6wA@*!v^hCm49yWuryqwC=G{}2ub>QcD7PWHUqOj`Z@PY&T5N29UY2!uS!*3I|%X= z#FZ&t^SOT0lKWBK&SaRl+Ij2zmJvF#T*!jY0MrapMGlr!WK3?Zqx_uF-xU&=ap0JJ z3Glk-QREMGi_RiMSUbifXRk$moqj+%YWPDE#|<@)gtGUoOydTV zf;b})yBOT0k8j*ZT^4_t1?G*HH01Axx2)Ko0&qPutuEaksjA}I|m0^MBY!eRhA=$LJWUEL9S=@YR=&N*n$T^DS?@*7rk81sonjPY#O>z!A zE;gXQf*-|hZdZ|{xS+?Rj(2_C=8+m7@6%}!PbZs(^ku!litDK3be00$gQ%yQ zabo>;Flju|@-yMjb90EdH;v{fx{%a98A6hT<6g~k~C1KGgDvU9Z5cin}>^4leY#dhaTT(TaBJm_GKU= zM0?o&$2(uwwPh2p71})I=8rTc-PIq4i#3c`fqCPlAzzlpRzg+d&*nY7;`%}GE zO@^doX^i@5Zx{dNcrWp|ICJr%mm;T*!F#qOf?;&b^zavi@}Ie8BCWwby5qrBC)lAo z(q_b9AMMWTPwrhQuZvXBHcmfx;>_Mqi*KWdN)UnD7;u<2+DpwP$#_+xfxF$ZUs0O= zXMW;bnD&s`rGx22dPx0ScfbqJUDiD2zKcM{pX)sG=&hS1w3W!YJucdVfZ*Xcw~c#q*61 zGbECGlel@jQNFO5kBH(6T}gvhf8xI_$Z)A4Q@xZy(}aH4YM1}pM!Of0!tF|Ykh{OB zc-LKMn+R1SGr15O&I4edaonHw`2&7F+&4}4gwk9k8L;hIRQ{EB=oJ1C?r?R90i`IL4~kj9G;|DJAP)Jn>G=!CoE> z#$FT~^wE^l6#j&NS})Q~gP7t}rm8Hdz1Rk*=(|y+EgDc?MbdiHe{I<3n*$^7V@7P3 z>b$IuqfYn&lRWua>yt|`kXAYqCdu6Q63`g{_GOPj{_h|gJO;uCrCN2`LO0vedH#oP z+ZTUQ>s+nG93?IF?)FStX>mP0NK)^%E}cdP$e`O8&cIYZ)8$1V{ccM_43O3kY6S<8i69>R};1zAzh ztg?Q-_q;uyGnFdQ3RidQlp~eOUp%)@KpHPxfb)N(trN#b)a0{D$CA#}{eg7VDo(lv zKa!(U)IA#rT_zhSxVTU${~&xi!sV9>s@X{;TvmJ#hT+LU>Y{yzYcxfK7dJVTuSQ*7 z*t1*3M;Z&{u#(U;o*Au*W<%AWXyrz?6%g)5ft-IMU&KZ9;~z=9P<0NyJJDzjRkZQq zTc+x&qRgj~mK^ZZ9m?Q>aq96Ja2tboVh_ zoLW!!7Z6CoHxod-1RfPcqUivP*{a{4e_`AT^p5=jw4+kLPXPCvG_GKJh{q2ZN(lzIY{+vUhG)igT94U6XTN%`C`&+c)VuY5j_1PPDNZ`reR5UaMj>w=opvxTaqd`RY z1h;R&YYqt*5t$r(`{C&O4m%*Px8wMt(abW>c3tob+jKLl(XI8KSpng~^?%_4Vw@b2 zRi0+m#pT*RuZIvD$LBDic^R~IF!x$)G299xV-u?TF&OTO@0WSTFr!4GK-s4?ZpZk|^>GBo= z$nxXgfh~e{RwdM+*1=F_=o)K6s{;ZksG=H<(1Sk@jGv_=@i%u3D3p3XaN8w{Fn~Ova*Duv6 z#|^k}&x28bo*giV-Uo*r2)^;Qiouy9z<5c~NZ{j1fRQ}T3leSjur(CF z1iS>E=srY7@rqA6RDIYCFA7OIgtm?cG*66Ojs1d4@#h}|V$sN@*+A_w<41r%{FvBf zwnp*r5Djfx)fozw3I9)3`#`;uG97#~W4DfXq^CiMz3+8@U@u*Xc81eByS5JfU0Hey zv{M}7ycT?K3kpi$ykx$m6h2F}RRNm&lu-yWIwTS)DmB@cMf$N8qYZl%hAmFwaU+J+ zkN&IoOvGTtcmKX(PxlwS>RjH+xfRp-jp0UQr9TyIkpf*~*m`B&L!ZjOWH9yW(L!(f z+>b~EPvYIGb+${&a9KXp7fSo0i&gKWf`?WNH_>RpX(6$1AMR38fr(rY@m-)Co-q%4x7{Hyr3^LRu8@9_tIQ$n;fOX_A^BzE+~i}sE! zxX8n{P?+5e!K%d1CN_<#{w^|e#vY~ZLDdUokW&=IwbzTRP-snvfOaKP;#F-?=ljv( zcMBfk=r%tWr`$HEU(ol3=h$^6;jcAszuISidKQt{!mJk7w&Uyl)?)|4t8L|zopIkm zD9;M+t-kKJ6;|L76z+aM4hER9E7BVMF?AKmGDK4pXS-62MtO&H%q2h$B}gy8Tb$d9 z=6>dO1Kw&FZr?XF)Xdh%2R~Yry`qGewf=tPIYkDyh=i&NvYox5>C>3GVJ-V4$iB2k)6)lWfTIgxdu+ipL@x6X^ ze(J#`nyt7|5JqLxDma`Y zCN9VWS5)gAb#JvCv@Qsw4!N^v{UBCG)!%Jy-H@nzTu~D}$v5ZgQJ*?{M>_a2+0$~u z%O0+A%CXYuGw@kNZrQtUUQh9JEf;8Mq^yt&A(3jBq@QNCJz4fzNIYB7YAVy1N%^v@ zb=7%qD>qO{10jJC;WQuqzYH4_S^Zn0S)V(_@6zm=b)lwf>ukPO)MuQZE)nwaT z2PW~m>y_LZBj+x~G&1wG`4)v3tA!b*b5Gb`H?YtNAyudRY>m0Y6(@E#9eF7!;oXnb zqgDI8Q7Ig(g2%@F*YqCS(Rif${`6-XP^@HAW{uu@Qsi7Kb~+&4TR=7HHA)XmpslNc zhA0Wh>;KLKS1_DK=c>>x&pNn$77KVh5OL}j${urNNrf#~1j)!=_l*bq8x?$m3z|A* z7*GA29~r&Zq%_LEhp%g4iet>$gNboIkvjJghrp?2PwLNrm^6skD|@{8FMl9fr;>&t zu9v)FBvg;Uq5a_IjZ)yNh&Ex`z!OV(YPcBtvC}Y!QbFMi6tI2DR%c(>T2liN!3E+B zw-%&|o8aaJHWOj)Kw?_j%(3W3^IYz-*W##ciw#raKN{AMAdhc&kQ3}8`~kU7U;1V0 zVf2W>A)`;fPJgh>A*fu<_GeTa=K0XXjG1NdV1xC$ZEuo_*2qn7nW8lTXrW0ANF#jD ze%=zu7M{SB=xY>sQF(5c(`3#1A0%p81#Q}Xjw1rt*d;^4)qkF|(T*u|i3R>mMsNL? zFA%o^;lu5?eB-}#+A4yw3aA%Fm$}K}_+kP>p|XN#*`30f?X-8Z7c2*p7@XmB9 zr&c|O-8#rY<)>Rtk}W&6s|U{;N`6W;Q}UM@PGuy7%iQ)UdP%JsP}R-LcaZx_X83c8h{$GOOz7KP zznKOyjbg2Zu#Yi)yWeYcIwhXdJ_~ddyH8@qy!H@JA1eL{IJ;B8wjPc}7`{g#chDt& zq4rqvQ+Yc@mP`CB5@=MX<(_>c#8ir9+4jre-&fYi_aWUB-^W5Gp?D@>TG8AJc^PQ> zv+0+XGS#xp(QaI{YI%wAN6zI3AT4#<&gknlF6mvP~J! z8(P}ho;kN|w-`AyGfbXWMDNw01M;llAcTL0;K;wv9kU8FCFOO$G`EJyo=ynpenz~` znJJ~nzQ~Vf&k|qza^81YVzJn5bxk9GvyXyYnLIYi`QQ@`?Md+kK5{>@PK#{#nS_ z|KLWEJ;Qbv208Y(3tKiMp>MsdXDl4ei^G=FhnaKA4*hTz%NcpgqXO-&|LH;8as$?r zbG!oZ^w~m~n061z47e$Rmj+gR{>Z{8G$=9_2#tTwl_wggcqCYjYuPtHG>(Z@53WqH zPERcZ<0H}uEHKs^GJe2~tnk-}xgAd)c|ao&ZfUb3n3-%^`;EO3zL(@E8Lc0YL(5di zs0sBMEYLL85{qEhVhiYD&7V$Z;%D?#&8!)_Ff~4NH%Sd}#9wDua%zFD$ut!a$k~&Y zXX(~g$w4!sXag>a3A3&Z-Ti2y8mDlN0#6g?AoUcj&LaH6tIUjjSyp<_k)2O6llYTp zxplxy%m}Gz?h#s=#85~kPw4LLFKN7$#?e`$iMDSRv^aiO5R<@}BSKoSW9rE!Lkgq8 zW0pk$iDmHoB+wMweSg3ugbUNxE((?2cJY2>#OBngmcw7(u41t_C5?5Il9+kjfE*k| z0HTP9JK+1=!f=a&r`V zv8uVvk5N~u(=%}_dXO0`{`Fipd&|Atm_$f4dSb=DTQ4nIrP4y=BTL%+{iLSe@v1-+ z{#s((U0tdbL?sp}-t9AiMV78=3VMFRY&u6}X#GAgc4RE?!Naov39B46drT3``Rm_T z?edK7^?$4Q1Q}6<-c>ixcT@;&K@;xcGzhsj|ttI}RgSl{Ukw$XFRB(Ams`=DfI z+sL{ADg|V4sa!}syC0QIpqu86!(vCxT&isLU73VQr>i;FK*8aQ4D2}6ABRRA8-=EC z?%b&t87_2W6)N7EM`fEe{_Fvh4tby~a95VD)4dG@0}VMK;xsr8D{@+xRN0;Vr8zva;oY52wuP_*D^k zTV8>y@cVlgM*hJLyO}z?vR*pGlsBjKpJZl$)IwqQNS`}rV>p%0%J|*3ix+%+(4yJ$ zUd_AdnQa(pbpF*H`l^I{3fqT!rjnMn!WLu9Cd(Of2}r{VpQ;0NUF>2z97`ZanqO*j z%xO!=1A*L*Z?P*^GDA1tSf5nAB>0pLQw z93gNhFn2(2EN^wt&Gsi<%>6rv6Hj+pW#d)*aFA?_OQyZW+oSAK(t$LqL_g&keH777 ztS){@%btV0X{5Q(OSuZW847s>snSE3>{9;OU7hyG| zRBxekh)cnrfAHZX=FUH+YR!rO)`c7;8BfCM?A@_9vtU9e^SR(7wOZ zq(S;h&K&%^@2zDe!VSW+#q6f*nK;zl|2{Ck1ZoEM>B0O`QiJ1wEp0{y%^*W& zdh)(roio-W>8FJm%a$((oO)(E3AAb}S@F==Br6rv)Z76^)_TTntY5wl>%anZsx7Ms z*FOv^i>VptfJxJmrd-1ug5{;J<_L=bvBIdEIrCxz8K9_7Gc!o}!&1?c=dsS*-mdfk zMS6iZ8vbhYJwWRGxFpV^cpZbfE=aGPS1LIb`EEGJMLBdFcp+`wz)aAPSa1gB3R*$o zjuot`bv0-Q;2zeXg&MOfxfcK&TwWF=0MC)Lgc|DvsA{m)u(J=#bh&FL8wS5pA{#RHjC}AHDZMpKQiJngmrV90%2X3O|M7JzS9)(`$Ar7ARU}>2W^x7zo4^yXMQ24~8rlMO zJR>C2+h6J1H#$1z*Ohzkr-a}ryr2$^WsCi{f-2zekmI;a4t`bYI1AaCC@bF>=vKq< z3uoQPvx^YkC93u#;}=|5peZ+^EbSC^)YQ_|jz&ZE!&zbnD9> z_+KIQh7yXa_u&$@1_YxE$Vw=N6X$kLcp_K(Ff#(s{;eS?Of$Tczh{Ds)aQ1;v0H|a zS}D?kfXgX7qFgpx^tz9}rqbRJ2h1dmdK+eyUcVXx>9FMosnDrvL>DTwI#F3>LfhXQ zor-RJF2XHP&ez7=cxMZ6U7i1i8YAYX*enFw{f4V-fdMJxo7!UR!qg6bRcPuAK~;)0 zOX~(5)pH7ONtH4qN}XZ`t*dLxfp$*s$8)a=Z&bR%=O139+#3N9_P^m^*%-l!3(;Mo zh92<~ef1_;jNc4|9ad6?mR~zQK#u^7dvZ$auTaLdkn`V@J<~^^TNr8BRBAhq82>19 zJIJxa3b3dL>q>{1^I_2&%tWRBRkImPiQXFDJKP0ZMFhbA2=TeR89>2XDq-P=i4GGG zXh^bfd=gTUbaXOw8Dsz%pVqO&p+pEhGYv2|G7`=SOi!= zKrU-!%A^eNqD7*!$0fSD3Ke~Wt2Jd`im?Y?6e^b)q?>YU~WM2>N@t%b$6a6v%(} zR=JWX_qlj%J>99s_KN3L_0fWtvhY%G1FLzriOKa|O}i+ZvZ8>;!kbT6t?FH}prOcI z9KM-8yqi?uH=!9w8XiOVH-f6eKp0RBQ#PVcULFEapa zo23Xx96H=b<~_b)ijg`kuY)PSCaKV0{@WP@R5Z}nMD;year)*B1SpgR6Cg> zkFm@?7JQh{V%dGXI)6Q!21__quEb)qZSO@A-C_gKN2Stu_}h+;@s0cZ0<#eq*^n?h zCPF%;JUqO?Wr?;niJ3VfJG_JVoU}|tHhoT0XMltga z&=bP7f#BQ}>BI!7WY)32Fnt*MhJGZN0?N_8qCP9Y(;m9V*X5{QH^3RU7n0*VD@G6l zS!yzF$2(pC30PsZvFck8!47>cYc_*#Hs|tEZXggulG(i+-b#c zIIm^Z*`cktsM+Z&$L{{f&k>up+xU9nwnk;3v+Vvf0am}>Dba$Uln>m|oN4jRTKNQ4 zp33cW;WReNP?S8$7kZHazIB`^MNZGIs+UgyZWevrWLU<^ z+%ZK2CID6rDW`X}-Fq2Xr6$v+qnh7|UCi$QF_NJVOB%&;hMTObJB$fL$y^o~otGIThjedR(h?G0ko?*(T2s6QVJfb^ z2m>mUXWy#5BK7@AL3>1@I)rAc`22P(u2S7UCo5_ejww$LMO=g*GKwx2{Kt8_0)7SE z9xlJ_7F&i2ZtrpcrO?M%_o%80&s9OWzM8CSn8UF}PVTQ@KdvNIA9j4Rw#Di_oi-oF zKI4YJ4`P=~^|2T_w^y5jV@fcVqL+U$2$@GN|DRpveuXTMkX1NM6|m;==R3Hjtowp^6r=uc5hO0i296}?=rG?43@B%uY@bzRma4F)%`0?T0jg*|9aoc?Q@+(X#L+S! zoPYE%G&sebUC%3~v*&w!{s}bdN3>&ZYimdk@9=-{8d&i^kP{qG?gtG0Qk2Rj$|TNX z1>ZbA8x4339#@s64EeN`jBeFUAFBrl2Il?DdPH*_wNd{~sYx{TlbAUhvsq73EJ>9G z?tGY^s~=tT<9{vM>C~wNB3@Kc?UZ!^KrExPo~CI@1X&|8ZJj-c!kqC!hv0eQkmf2r zM!j>}?@J?>R}wkJmlFx4j%ae%7XlfJn`d5kHI>A+=U_kR=b~~|OaHb% zm)-+AutadQ5$1e7h6^JoA&@meTb7cp@54u_VYJrb%9@+=rB^vbByFs9KEsg!1FuA3 zR2hrJ3mW-u6oqh<1s))Z{;UdM;QGz|(Tfe}kX3_I|Ah)$=dwQuR*xA`W^UQGUk-GU zZ?DuKPly1Xm^LL$WzlL*7OufDsMNhDH98D5x=)pA^G8o~d^M@<`Uj$|aT@NbU8r-l z0sFLg&3Ue**RewjvDSI;;v+K7Z+H~RR2=a~0f5kL(WymYsOX*cIcA1=fzS7JwZOem zJ;(`Pwe_MXZRx?Zho!6R1s358h3F>jU~(h81bnlhMOuiXL88{{YwV3{05_5@?>BN5 zuiNJ*urFYi)yEYZ)E;I~pSzAULpRogaDztV1pkAiDlqD7q;&MR2Q`b5pnI8RQ~~3< zh#;&?4{sYiTJ&PUJQTD~D(^CfgCF-;B0N*fA#VHXY7(lIj-SE$Gf`6b!n4?o_6v1E zp2jOJ*De9~9C3>BBDO0XHjA950l)L4kOtrXY52ASN|y~0tRPR!*^i1sFo1>Ni8K>M zKOO+BL-+v<7(5h?aa?n>m<)9D%kDBfi;6NwBFta~?F$pb-pW!!=s!aD0DS|cDcYye ze21E@Pf*i2-vm#nxEVNOFeH)g{pT30l%*~7cckT|2F!h$AAS+*8Mo~)b@IiUy><}{ ztY7FE?Y@dkB|it~1`po;bMQV^4Iqwbym^-Kw!wg-y#_PSvE)G@8A)&v`}E5}i01-l ztFba=t|p5Kn};jJ2hRkTzj%OX;1g2&LPdxK{usqcRa zyDgLM??P2~XJXDq%U{JczG>2H1Fz>`qhXK};YAu@5NG||lB7#*qod0%cHY!$Hr>!M z-8C3!WVCks@DEm2>QHxl{qmAnB9S!kg@Noq-0|<0>5wzLUo+>9acxMz$YseVpZ&l` z$t8P+gird3(tBTCZ{JDzYakp7#~a2as|0!;)y^cqcp@t5rKr?eLut*<{5X2)|2^3)=YX^h>FS@rQDBXc*4;E}gK70)L$Ld`Lt; zD-9%lRLNu|7E%b1P#Uv#jgW;X{8HyvNZoxD;v&u97a0djjbGZK1 z9CVKxgR#NU#_LUZ`GvZcUKsg*JHz!VMeuzaPMLT8pRahO$Yo_N^W7Ie8&S=IveaGKp3w3n8Ghy(~D^x`)qM zAVN|XVz@@4kgY@t@v?+?YYiCiE;T=XyW0(M`S||v%15g2HU$KTK$BJ3qQG+BeTIRD^V34*kYYlBYxOiRTin()&Ng2wX&c6Bq1zB5%G5;dTU zEH;y7n=r^ES&U2~leNaC!I|liwpnoNRxX6dD_^(9keZAaS$X3OWHVykb$j0Em)lI& zxqq3ELe*2ZsSmmb+GK~brQw-{9FHbNaL4?RjkbFtj7k?GW7``rBG6g$<_7;*O>Fij zr{?7MX=7(?G}5IgHQ8XCCF?P&>g^9>v7Eue<{6em4H)1g2^UlsyMG@k-OkGV(Oe+o zVTBO&tVm1A*#A7KIC|$+v(faxS~0(OjysDdct@i_;J&FNQ9^I1^=!+@WWUxG#a|xW z1}oW0r(>kqv~%B}^N$N~hz_>YactaJtm}N^tGUNgXSb&qE?B11+T^=+DCM-sqb`2+ zBu-hOy{6d0K%L@U>Sjqm`o&=(viU{N!t%p4C*^i*Ybmjc@?`4ijo~=Ug<%IKsfM|?zq{Ln5ae2XVCd%!SxRC@Wkh~(_)1X-UF?E=e8H-_-jb36KUB%3^1gf>N|#9Ygk%O zq9e4`z@|7Z3ng?mMxQHMAE|*6GraJ;9}jECoyh<`SJmdCeavS!P+%k;ULJiY!XgR= zZ6U1mO~9RV0@vSJkKyYlF_jMPzmh!PZffzQ^IG4_gQIS%q(w31U;+ld;lYc>8WPI>4RlO1o6J`lES_q4|;Th{xW54hHD##&RkM6xCkmJ6U z@fiD?E(JdviF`jnAyc?5(?;F4$k z(ccj*=l4-~X5Y4e-GYurlu@l@bj9K9g)1d>@3hyN;NP?YO0Z&a;*HGNJ2b1EKZpZI8!7A#w<(Qg?EwABf!NkNn4oq3*v? zzC?%FCO7b0h1~>4y|mPjVzSJLP#b)J>JeC&sxB=vnakXlprVG*9^h!nxLx@m!ifll zzWocuxe-o*!P~g&)?w#Z4t!)ABDI_Zoju)`qH#PqYmQiESqF>_TGBjvP!s2@z6Z_< zM%qkT2I90Jx7hq^p~ABKM8C`Cd?DRmo}r(*a6cPEn{2W~a=y}{+@4gLjgP`YHyUol zO)_$+0df+Zyna1zvS=so3jf>2oj2<;*CikUyH@8AOS*bC^b=deuA_^J)S28$EPcnm?fU2*bS=>`W*iGjy*bt9Na2N*-EJ0t3{oS0YIe$%$W{F^(^GKs` z)-l|`)^r~?CCt9S2o!f0KeplF>kQUIwSiiD&vqd&f9`oM5=G-%?{1T}6!a z>S~rU$B)TNI@MzLLMtLZLg1q$bDP6~My;MW2!VofLvAY$&@N?)H7(53et(B_s!vr0 z(;TD+5&>g7JvZ571R?$-2DKW{KBL-#D@y|&KIDgA44nKnB5csRUA6I&b@m2ZXOAJ- zNt;k6;;yIgLA){1S7vn~wWAT^`q2+9|me*Y@b(6vdC-V27mF=*H_ zmm-VTp8rZNulYrZbCf(-juuiy1*zn>6@CvP8~P2+aH{t ztV#(7JBl#5;JPB=|2(`B0hNRcnAVp^yvKp-7zu8Pq#f!H!XYSsykt^QOET?l)GmGK zv3!ScSe5Ho_mxc_$Ow2N@%LDle0HmW!DbCq?@_q4n~ypy@b{@an>CLzx*NsR^PdTU z3NCO+`5^2f*^sRzjL~mP)~n40Ao{b#aTQbR!S2H-^LIJa(TapeI!QY1`a!FtrnF&EO!1FYB|Z-1B85_X;X{ zsgZc6?Aq9oDCb7HKel&BTNnH#<^4i%*Znd3^8x5bp6vYZ8`Gz#Q_}8QJA(x5(Mvk; zX`H2{X#P~kbGwFr_Hg_FF3@6ZHW!qH)~RftB~eI;Ci7&euxH#uU>^-yD(x}EwM5Yk z)$nK`F(h+?I3@b6x*zi>6aGgIG!le-3|1?v!dYWc$sLjNV$bPny|)0i`!Y}3FJ6Ah zF!6n8e4AHyYtni0w05i}a()*@(NUFkuM$ll3lN(^nAazy+iRP{XF`;P3$Or*@Ly3j zcs0^#4!!zFFJTx^J}PX5FHoht@%CNcPexN^#kGS?hg&h=LE9r=;iy5S*DH8D}}iODgf%GN%@U)#vH2_^Ru* zuA1=nmo#;u+efJXU5K!iIjFO!@T<0uD^gC!h5F1r++(WKr6Ntzx=;2dW5@4*66G8x@Torr&^84UNcn1+$NIVP=f;9`=2+S&3 zMh?dy-s)FV0r5G1*iFA5-SOC?ygu61k%h8eL1{{0b1W4xmE|3JyGg_$vos)Usj~~t z`v))7F@W^sW}ELJADpE9kGE}t&M)(i&bx2RaDIJS&j!oczU1Dx1U$zVz6hYyZ@f27 zv#e>IpyPvZ-_RQ)d+ChY_t(?MN&^kS*Jt`tO;kFpsp$Oi`EJh+r?9+bUk8fE!s~cQ zC5mh6#I|7Uri8CQ^ukN*wLL91!sw?TwPK)}3v$$ZL#D?~${AANbS+<%MYN{IyV=ItyDUR zjJYt+xouF)5&Ky@d0#UDXWhduyOYLmZ3ub!2ZVoHJ2fP+8{TlzoI+yX!V(}2MUek z)Moatjqe&;7jNs9sbu($CAANeESMN7&C^vI)j-4M58dYnEF6JAh11U2U!Jr-FyuLu z$KqC7_nE)mSj(!NY)HpKoU4P#_J-ZXv$kgFBm<=^RU(+J6V(dBoZDH(2Rdhe8u3{~ zS1O<31+6S<`+gdM8l(HH*C3ZcRWU_k#g~nE_Q}G`U+Bl8Mwwr?W_lGIFV+wUT5=v zK|`24OlMKe{N} zYHt+i2AVLdv znSEMb4O+Atx}_^=^-J@aq*Rjq_9A))32<)T_61X31oXMl0TVT=ziZqG|0IwvQMBgs zW$AE?M}re~7L6rX4PFniLNT`$J-_R_+`azDo#o#hjm?bD0~Ok>lC&j8T5#rpTges; z!7*!@{;%TA2z$dx8J-GMGm1BmKVdVcicH$Fma8GvuvoC-S@?qg*s|)*au0suwii%o zq=;Oq1f8{wIP%JH`mDF!&(D$V=v5K@v+t0gXc$k~+=3k(6d!zcX3krFGsjrTrs%R5}@T#%%jM&9|WSMg-@ECn)!(k9vrD5*4OD{U`y#4Ag=DL8NLh%7fg_QZS4v0^drRw zx~=1RGknbcUtfTz^Y;3OoxUcSa3u9Ndp^(=Y2A zJ1`jgG}ZKlEX3y{MWI$bh}7H*NSQdBAnwZqIb_~6u-1GxJc_+QiCghXprrRp-spoo z)nYH7kGW5gh`E7IACODJ%vb9?f&(9>a$LGkva2|Hb`C~g{b#O|L?0$Qm7%W2pjV_2 zRJ(V2i8QO1boOUx(of;!D|B%&fPIhtRC^75x5&Ybz|V5B69v5HLO5gK`aobTr_VGo0 zJC?gY4Q4QJ2QvF0R$%B|1Cz3Qu|l!kH-4G3Hk#>Jew7KHE&1ak3-^5=UV~NNli*-j zYW!cflr3QQy1HeFIc=nLhLea2ll(R2RdW`=%TZtn_j!O=VTOeW)*2y`n$r-6sA^xy zmO0^}`}t-x!}O&J>!{}zNJkrpzf6<@l!s6RP*Ux2$sh;hKVOh3pOmq`h3oO&9Qv%s zayf^&m-yOzRI>aJX8Q*X!w?Htw0AjHRSPK7$4q3QW3Ov5U#{JrT;!elbL5PBef~Tp zc=kfMV6)%pf)uj&31PvGeVa+SqCEyJ(HZ>#mP2W@w|M{;bS^Ugr9b;Lz7EQOTxPFV z-574grtbh$_ftU@?csOf-dHO^x80AS*akugs6L#cBq=@i6Zt_eUg*X}b`y!TvMGwu zwHrQrB)+XU2;OndbQA%u3 z_r5QJ=7>ImCDZ)eT*!Ota&qYH-!M#R#;>CUj4Wb1oAUP|VL$YxgK23H3aOL|$Wru{ z+OnAkQ{um*0w?j~!kQ4k z-nfb`^5BNO=QhKzX3(E}F@1fQKdEW|0%OC?)L(e{`;mVz8D-j^Zno#b7K2kc1gwY( zw18ELdcdbPH}0fFa0`gANU{}l%7mxYtuG!w-zJrI3FJvt^#4f->&+Z3nWmab4c$-J zoMg!PY#j7VpxD2lIeQU}F&(aI#K@_(^=J<6QzW~CinVIBS^h9Sl$i^SHRR2ge6rkl zT=$v$4o4Ee#m{6R@2r+w97O)^r>`*1jr2dWPX{v7eFA7Gf>`XkOWzUzqVx_jzw4($s0_zRe>WI4O{k_t|Bu_gxQa762{yFe4q^D-qQX5sX)4 zhQN}oq0uxrR%D_<#`zuNMllqnBXyoQNWTyATr0~DcpjWF`NSik4w}n1xv%h*CTluM zNwL4vc*0x~nKzfVY9v?L@*&9g@Tb6<}3P-liVf zF4p6zj@^wXcJbBeYa|I_8D!hx5b`^vn)?(9Va5T8RuEs7n5#Qp){F<4z5bBgeRr?R z8VVf&+J8a4h~jdfNd55le)5HSzgGO9go7$0gEtP`+B`$G#c<;2iz#?O2k6vgmp zlv?ZlE~=yEIX0d=qM9Dk_Fov&C*~FQZUZ7eh>yG9ez%WU#=*XGvC_Kf^FamBrrh!k zHP;bkjZAS|)b4nvEa3inykz#(YtGRxttNENk!@=@{H~{Ct4I@vd-wwx^Hw9kwdUUj zNcqb;-*w|eMlxa&S@U6P4_S~Z^7!{~!in^~F>ApS#?gic}&cv+5eWz+;D+n?TX9uF5O2VVD-vFW8_;{}MoQXHo_MqNOS z9AMZMNhvZ!#c;J!zHW!_Eo7iKD!KpBZg$oWJ-%oey|j3}GJv-u=ZmL@nZss^^pr3AB8r7&6vxv4mGk;_)B07#MWNu9A_{hu+CVh%#~qaS-k zXuz1BDaJVvms9zU`C6Zc_F;aD^SiXR>Z&xjeAiMFrrXnoOHBNc---N~g@C+u9{_-9 z`gcjK;%6DB>3xE+jdh5?JpQYI!s;(tUCoK8XKn&EEa+VaH)d1eUoWp^avf_`xRupa zzq8&b3jedh%iRg}Qb+-J8lpB*v_?~F-*kd>{@tl1e)Yj)c9fmxi2{N*{z!f4^q%mM zbyhIY-db=wq}XvPHy6g3fVYvI*G4%{zwPnecM0rxh3)jb-coW}v_OeP!I6r4!?ETu zZ>%P=AMQ~5C~f*`$i?;iemi2j21CQtF{wWUUia#Iq~)Il0`q@bA*>LBk|aCq1@~}K zPbjgQ*+mR?QT9X}AzM+atD#|iVHkzw*_BmyWHk5m8AVRi*=yAxxE z++Fe;x&&^2?a`RECnF8d45V6C8^@9nU&nBdHl9($hSU&Q(4yy}1$_!+NC4Q!x8-MG z-(PQjLfjmyO`^^^%QAqLOZ=8%;^0dY#Xt7!I4bAb)n`GS6M^BMZg|6QYsG)`dLP}@ zz%?Hp@#h~xLsqdfNLb6Nr*Ma0anaM2M}?MBsRa0MFxE*Gu}8diUrB{(JdC;%uL2?2 zdsWuOtdPjiU7_>c?6UH80}A>dbOe&sipkyFR^rsVZ(%5YPnt_F+=sRh<*G zv8}P{k8rtrnyR1If?Ljv`s+_)uhp$iGeM4vQN{0mo@|(OA4sWWau~K2&F2yRK`m4e zN2zG1WeZd2;oE$FDL=p1&EWGgb2iQm?<;7&;0}NxNkwncUjyoKp0Uc!IVK?ciaS$p zk%G~7+K7>A?m5l-akJ9gS{^1%%iET$Zt8aL0y;O=P2UFU7bd}E^?dE$k9cOHU}zy} z9(((JdE{BtXZf_j#*#Dk>^g~}CkoNZTh!CaD8NM=db-bHsFke7x9A~L3K0}XV4vRq z%z%clQ0F}pEI_0%6&J7zfi)~iW+rdQ^{{FD)aF%M4zT%=W-(*tf z*L1TSL!6LMTvo~+hY?lydlwfMKfjnjvvZxez~`Je+mh0(r+6puuX?%6V>0zN?C(L` z2y^g2@^;$3d$abAoHM_^c^N|y(ZJbkB*B@Bmp7y+_2GluP&`2RTYQvBpab7UA@r9{ zoC^hZu1N{|o8r}4_f{&JGJRXWsOSLQO%5|5cZC1LpAX$1T3Qt zsO3Xr9x8Bx!TDM;aUGf%(s9_Qtv&bj1N<2gi+R$vfT|!vAi}8%io%s#FQ%x%z(q(+De1I0aQ%nD*6l-*_j7M0H>@weNb! z^1h-*#-@p&kyj>wXI3Fp&(Y8^hzBRE}#G!7s!nQn`oh`gT$5Y@gs2R)g)8(=i3~Y zmSmG?3ocV;fMe|3nR*-%zTr1zbQl z3_S!WH)-O=TMeaXH3vTIo7%EiUAE(|j@rA7dU@iDKUZuXHWvzdg6f%PTkZB7Td>WH zYhO0r>`LRPGD-7%_|z_CWAm0CLOX*THBGF=TGFWhMQ-mWWk3e@O#ML!%aZR`>^z)x zrt5l-m%o5zvEpN`l6>}?5PQT=lqM(NS3$DE8#To&bpQR1C6RoY5YaptdkE+@q=~Q! zvAZm4SB3#G>Q)A;eo|JXhP$!;{C&`mt0TXb)dphNvWq2TiZ);^gLqWEQS}eJf$ty9 zBJbY-^$venhMwXDQ)0L@Di}NpoqW9uNNB{5&zEBP6PmyZuD-bbY+N0V3Vb>Rfe1qh zl5A8A_!pNJZ=;vf)W%Im@DTPaavPXhtarm8YO4qRdi>+LPG2TVl9F1lURu0Wi!5 zOS<_Tf>Ih#AArQ}yZZ|7j3W{k0tNoOfVus|;)Ry)j9;m=@cA@+2r_EZ2EWgQeHVf| z68!o4G=ZfFWcJ0(rhimnP{Dq_9fa&F_#!vBF85MmUzLjkZhdPRbVcMrqQuK0D1WdU zXaA_saH7Dbmq<#n&V`9Z(&$m_==XoR5XR{YWyV5+-4n@Spp?D&8r1eZS$!MOgJ?eenf(~X3vjDiOdInd`GkXtz18j zvpy*u02I@%BCsF&cAwq8{!1y1UKV=1LKJ1--Ek}Qr5`UT;Ls3SfFPJ5ON{B%I{p(d zF!cSg0R%LVLhHj>LgB>(2M=J-VaxYOr^^`RBs=||!lzG%z_5yLKvsLwwwa_Z{;bg6 z^~VhXs%xa%2-!BwnId_hylSyT1rAt?+ zpnj|sOeE#8QA5u%-wl;MCXZ-ovEUIzck{!fx8Nz$GnKP|U-l2T`oJat|Dno($S)u0 zDrRCLh{$s`#ag1$wQNGT`PP~toqpO!t=w_IB;C0Lffoul+mkMKv-afDRA$2Eov|$U z8C8My8fDP^OuqBc@$t#N^DcIY1jkB=-=Z+bP{?2XE(d;vf(AD`p^lYoN_T*xi_AWZ zjhw1;;zCa-L7&BhGscfXFWz|soM$2}ksMIP!dtB647BtbCvC(D#0AnM0JvGelEDfS zK%o8&6yH48+M&lMp{#W$Cve}p1bJ=LUWB3dsBJ2$KJalk=^imaP;!W?I+p`HTs&AJ zSJ8o{2=#ymz2vuwGT;vtDn+KLMf#JxTcC%D;;dG{xh*w}l(~Bs(lA*W*AB^)yTAPq z0-oMB#DI-7zNC83r4s~bP&E~&siHI&KU3$hyBd-FWQj@mm2T*))?6Uz5qW|;V*|q9 zZCrG;kw0(AsiiM0Qw*c~BZ8)rm8jvanl3aj=oAS-r;?ya4&eTm@}$&8>0LUG@Owu; z*ATr_o7Hj~(m*sy#9yB*+n*FrdFdgGj@?yNyOYx57wr=PHJTM7uTPCyN=4=nR+#bb0L1zXkvcUABWCe!ovO8%0onX{^zlt#F zEDKCYL7DAtudg145sEK$L1_caY9H-=zY1iksH zY@K&c(O9&Y*T45wesRfh$1E+G^<8yBpHKMajigarg(5D9o6G{$iJ6gCLF;!pGQ$=&06)0~!V222p=U1aQPXyxm+ao+T8w+=FAkGJ zKxZGxeQ8h0j;;*EctE)8c|o-dB70M-hM$%9SSrbSf8BV;bqndP z%XAoowmfr`U{7m$hNt|;kIT9~OyH|$mX?)yOX(9Pf#v2^BYe>zhBU;g;U>C*jho*Q z;nJ|ppt}A5o9AKtp8HmWK2}AFb+pFNa~4nxzWJ$uDK+AD7^zR8>IcSt0mO9|aiOb` zhv+#sR5zsNbTeOJ238tMUS3+oUhnaI{gm6ugtn4z|2?l{f3f0o^_xSW0}MCz?W8^e=9UWD>X@$@p~H;?G5|Wn2lKDc6tsi=EwAJ7}H{pM>F$1ydZMz zS|6~~GjmQ$a&g~ArqQoG;YNaQcJ{A8rth)cz3nmsx2{>3AiXHnk|upMT|k>C5|0gS zu*{>0@}TnMz(LJA`0smc938~3A7H;KW6C~LpTt(tY|soB zev4-GJ}!!jr9pc-|LFjWD2XHUK3O_ln&>2?y`%GY*TisieAmWl#?T1}p>)%=0s*7dwS~Ch(od)Pgq zQhPy}d{rS}+`+`}?r+p3=xjswGB))JjF;HkjpOYbJ`T#^;sPesM6<;JB?6*fzL#Be z6CWHq?esC0ojaU)V#kv!b5A0*N>d0mJ+AUFHX&(H^5uI|CXJ161j*FmM0DmXT^cV=hK$D=wa1UVg6GOhm0XM9#KGUw@DGlOMAgx_T2w z?sdZACB-J7g{VC3r!GWILs)xNv|FSUPFmg2;&XKZln1Y6%N?t(>*&ZH}6{{pLbpj{f6W4kGdxNVeg==W3O zdLVjxnblu}z_TCg-{4t(s3U-`${_G(Ce01F@Htgm&0>clN~cphd&yKNN+G5(pdN@- z78a=e)X60xZj?pvCUKICN$sx|bfOj6x|hCp4n28f9z?Pf?==-G(=PE8tn z-7Z+9(G&+k58EsRG8YS@8yA zU`qbSj7K~x21aqO9!%h^-nM%=c5n9dSx0ZEB`=P_C^sN_IyLJ0)}xpFtJDKQaDo{D zu|a&z%|T(6E=+{CkHi8!;F#1j`BQbnC)u5jN%7~A=J@-XcQQ}>UQ6+Hk-11VKR*a* zpPPpSOPC>HQz?;E>O0o`K~1qZgzsKesNnP8(tsQLP%vVI-&=Gqw$uSD?kIV{fKAP( zmKRKf_59qu>Iu~+*<3`bfi+{mVva+5GsZGJ{nTA!`nn+>A5k;=F~-H#K|gkI&+L3M z9ppL=nTBg=ujgOmDY4zIZa>MA_nr6q-Ta+Hk>(ai%xHN6DqQZz0dm&j2;KJgaLupjS!iG`R8j0_;Uq zZ#QE4BD6k3Zsn6>`LXFIPeu@~aZ&C`>!fyf|%k_fi-q6p(bHvsmOR}ylhVpnDFCP^~!wG|) ze8|D1&f4)c0(YzR=M%-I_#DSd@gg*U0&u;?8DR^O+S9ffv$`Z`MuolLhlCW zYu#beB~cIeEZ2JV=s;&WQ+WM~s0ce^aGWOQ?t&sjJNwN3eTj1zhq8m{gN}Vh13z3} z9_E)Pgbp|32yfgEmgkqXj}L<98?Fv?Ier}0Ktm$g1P>YG?-_01Rvh1tcM*~(g${`z zz=C&Z@V;q*aF$?N{r?cn*)aH~3daAXnq;ers3(wz?R8f0AJj~*r;ANvq#!Y>c2J%8 zVAd#XyNlp$9Ev+{gUi(Bz7AgXKIrTXpqtyxi4UfN%#h{mK=NpR`}@hm&_Kkru7gSI zYIh9KGO-&MjjlH-P482Za=RwPI!_x$f982+-*UVHu^orVF6HYTsj|`F6E@R=LoYbM z5!v~}!hy=E=Z;-?U&xoKGnei%8Oc1Z*K7xN4#LvzH8uTIp;6-ot@Z82RIP7X9dwF9 z2j7aFfxEkzB;IYretjj;;M+{P0WqFUjO#(C_Y8$mueIxMMSz0~$)E<(=|OWgE9M0J z2|%ox#wD)UC1-ifCIEFkd1piMdHuz&%Qs^n?!jx(>U>D-ruLtwQQVL`j^x_AACGSr zgBziwY({_$B;LunFjWio5!0wqEk)Ktf#X9@@O>^7^eimkMb#?h60AFj*v$`os+R`` zJY@AY!?Rk(4+y%dG=i;$uSo!Rr6fJJZvP-~n$Y{PV zD>}Jk@BkGPHa2Js1V@V?hy^EY_l;Y#S;J=Ra~Hs?M{>Qjtg*v%3xXX4QMc60>(&OI zjJ%}`JgA7u8P~Qu0Hl$$eN9Mq9})Dp#`xMlr80od;+ycrLHVX|E72CBYUn46arJ}< z%>5oIZWF6sxn3vbm|}b5ekb+IHJwLopGP*NvBb8XPXnNQukP3D5M~9cUja!Q{r@cC zvXvYbJ?Jdm=o=bb7yVTJ6se-ouxAvEdI+X8+V}Wx3H5({Vt1J&3wC*l-p1JIW6XSa zhl->7t0Uj!2rAm@Eg5X_7T{)P7qO_phX5i_QzfbW(=+(AmL!AtLPO{KYl_-6+4PbV zdz&B^(`JKeE#}lqkcam-i~CH9Z;B7zqv)gw{1mm(L zI8i)q+XLHv%^eX!PCA^1>_P@`?p7@)sjsw$>`MNqRE$^%%f#BurcRmxJL07OJE3co zGd)c74qC~AGNzBXYp#70nBqrf-MoK|T1kI3gdmQ#3+br4*x2aCEWe&KU2dHE-*OLW z!#m2RM8mke5xC%e0N=$*m{o$dHovM3+Y+BKGTH0jNaPZ^SuCiHd*s9yiVS|!*BJ-K zM-^C)MHE37WF$%L1KeL11i5TW3JWL(?6Zk$bny_pD-*a!cA2Ic`eh{3!ef(25)Ez8 z>0@pI)dPjcpJiXa%T!0jZ1LK1z4gW@t>Ysw6pOd5wfwR%|Ne954+hnM<%$^48J(cZ zlsF1-amxSq$PBLr@!oXL(n`b-?hGP<=P$Yl2T4j9G9PjBxB$j?w|QeBF@&z_OLjap zw8pY_ATF?R*rHw)9zfXlS7S)A*FBhN-QaYPJH+~l)NrqcmV>-DP=;8I8|s#{Q|Rq_ zpI%Pv_0vl}Aj>j0a z4>m8W3OsD6rSyip)Gh@qx)vEUql;M^V~h#kaBGG&d*maP}CLQ7x_D8`9Niy9+Bc6Ra!M-WTHn5?I#^mD<>-+qQPqu8!PLNhQ>CRH z6$!_mA=}_GnQ+)n)dlU|%fuJ5UbaDIg<>9YJi?yH2b$(Cs5mX1@eeCoQn}ui_^!7E zyV*&1ug2D)IEy;7#2sC8;)_8@1-@?+n=qH;?IsKmb)OIBdwy0J*x=k}8-9n8j)urs z_Sfa-VU5z;w}a59oeY&mu?_exc1e`Gx^J*+Z900jhrh3M;aX+==^2m~-22sVv$?o5 z?Pc|nVtOfgCv9Qc2^1Nd46MDY*+FOM@IqByae{3UW~@LKmLzL=*|S4KFG9CbjO5s~ ztKk(6$%)kzRuqZH2*;1-i*KfLn;uS*&bJUi&yDuB+iHyGjBLI!IC9WG0;b$su%RYo zX4Aa-T((x+$%a5$VkN+u4s;dAf(caWx*QMjaI|zui*J#nK{afNniQb zQG+1G+}1W@{MF5o?MR4qw>Ac09N)b^o6UacN0#?ZzvHU6HA8S_kvZ^9MuqEg6Nzoj zIQ~O)dCB~Cdn+v|!>XdnA@jspAy_!p3JfiG$m)y zQ)L{x>fXFMlY~g}SBEzU$RFWCROP8SvNTfv%w30w+{6W#B6BP**btKw=}A_gaV<+U zvr-wSi`E4qWJY0A&w}vyN`x#;@N*P5L~d7T-{yVZqVQvVca;46`}Jynyzos-t?WWc zNQ$f{#S{roB48ukiXXlW%9AZ?d=$MH24;?Y{?*WrX7dr{BA*(^R}ju<7%g~Igrv(X zu$EO({I1t3-kdtLdH?n|D>=1#;^e!5ggUS$OR0_uI@B54R8b0#rY{RCDHnHQ+Rm{x z3Ye-r)&_jVwCA#Jf5ZeI0s`z>1DjOLU?$#rdXhmV%;R`40%BfYL~uRvQpv#k3Yu$k=9iR>$0jJxYBPt=0oSV46XW)8AcZz08psR_RI&*)A$f0Zr~ ze^FVo1EhWJ2zL@!ZW*klMtY>i7O@=LXjgoDjjpoh`!A9vXnxEX@tJyxwnP2vX+~h! zS%$!z4UZ&2d<1WY9|8i>w|L^z*qOL+0Dx`5qY7*XF{p0-(jgsIrS?3@)D;R0SYKfG;e8nrLAbG`eEoUSzeTbKh#8DCC*>aq*v zmk#rhvdX6OLo{7}Tms*=DY!rcCo)X*a-LL65(P6FQDhX#$vJ86eWlgu<3QnlwcJi> zk-8*>;P8W@&F#)5vev8?qf5Yz7Ts+fyMlL;3Q_1fb#klZjh_<;v7F*Ac|3~;%Kuvi z+pHdf3v#Rm0k+yo{;x=B-F7h&1GDAurp;NZnU#Oz{Xk$?fwffY9Jt+TS@x*|aLIMla7K+V zE55WWKyCLkQCuLP=D`1?{TJ-)YU?*!<>~*h|2mp^SgaFlNQ>Yd{+t;7_P(1WQjP4f zrkIED$8)rF`+=rnDAk!EmT#ElpOhJE^iFFwQ)m+LFW|lllJGDfE+x?HrpUjvm`U;p zOpxOArfzK@A+&X(iCs<%&3F59S?X!baqj@J?%!k1H)|*(+liL7Wl} zEYB_0Ax`>B5F^1|r+qR6SPC9?mz8f#YD44aCfn+Gxy>|LQ(3(wmG^pWYHHF& z#9aG}e0o>h3tTf_44MWP>)k$4501eI)Xm=-_PVH-DR@tDN^ZYMjR``=Xto#HHh>E}m^{Oz6>h-;c9iQpX~p@M$YEQyv~_{E?_Y?xadWgNpH%;v0oppfP} z%KzRMi(D{n<}Ck37Orf(Z*4S8zhWK#IgicUR24L+&)gp8k<9y_i0mOO_J z6J$kPC2t=r|FfqL0azy+Z#mzxY$rt&$NB--&GKX~k5ZI4t5nFS_+xe>uN6w>U1`%w zB#l=ok>r(HD=6k7PPvX_wje7@0DH6I(%4Hj{m!2W7sqw|1a-|muzo_#%?^dY9g4#kVsJS<6L2D(=;dg!3~2+AJpGd*v;eckji z$bKMls9BDui3?xfY1PQ+Yh{l9`Ok;SHH~LF5W|awA|_bPN}mz2F~IkauHpqPxT_-IdkW=o_QnqnKtYPYj2^=F zuYkfADVX3|E`lZm`a^e)Jq@a#;cYu^Ar%&iy!@mr+fJn{e)qB+pF%acxxfI+xIE*} zq3-z8`RQ&fAcr`NxMbA?h^|h%#e3PMbt^iBj;?Zs{LmV-QcE@4wf2usQt0=alJX2{ zYn5;(Q%8g(;mlyk@LR;j#a!vkq1B>x|$+B96PZUlr@x|}+r71avVM#3JBn&zUz4Yy1 zG0vkG)9r0!T?LXoBD6+yEtBXJMzNVzoU6%%NW~ z0Rh?TV^Yw5>06>p56jXddyQ#|e3&SbR-E5Js%53+Dz#i^ulF@HMd#QjTW%U|?f6Pp|3dCPxLroDT^ zxp#7~c^Y(CK!QijCKES*-wZ&wBf%!;iM$e? ziyIU>-d-88edcxL5bYz7w{}bU6Jircso1{GCV#%|Izi$wV;&<)acp{E#$S$md`$e} zxjBDnRJY;7V=i@PLC}AN8LTAW3lkU0h?>qkr!ncV{GG3c*d4J{d!4v~}vv6!R=;^wl!xDq8=&oJ4G_ORwct;!c_bH~dq2P-Vp1qmvR;=#3QcS=c zm>3#qKk;)h7N|Vl@Ky>bg>=Tzat$rsYzGy{VpsJOqrnB-U35?Zm{swH%ffX&xC*-K z`LeIxAfKEr0t4Y5{ScRh59|>)1JU*t&Gaw4pACV>T4>Nrj_ETm)jl{n5&=(sVY>xQmQ5 z{j~cv<`_RJRR3|Ts|Q;|HiJ5*J2n3<#`5LK1Yl8L_?1LQ>~YNHlko?fQiQa!d71yD zC{9e{cG=k-FWM0IBuqE&m*nRKT<-%2tK4gB&xL<@?GaQ-qrC`FP!Q_b5c-X-5?&Y? zgtf`=@-%@ByU()Tbz%7H_CyuGBmx(sHW#pEdZ0M~h$BJ3v?z-JSZc)ai&r#p{1nUg zzc?>W(dPJSc5ci{;r;k0voYKtVLHZK3s@!)|M=LG3-dXUBGoHbuU<<9&*ts|S>pZ= zcG^XZgMLbL`8M9C24xYBm4ChX2}VtLJ71Wqflt1zBvXF~xti=mAosB+tDbH|I8Rr? z8PxiQIqwYix@U>N`(zC=5QS*&2aEh%&}Z=`LQl^{B~mVSYg%SenF@U#|B>%Q9s8*= zF&!w#39lFF&Q~#=ACK+1axePO;6$wk8TThQ)L+xmTx=%-0Dtwpz>B~0=^~qgFdjPiv}_rKQ)WZR|F(;W885j)1aL3`C&1jT}0UynNIZs?N9L+h19ZNiATDt#N+R%ubKS;IqeN^Et&U1Ya2< zsDOeSh~fMLJD!Pjug2Jv5lhPrSas1-=&!D>U=caAh1tZ?-MnE3xm&Rv;tDRI`G%qKI;Fw*Gl$L+TLxEW>~$bmZ)Wm2f&npaHU^5 z(VwB>f?AKEP~h)@39%dO9^11=n>fsV|21d2qIaHMT@y@7j%&`lU4&~~qyue-gZ`Tx zVbJ3|F9R3oScfS_*3SEs#hf5C+z#f~g6%B=qrq(gRGdLrCAkut!guRqNJR#X+aT52 z)3}u#sp%)`A_P4p&86Bo`6_WG1Y$Jdi(W!X*ymYD<>3j(1FMREviZcL4(JK}>&WvZ^_6AGB;H;O|ayztZP=Lm& zB}+rOJO26)-7Lj@7ddI%k9YQ0Rrk(v_}Oi*nK3R3wTO$5f)Su0CTkX#{X!WTc_>gb znj?=uOveDULv9zJ4l>GS)?V7ZC-RXs^NR~+mbCWwk^mE3sIO7J@P|;bV>=mt4InmU zlA*-OcrXn|70FJRpB|KVFpX$_hf%(owg0Y{wt6=%gN$r4%9B?9Cezit$rv8-*ig)e z@3F-gf!KmwiJZFO`x^v5g15j2UZDJZWC$W;Py%L>A__eIHnfAesb_)4$j=DTqozkE zmo+Y{q>X2c0`{E)dpsXi9ajhl0Od9p#-_m()8xaMWa~PLvq@!@g2Yo^*(3=fT(qIH z1`=hQJ5TJphTV}rMcOi)NuWu2_@{Rozj}g zNpl4E))Hn$Ys4ulQj)`Bi#fRs!=ySW{L1glLzS42}p;eQtBd!`KJ zw=~QBikb;(g1sv0PA$@F1&MdjDaFlpkkQOa5;h)d#!_&Rb+*2pHDV)TF?aME%@x-} z6c*D=S<@xBR4;-<5?+}_d8vS+jGP+aq$pSCiJ#cd&7lBzeErKgK%Z4HUCp#3-B3g; zr3hG7z`iES`hnG`_1m|?LcLM8wyzu~8l;?mB;m>EBU2`8ucR{WUWuqXpb-qTRtAm~ z2)~vnaq7WRy!g`OhQTp7zYB$KmeqH_R5)_~_6Q;v#&DosvdAbrb!o8rQI^ zHd%8)*hLU(z;y~cEOD-it2DUl{=6DMjxEBOxyFm<)nB=Upig>^^P1S`5c-)qL0G+7e}NXAm?w?jZma!fWgu8Spi*}NxpE@l1hl3*PX@XD$uH^>PX)^;J76m3glB$1 z?Luq-thxVz76FHCrc~|G8S=0Xj8mboK)ZnPPnR4e+oG8w zQ*Z@+mGY)eTJ5Gbs!P~_8%fRlTIRYVLX4FL21h`1RW`Sv8pd>}o6`VA48F>=?)Hb? zO1od%;uA^R?G!64?v+0@3i7;H_mhr5DiOdN6ny8c5EDp~9E!j04?%lJsO~e5D|$eN zPbX{tMcWt~gmQN2S54jNeo~ofEEDrTLW?i2!#2>gAmtyV^6^z?zzc0ya#HbY9_cfu zgym34kMVfAnvbNRXN~%9wKQgS&@zM|G@82XgRpROC4{C&xbn0sV%%^8ZuN1#S^4_B zBRDUkk+fuq;YbU&arpY#bRs%$5i)PlRF*;2@C|)*ax8U$9>;G)K;&Mr5ug;ceZV{> zU?UniwO8M{m6V~AbGP$QS=x=oju*uP{6dc4m*N9J7TeXJugdG2njj?+&ZU2Ucd24& zk?{edVMye|JCBV9_y!VM23h5GfvWkK(#SAB$!}?bo$*QaP(3H~-1zP)GJFe@2I3l- zGT{@PFU|^)R|lR?GixFsz*Jvs(enSa01);e%~E)`vB0yo7fTG-Q`NRi;*h0{n?``$bzqSSMua5< zt`!1YFhE>Ts^X0h`QN!EaaWYB-#@Iw2L-IGe)iDq5<;;2X{o0G_M97FFHbKKw^;C8 zvO91he%MyYV8NWeyX$;wT2WkjDimW?M;tp9F6#1P^8B#0_IS}}(s(sT);&4Q1JU^$ z!tJa)Kt%QWgY|B&_xQK$xIdvtrM^X0K45b=@woQ!daZ?7$tVv;IfY@+_zp;0GAQ(r ze(Tb>Bs1pH!8NLF-9y}U5Y*q~DgY=F|XovhpxzW<{@@n=^5;22h`{e*SzC#7qz6p(hiC;z>1)j%Nq!z&j& zy-<)0o6Sc}>)2d*@E~05^a>gN^~$M&>F#I}_3U4EG*!d<`bxQc;)C17H_d45)lHd< zi|(S(8W(x6*e=jcE3(%u)=MfgD#lk6;=#b2CdJtIvmzyv35LdKZTX@}n_l;Cb{=1M z20k1!DQPMwATxF5H?6XfKF2s6tjOR3(iBj}(QqZ;O)LiP|kPTRwy2}SBLu3*@PLNb*a@KDRBl|be zo%VWDePosnZqR1+^z@8JGhsJw4aZ+cM1P>yKiL0e==HZa?q8=Pu8C49z+A|(x@EJ} zG46DJynr*QT5>+e{{NL>&EjeFds8YLtlonw9{@Xy^n_5*an-oLN600Q)s( z-=9=aVa!>;!)WBFOefAjifW)yf!w&==-E%*ee}R8ooy%JZnOu~5_Xp1+E$~eXEU<( zB_2E*J+E}}_mJ@Kx#$hpMcKO)we0^`F@;NqT1~mmyQz|3lxV5J+aaFxEi>$Sj zF5KQ@WP-jo63=9klb8wa$Tvy<_`#moKol;w!%I!@w(UPLQcT}OnYSd?roQ6lRUCAmNyyiaTT3KEV`du3WsnPw`cagqdS+Cc*&5X<4fjz?6J zQe*SV-`bC&X=Y9JX%-;-%m7%7%EMVM*gka1PfA)6Bce`=B%Xp^)Ipi^PV^Pfrz~!o#wkS z1>Ej82*MUW{}^)rZ#Wi(d#pKxq<%|6^Cv(@ba_fIlCE3iwP!*iQ#$oIgvVZmx7PhF z2iF#Qi-uX7W*|CmVU7ht8Mg$mZ&4EAn#G5{E<}J3dK&>`y4z@`=k|HymW#!=`Y9P4 z`XH4l50k(-jhsVd;w0cPm ze{~=KVRwvWastypD=(*-k@ z7^>g6VI6Js>p)PSuJJtY$M$87qr?5zDTC7Mow;*2?>a*c6(S=KV`5UNZ)$-$8<3h9 z7=~~5cUu<&*Q=j7+Z|^RU*wO2iYqHCSKBKaD7?<{PwwF@zT3^oR4~w7!s0Zj7;?!B ztAqkTh_TB50LA|UL)@}DhC}S>>Rbe9u3OYaGg?k}SSGFXQxb$8-+w5@H&;lG2w=y+ z?0?_VhDOV}ZVEest898KbpP%LF}N6^NSVM>j^L1QO1g}9M@HDtvbfYizfLqjV*nvs ztdRJK3aS#!&wa$v13mLRFDHXmz;cjVy6jeoSc7DvV=1vY{K^QFF~HL z$2U;Xa(TGfnuD+YcaMKCV^uir$lcyBKVMS+6ICH!fFCO+QLxVPJWk;zLUarV^o$2} z{D7c`%=Uwa6i#D93)5~VPL9M`r(lKNx$Frkb+x69&pGdTZi{j3u6xyq5SqoGbctIh zXLTE?$PyNB0ueR}0L3bv{kZxViG1>cZed2=BK0jw&!P(7Y=v8L3xj-I)7ku*jr8UX zsqTM)Wp0Q4yyZ2_T1%Qfq6{^*~|Nh0i?4Qi3AD|%&(2_ z7d>J!R8PqSw)d`qz$D29A?ClTHVzpcOJF@yigyVah&)#M|;lFD?DOg~!1) z-<^P2+{+~25U>cu(@$H(UJ1J47|94W)Gt1pxHhQ$*6OwG_P&xQGG#Dy>l#HiQNCVC z;UgN>-knTb$U6^ly7iig$a-eNZ#1{);NHu{`4cZ-_ir2kUcF1!%ImIgm`HT;N?f@G z@9}#COIk%k*x)-_pR?)K0^ch|^2PhMZ5PlVH_E)cwaL34y@=9}fm8RaARS@cZQiWk ztiYD~=!uX1zv#zrOggTU3a;mzCgup|zcNxVtCTV_oZN&)?pGhscW!h=T6_?E{=p40 zv^?LJyN~VuRi)Ydx120lD}F6UzVs~`@2Awaix~%F_G@6R@%&-AsJaDc=88so6a?My znb`@q;jNe4&ldPX-RVPia#6%F<+D^kcj$Y;tLr$L zQ{r+EC2pEM#+558=JUwnR&Fg)6L29qU`8MIsn*4`nn=mkI(ZCFu-mV^exvK*`L@uZ z-F?4rckOJ%;q-n}mCeK_w-0Ods7eN2F_5xhg(<+Dj0#?`N)@Q#pJV_OV<8eZ)0UQM zH$d5AfOME&F{uQThw%Bhz2(MljIx^Eb++6b)@yp=?lOqFh&xi%-4=gfZKwlSlB9+= z05u?Xc;Bbs@xjRbZu@KCiMtKhW2%bkwzFm8?QYy`dAXK#mbG3FWY!s`G#i-R~1ZFs0x1ceel%HOPExOwHuDTe0@u-u}rw zltK`nDl~r3&Sfnxi?Q=xz|FJopYA{ok=(@GDen$<5{u;1a_Sw~8Rj`$O64px*Y)F4 zG&&~0n$`Re*Ax*E&}#yMrGTe^Q!!ZSJ&O0XK&O7!76E8>Dcly1k-lDCANM!rA`8gk z^?B*`m8KM}-;|fZ4^X|Rts=8-YuXeq%<2oD7%4n&o<~jdQOn|#Wf|VR3xlcYEe?sy zWxQT|zf2~wyh21Oe5JQDExCC-PLbH}c%!tIJA}U6961pG_M=p=+{=HxxEVq}O*6hK zaoS!6cPDYT9y;7g{Zdrh@wa8Mf{z(Ra_DAkPo41BT4_>hAk>+^Y@QbvE5!Dw9 z5$xMc0K1M56H5U>KKny+Osp|JgMn~$^`UeCA*6={{dtrXYh(R27Dl3Mv818lFhOul z8B{~0nw&&1*rks)S3NC(|7IS&l&zZngGkHxZSR0sIVzcd^d@mwE{uX6V8HaR>&H13 zK?$w9i|O`Kq7PdyR|^{j!|nb}+YQ3}pD-B8%wTOPjw2f<2tuYqT)ZD=Pw+dsF{sqa z4d8+`)Q#9CYSC1PfZ$^mv>##focKf10;1|4aXZ|oMVxk4RJL8AtSJ_A^%#5`!^Uw~ zL7*%*7+UG&Ihb;p1)Z=4X{L37dT_z4$l$&^CsHFPwE(LF1U>gLgD*3n>bIxcAIaiq z<}3Po*Uf^~oFvnP65$hz3Vg4OP5Xgen*Sl&E zyU`-u$W$oe2mK5zF%JnNDz{vn4Bwun>B73+9$)X@XW6q*B4nc142=z|7Mwa$pJ$LQ z)z#q$nDUMBJRUm-gb_ImrqsH0iR!0Zf8IQdLegdWo+qdCgEPGgutmb# z+*1kybkmx7-Sn@ZBg69}x?Ww$bLJoN_`nmWP2z*sEW`~@lPUXA`qGWAPU%0H(=4pw z&nul#1n{lUvh)e$!TyC;VXgCoe>)}ak)CsX-q{#VDehd?7_++5Zj6p-UmkM!zo*_Y zT9INMWx3&d49*7Nh|MHz&b;uVUh5J8l8{o|b)i}@bu-W-AoJK@i`0NKJV~kq0$#s# zT)dE10|++3f{cb?=#A9j)f?zex}|=ZPO-Aw!9j|ZzVJ?F128&Onn$ljOnP__HJ_g; zNMg(#hz9h!ACX{j3em3U>r@@MR9EO-eJ-HG=@UmS6AnHE$*0Snx*|ayD|K;le3QTD z(UMcb<(0=W_a3?FHencquj}ZgZk7WE_DakYP|Xu1nooj=(WUsgc%;iBYgIROBVDJbpv$44hM(&UP+~kmhFI^ScRq({O!XH5 z?Z#Gr4@B}swCfq0q#9{7JKvGl?4Z!PyyrhdF z6|JgLHAfoAD)n=iFC?67h<)8hFjRTJ98^#$|1V7&;z%4)ievi8z>f|Xa$urb@%&m` z_;DvMT{_5QzG*jizbUc|iyN?Kf||yPl@~$>L+!-w*xG$!ES840jd9_+4xr;A0e=eA z^fQL7215hK9K6~AvWuILD^fv|Rzb(eqNqrz5woGCkuRiEAOS}9@pm@&eEnhTy*ac`X%!?=UZA5SfZ#Fgb!lIY8fnPdH2ULgp4gHjXk7!|>AzdnNtn8O}U zUxbZe3|WX`5ck`dC{7=6l6v)G@!8b)2xjbR1Kw7t@_>0G0pSlamdMcgp4jD)Q+?6R7e2(EzOfV zllg95XV-JQ^MZoid@?6sN&8k7h`dl!&TwBX&SFALK2lrUxthU}5G3K_CS@JGY*FP_ zv%-!k5nkVrn&!p7w8%sVdY9O*jVGDB>B{|jdI{RuPg79Y{M^~p8UQowM>^hyg4#BZ zoj(vH^~KO))3C>ohZ6|P)VbqhKBa;(yC(;W%P7{InWAglwo`Y(59fsm!nd;!7Q{ zp(mhCEU%ir%?qN-8FZmRF64T|^qr(pmGq~QErL_(?J+&y@A>RxwqjX}_fgB%pvNsH z3C&~HtE+BQAe#7SymWS=g<~vLGL`08XY9^TfAUgMwB9PPKBG>J+tt`I^!Vf3NBhYn zL!`)_XlA8#U-iNNYJ>>mmv3Y-Zyl5sS zx~oAHP-;O2UQ^z3V+jViQuU?0%J z(M{{zX5w0h-xY7=Qi6qG3^@lXnVcHV9*SK|bp|*2Kzl)j>NE^%R-4zm%e3xlAymwa z<^_ko8qf)U;V~PMOGu|zjHFYT!L*pOLtk!}QoW?g#toi+6zP~vI5DV3n0$>Vqq}?fkRVDf z3>$c@S9Y5gOGbu`xTj&oYjdg?iiSwtX=LQ45LN49b^~m@5oQP-Mm-}Y1LwwVvq;n} z#)_N>_=%=_IYtFS|X!olha()q<)6q^h`@CQKXZ3JmV#!E!q)vCwEr*ruzsuS0CEjy4k zb>|#KMTnrcJn>o{2*d#&MCg?h2D$p0y%~8lG)H*3u#qrsG^P9+U+R@UOrdG><8nIR z*ecsIoNt^pOwxO${R=Dq zXW(dClQVpMgDCP|{Ep!}F0CBS`mqZOHHUAx47GZQlLg$hbfgA) zQouhV@g)t`vxButwLxRwiI%nEL(l078`g>>b znx$~Ma?LdoVigP6bbx;Z&)964ec~nr21TkyULGVkA0UvGhk3vmYg>R=cs|T38lN^I zD#-5Jc$-%)ds1IIAavJ6aFZ@ZCf0@tm3$cy^XB+#76MWNc4mvBh(bCZ{wPpdf@Bp{ zcn7W|?|iQ*-@-cCjLu$#1X*Vr`ky04bi2qoR8e1DYo9b93iNZu<>S;{!-?|N4b*tc z@qXSitZR9r$*<(NYEMjNN9zCZac#X$pii2T_iHgcmQMh&0a&no<&W$qn{b#!>wj(o zBBtFMmcR7Qd%>SMHno;o1CzRiH_l|(9lsP)etO=q?^$s8F_W$R$&T=0Vzi*`E)hvU z8`aY29HGh|g8Z(jaL^1R$NK4f;56uBD9XN$h@{8vKz*ZUROXyU6TU$XJ|0~P*=b}7 z$*=|~Et7_lTwt~?wM-`VIvWGfO)|;YK-Z)4{nr2ab=vGR?k7w|z_z2eWyzya@eR?B>kj|(EYS-9mh@=I8k#9x$_!An9lV6XYO#q1O2RF)p*4P0(?UWF%E9(=e@p5J@n>C0 z<068Zp*JnZ&2*gi?B0rfp|!Re6M$F(${c!oCTr-ue8a@p8FR>w@~7i*d*UK~#h%Dk z^{YsXMAP+fngPHKp}phgrmcYPx(1n(>b5=kBMMYhMJGj8CDR*|x1iYFQP!SMq*bAF z+|D?dw2V|+p|3uj&;g6JtmhrorGvi+Q;&#JUHtg{95 z(eLFcXom)!xf*j(+#XSAzC8w{e9TS;+po8Y-JZSmq05j?7$crJ)NQ*JW8p%SU8M&) zAyTf%ae4EhscKs3^lg(8lp>r zvcAw6qvHj~28MDSu@MDrFtu>`F7G^+8Zea2N>r-M%cPVG3?n|QdDA*K+UqJb$sC*> z3Il!vZy&5MR6C^y@@L%Oaz7$rjDXHjTw=rDdy+@?13qwT4z za^c`+*R=mJZ{vd?6qCzUi!&wfA;@KM3ru-$@~>|5{ETVcW`D3I@#WEf&As=CBI-ixm z`=mzAkWO-W(?>*EyzE}x#=&r#*$(J0NE&@Dy*V zAJSBw+R(>^q2zHWSpMX}S_awr+0UBUBsHqR0S$yq@|DnVU`k2owmZ;yIqJ0K{Be~o z(Z9Sbl#+j~Z0VEUSOisp?2x9>AF$0RW@+FEyTqKm3@v|>N(knDd`BxjTQ=PFv@OI6qexi>!K|nh?i+YEi`zA_>=H z_>LDLtmpvu@PW>}__vHi3p~o0DoDUT!To%f>&FH?r%Hl!m?m$DHTjZ0+#yqp>iYv} zVHz*lT)eBFKL0PB7VYqWClbOed zcmuDXhX8JfA;QQ#!0H%tg!zJqjt`GdmICH=F)Jx9j1sFdHRoMPmF#(}ksG;}5QO5{ z32J4^c##l$Bhx{P)2MpApA2FH;)^rLI44;9OCc?YyQTYhKls>flZBa2 zGpq{j6k%AO%&{h9EGw&gyPbwl!z6H%HGvr;EbcS>K#ZQ+>%Jl&jgy#{xey1qWQ)EF zHfu-WuS8KrrI&ti!sH3a6(~N5dO6-oNSV=xyIz|9z^Xizf7%+s{VpjX8BfbS0Q1Y& zr^&e$J%Fyxxd;)3FUX_EDlR#!hi=&zk{LYhwm9vQ;Fw`xmb4)wfhqn<29b21 znK(@jVuo~KM}ME?6tC(D9S&_b*T`U%D`i%BTA9-2ysNOlK=fr?+*?Fy?)ojddz2yi z2~Ed+s|66aKIp%KuhzKh(?QRMgJ+aa#!Pm)OLo}lR>lo4LP^%@S- z93pm_N5&RiA4}(Hd>&2#9!&>G>1C}>7yk(N2oFve@hmur8t1!yUn>3upC`>u?tK$k z)64B9_Vu;b<&{^cs3))tj=Jrk*J3(6ycZfECTl7;jxX*jjy2Jjmw7w(tCW=~E7v|j z9DW?kD=QtrEg17*?bjd0A-riI5{q|a(eD*-8oy66TQZ-i^j!-u23l_3xQJyEp^?d2 zK1O4KXY2_q7XDO}9i9m%vB%DQqVaN%t(G=K63YfPzlrmVQZB;#cG5oUFH336bl6z8 zwhg%-Zzt@7#<9iy{y`o?mr}TQ1U_=^ICXxvDkDY&EPPRjiZ?fwszDS1mo()%5+qD> zvb)&TX};{hoS)^WGnQD;AnXHy)!;XdAx-ZF!?YrG{|%YAfASVqly`zA*SQeb`iAT5 z#VbHi%iqd)0NDt5#TqJUI)Av}Nh4}M4?fYj!NqYa%5W1p*h7OGT2X7cMTYar?z`BVeebf;$&1_ybT?SDN@My=-0H->V$DkvG$LsK43+H$Ih?+9bX z#y`_l;8T4Xvis)9&i~Uldidw=t#H8Dl|2|Lw;n4_Dv|Y*h~cC+2V$@fizm)@u0-VPBFo zHGcYA4Oon*6ClHK`&40LemonrJ5$X6r?9$8IEuf~^p6sAW((PqU}m!ya5l7?Csu*9 zA7qcaHGtAD9<&WwZNVTFWQtnOcnm64Ta_Jsey4YXc*t+#GlO-uCju{?D7^Q!l?|#v zV>!C*8!>>Oi7EQ)+Wuo8)kAB5z+ZyqpMWS3#=(*r$K(|@u7`V-oVy+^0UDXxDuoy0 zq~Zwlo%3xAr4;dioethe{}$L)c#I}%c3`H+rX|^XhZJj5eStR($q_ zD?Icq?5aWkk`jtbE-}pq3U3sE?)b|$p%%sGA7h~J4pk1}x) zab`U~xg!Bzg562!oj(Mh*KePq$SBT9*o)`dyw?_W(}mHRw%fFm==XEoB_g6@xwgz5U$V9$+Mp3AJ~XOV$IXJsYa9FY>u-(I4?TCENd4`t{|Q)-z9`yrbGNA!zUT! z1Gl%!zjQiUCnI_)m6Fl+@kdGWk2weIce@jDo^TL;&%GU_!}fhVf8a*?ZU^*T(ry@q>+Hd(yGQi>?Y(1_=B694s#lpMZ`zj19F8|G4*okcGSn)s@{3iT%i4URMN_>)R|h0@v--5OX%^+A-6jth#g-rLoxzJ13Ql(?Xm zP-d(fTPqa%U<(Cji1>M9!;9AMZ!Kusb$xJ+4eSOBFTY0G!Nvc4fUyM+n>T{WwVByz z*$LBw@qa%pIhg}S6gP(^FR~d7#;D6{$bT1i{qNsxedL2#9RU`Uod82fJKRi?*rif&QWc$NBGZC~N&^Tviw@w$xuFKCi(t>3`UMV)gI@@55RX7kr}) zt*&M^mo##59eaCJ$uXQw1ph72R9?=I0G@cRcI~EVjib@rpa!LYtF!2&(lAe^@8)1T z_b?FrxxB3WbD2X)t7h0vd+dN$%*a2h!lzM>dfutKr`{5gvG;HbungHv6QR{9t2 zdLcqEf4t5t8rM`y5~3q&SK1dK`or$Sgcg12kx-{tS9NSVr?*Ja)t3C1X~o;GAe-XtqiOIx0`*=(WTA!+ zo35d6Q-!v^SCfv`;1mhW`qkFo>t@Gll+sugr4$pdeO@pjmWE8&x&aPeg}VQvd^q{q z{D->Gq+xXQ!#0!7HvZxrl<@Ci6(f~nLz5L!1DF}#+FXix5^pja`~98SVIuE=u}vyN zCOj0Fvwt}ql2LG|2zYx|sC+P7W}OAxZ|u`23sQ8hBD;LSI;>+s=dt+#hqEtdt-D6| z`-y8@sVl(fsfMbjsv0g@iE@L{*;$`4FZD5n?UW9z3xv&1Q_1qHrFdc&m%|~(_W&nC zcx2FITg7bGf|@OAZGJ~lUZ^ZIr_MsX3S=;! z6R1ZR$e*`8^UeeQLJ4xQ>;oQ_OqQD5L8OQ<@7%rv=9>-5hOh@bhC}aJ%k=2|=Lbe2 zEgr5AZ`M7HG%{4`F{x!ksKFUyCjn~@&u?WlY;xP%R&nij7t(dbZTy5ol7_f|eLpmo zDAK^9%eAlNvxvcChed;xL2Yf%opY$;)IZ-A*qmo;->VQl{g8ltH)F;OTSBV==q@`s z1AP-6W06is71zZsiMaOD3lGmP7w;F2eHKS*en|wwa(TS)V4MJ!Uo^G5mO=I|)Lz?f zIDe)=GZ@Ck8Aa7E{53Ry@1&shOA@ECWI?!agkfUCJ|WnD$UWRZ)hyFj1Ei-Trq$_5 zW_cQZ(YEd0_JBMejQ|I;eC&_X4lMgk>O7|jxyC{>rUa=-DmH*Zitzr{8-m8)piSf0 zbu|**#fP;0cxB z*`B)Ou&UZ~D{3G~FFtj=?EkgNCFqN{q{|#bS)|V6^XPjsF;{y~1=q>19$Mc6w#=@e z-g4kaq%k5;vCKc8QsG34`1$K2k`lSkKmvR8xe>XTI!cUcI%9F!A=%PujBTBX2^Y+@ zX!K^rryOr`DUD(9k7dvK8yOmV7q0Lj#)3k+rz+yBLAoH>L0VWb{YqxE@F4zpMkX+m zCnVW9*vVlB#CU3T-$ABlvg;w+FHCPsI?tVvw+$-M(^wXI*5fDf4g(gxCJSQwxL zGE1*@OijO~m7W9Uv4a-JQ*$W5QBg=p$mSCFr!Ufje>^GYeK@6*{T){X6vJU-wdu3$ z`x<<;elcrGX$=cCNY8lobCo5)drX%ZlzNLegtTud-`ul z^QG$HX4W`}w0yQKs1EZvro;DS(gn1ruoqnl&42Xy5CQv97}>~@eXj29L}fFf1sQ`1 zr?&){($6G{|Mml(Lkunrrr^e05=632TUD-dD--VG@~&xl#N@gl*=*3ClKe|bYGTk) z5Vr>`O%$+LG4&=uUngco{&s#GLMW!6@m-KSzL6ADjE(Z;VKF#szBoId<8|nq#t5x8teKi z#^D2b4Mx*s4jX!N{4zPbB7+&#a4Kdo-11SSrCl8Bhj*%vJA&(>DnD34C*bw7qeWRRn7#MH%YRTf)L?FaL zZ<_OAOC@7$SUGu<$k$A1cDRy>x~Nj0=^zMk>Wfn%5bXyZZa=GnyL{kK$yNUg>JQ0` z>4vFvPj1OfbVXUhh0Ipdy~kro*81e{kwqp)OOC6)d$l0qR7wH^0u!mq#dbzEK@Us$ zmp3vfY2*#d{&W{_rtVRaxENU^+u@knr;e~IV*2Eriwf^Jur5Bv@3Q9*e$VPuH~K1? zNG64f^0p!HdB+yP?+8|fB=9VjL)dw~@_}pHO+O=qtKzv@M~bx3=H|4#?YY)y{!`e5 zWxu+}69MxGmWIWW{7;;#N^j$^B#ZsfV)qPDw0gPmA>KfnWGKuXU9aesx*Y?Af&ZZ@Rnb>4>*crh-(_g;5a1d98kRT zMK(m=@4OD;um2@zhuY{Ttrq|L7-ZW#$vaE!VA-B6n*%< zog8Mp(2@;%+X`U~6*#$d6lItnlDZyYbC`=w1-B-&K;BQaPmFXaE$fHoe{InrSX z&0KuYY|C_jV}i=5LOhBmkVheJ#Plc1_YaboIxpF*nEX*fFMlU( zLq77oi`=SDYE_1dO!P#^Y}{dMRMQx)HoOpx*hNpEo3$r3JAkw19Ca#IVo1?J`{$7E zrK+}(ai}YrRk#~*Kzor6=D|ILH#PpCKaz5C51|TYKG;g_&;GI(iawr~6>UMe-g-D( zGL%|zHLIk=)>-nf>j;rJhUL2a#eaPi;PPqdY#oO~7gOr;g3P3&rvVnGB?IN#$WJ}L zRh|rXF)En#5_*ROTf28{<#1Dh4s?nars+ofL*=08iDQVL0ObzvTuI|3xjnOL>&T70p9T85*%uHHtR1G#3@eQ zhpgZ^P^0d+b!FnbshV~c~ zb6uU~2SJaWm#@1V)~+XXJ5JzVF6KDbu1k@h&)kFCg&5=5*gx-CdBSu?(h$VDPXx~K zN)x<^mpm+d?LR1<<{H{VlR}bcVi?w+ruO{MJlgKP5${vpl#z|7(@z@*W&i$lg+NO2 z*Sw1F<&j7<$5KkGv3!o-xn*(6aw*9%44KxJx{LL#4s60Vq{c2hX%9R+LVJ7j$FBMI ziwNLQDag?@{(TSmha(rT{xna!^?UaJQFT>8adts=aCdhfT!IG;?hxGFEx5Z|@BqOj zxVvizfx%sa1-IaC`~6$B4_h_Q6f?JP-|o}roK7iqNvAs$pc$i69ZkJpU&%N>ey!!| zTRc`AYzsLtTo1wt{0Qn#9LU4gpMIfTpY4PkZH6PaAyE+NK_sjnZ$$=VSL~b1D-^Q7 z^n85qH!x07LTZ}+IS{O}hM$q)2Heq;uJgD1u76K&0r#)|U)XBxJ`;9>SH604>4ls>MEDY^uw`;xHDm-Aw+=5`VA~Z9N0ZMZGmm?S9S&TAt_h}Q_yt=- z)>Y+}{mb+TLOrR4(MYYCo7i~!;3faRf=<A>qpDJR(%s5YZjVmF2ZNOv%i22NlKs0f*11LH#)L@ogib13F4o8tUln(Q@=Vj zvIr4z_w%TC`Z=$2AUKWP;UNM|mp$~@s^OLfF!8T4vx{(fI0@rFU{$ zpbc!3W{0IsaT-9`FZ^Dt4r<7Ta<@hf6QuA%;>PD~>~7KBRjm4&A^gzHS}k6nx@&Vx z2+p^u+yrZdMJlvurF81K3lB8tY-T9MYkp%AU%b&cK704S1spY&${Z-xdd=75=$(kx zIi0uRRQz{HjD7Bd0x_5hgyis1(g)gkqmr0h6nbn+y9hN&=&1I~KM)*8R-JyA@`ug- zg$8l>YrCLP|L;^&ePsl~1XbIH2tWIe7RoHz+Y^dvVcKRaG@%+quz;))d+d%D)2gX8 zZyD}A$MDxtuzgz~;koi;qOH4-9<96{nPZ-GX1*|sfC}yDqiHEydghYH@9W}#XL9ek zY$K?NkPl{GZ>54I7_iCK8q+`{6tDN|DI+AE?zkK;g(ziEvU-B#<~Q~ur22sqRmS8e zDDerX$x#B&<4u24pB=)SlBX)$+_p%BZjwni_#9I;afzu;@+e-lC9Xih2na>@oA-j7 zOG>F;2Fv=%yHeraN`|K`h|bz~l^$+|fZ1pr$VnJv?>pFKlcTRWwXGEQJ6oPk9bwm& z=xgarq_ki{c#a3 zj8d8yCBmmwv)=mGDiK`g#cgYo_tq5U>-als)K!N^349wkxVp33@ou`?-j8+Pt@ zaH;`~J!>Gff1NjEE*`g|t8fAz>oCrf?5Gbi_*2d3IDGxQz7-Rsb608lZE?R67SwL9 z)HG4aG$>6T?(AqZXS0S+CUX^_nKFuK+g<+)1qCstGqcY1WB7v+4DE^IO&9oJEwo~G zB$YM((h-U&6Yv>n7Y4)8n+TTOr}gCU); z!+H0P=ddbn1Q^z^sCjFNUsdmrF+dR2Zy}5P&j>UO=ufZJMy1)`@mSlL^oeEV1<%U# z2|eE8%eB^#X*j8Uwt(MsRI#f9op8~;2tQS0pZ=7IDheU*GMCDyela>xjAyHsjO%Ss z+IL0`@Q^F&dz@hJ+eWMN-hAG;tTKMX^)hr7Qb7SZ9~=RN7uyX6IOzFDOi0XJ$HwaB zoi88EA<^8XZdGUy9X3BK%sO)95j^ONYFX=3tL}n{B@{mh)J0A&uaG58Q@rPz3P=vl z*!_;;K<8@PpBb>@e{X#&GHU>o)zr@|`R}L0h6<8A>x&-^OYN1t9FcsLrv#z4q>m~6 z5u$<$3#yjY(Uqnkz_P;Te`lI*seApJ)n{f)pMNTWmnAeD!~tg>%_Te+J{pN7AJyu4 zyGRx;M50L5w6r2iF2oqbOHI$t`+cY9d-UnHQeyd`ChtvryMz&~eazXvmxdWeck?yo zFyRs2CyT1xN<`%3VVP-l{I0oh6KksFPY!_Zn*hEA2`p?8!c?%aD=U-_dYEp8Dt*6~q>!Oe8o{TQ}= zmYK@Y8dcW7kH;3EbK^2xD@x{7wtnW>YB&dxDNP^-o-`^ zM*ukpF1XSi@Qc@!`v1kDASWRyZ`(nUdNLoJ83DPJnKdk5Y<)K7_CJQ0W5xQes!wgU zJx`TeQE4}L)b5WA--pip#wXKBRvlW!EB@qV{>V4{RglH6rNm>v_y4#6d4x;)uuIQ@ z&Sci+$6qU<7Y&UjCnieHp9h`DH*SL~FAzV*s?oWatZjck{(8_9se8=$DO7v>?%Xhg zD%6nyZzS}$>4#lNiTFPN?U1I8opTkRKRk5iCN3$zaLaRh+@gg1DQx{hc6JiieW_F@ zHKO^=ZmR54DzS-3+UoT$`aGhT&&kfht*=}8=l20UWs3xB)t%`KV|d}!fB{r)u@fuN zMFfG6D&}Y;6=?cOYONx)u|pB~F@eMT0#$FSC40KmY@-wp5qTW|0uSNf{)pv1ITr*k{S6bX3<(eSFSJ8@i!3`5;&7_8qy zAC`wcA+*VHo$GvFc1?I!Fw8&~JK@c^G6`u`3E>@&JrT?AksKipKUfk!tw;|zjD~Q302LEn_@Lqv?O&eH=34&BefJLB@n+&tWzkoN+ zwDxew7*%?5u>Jt&s*V;znBx)f3!iJ@1^r^&!_9%o$Md*Lfvu@SKm?C>JT>t!rWD>UZuU31X==5@ z(w!1Ja{jVLzhL<}J=;lA_S#X*A_Hh31M+DQgXOeQ)(f!I5Nn!GVzmu#Pu~KMi&Npn zsq9QZNf+^afl1>TJ8StX54XageuNNAi-ekYq*Lc*7|Q&!njjfj|0F1fmsmVhlOMFs zgz%kG8G5(KcUr6D+490824Ota|Ke~CVC;hNTDF#8!{_tgZbab`sNxe&t?!2;87mWu ziW+(gdl@t`BFdeOVV8-ArGwl51_eHCmhU4f4lKeh;U=8Jnd5Oaoq|}dcz)gXk;6kZ|^c?T8lad`FM3WRv3f~*V78zZH zGLr{B%*3(x(qbQ>M2K&5z(!38_#Hg_qN%MTM60bM_puW)UWDs^^uMbze*M$6ahuNW zznvQM>jxrH=;zalTR0F0?V7~AFK`g4D#Ub5GU=1&{?8|+NSCIA!9TS%VR|pglZA+W z1NRahv`<3sEgBF2Lft*KlABZLRBa`j^pKiT7gCww{>M}2BNtud=@12;+Vx&wHZGFG zlc;!T4YsSazRVj+ExNy@`b0q8qC~luvKwlvDQwLBwX*1&V|L%oEDCUz&Y1gHE`gH* z_RlnlFRDuri_^dKzQ?cR5d*NG2g*^geVv`_V4ggd7uNg}<|kj2K{0q|+;5Z*F=#2D z#-LXMGliy+&C_LDCk~k2UExrjrbqm)TXpizX!ATUFhVttndYGFx~B|zNB*hTHKS;QBAzTC{QKQjMS!$3pD2Jc2jz0QgU zl2cU~>zz)=6S_E-1Ur^ z3%i+C%4ml18!7{}x5sgY;=LI<4duNM%b#IBk3FHy)vTQA)@)K zfe;93N6B-{io2(v94^NU?44J9Qcd~o{9!f2`HHLlTUhptitzTO_1Vg`b@*31pVs~8 z@={*NhCpa2+czS$#k0!N4AKnk7EbY4N;bg+=biYaNO27o`0dRaeJV$4+#=cGqr6q; zBgQ?dFeK20*bT;7J9xtes-O8JpehLBHGkV`4;Z5hmTVX^6oTcinHMs`XL4 z{Kkr;Yz3csp*0wjsRIv~(QzQu?*+XQ9M@MVeiIUgZS*>qi;~7hNPIwK0Y*3*c2}X- zC}JBfg> z*%KoFPUl9H2ev-Ju6jk3I|W`VAQFYIPVjt`4e_K~+6_J<#p2y>Rp0qck=`uOgvxMx z<)3_7ud(8@gh%0j!FQ1BMJyMH9#NhvINa(G6R^kJMr{F<@)fL(D$pQ*%vY{vA1kqzN`g(hQ>YFM&%=u4hLS~;Ge^Vm;sg-Jbc-?dGZsAWdsDJL{_?*x<#(F z%-LWCesQX2DOMk4jN5P<<`5b`tg$9x5HIU$9g z^yT8;JHgKq;(%nEXk;1j84kDrm$rm2M{$u+@Xwy2PbM{1(Pl_gx8+$G5=;>L^8-p1 zPo)HIi7Q7_TQ--~yF$c-JXMo|X9&(tEZ&wqAu(}`^dJmO!_@i}v`#?wgwdIaSN(Bu%lMZv+88YEvi(d+K)nITXL$wcg63a6^!k0eEoBLBE+r43|0L=jkcS!|}CS zN68RTXUdYsz`e&3+}Prw*}}0Q2&C0gWSjPy1sZo7FFLR-x9Zy+3L-&TI%))p{3!AH zwT(OJKg|y2FeV7g2Wj0u4Z8yGC%xVVI}X0kJLmw?bivpmqA_geb+LdLFI4_ZmfC$p z;al>=Z4+PwYpX;p+=zyg6_*8$n_*{{+jI3X^%Y1S1FJzUEzE>+vvTs}*~h2$GY;J0 zI(u+X9ZodWOB{QSb;-ceWl*FNKxzI2l;)tYg;kdX`e_0j*4V7ynwfuR|0?nVo58?1 zmobw5K>|E-Tk;*<1-3amvZW9lkV95=QMyCa31ie&gF^K+nE=RSu=-GX<+@nj@{Uo( zN1Q>@k%)|xjA*s>%p&Cl$OCAosL3MzVK5DdQid<{C zS@)DNw4qW1|G=uL!@-OxgSwJOI8E<+J`+AZY+kFQ4_Opve}Aq+oMU6+DWfa1*UN#uP_6g-#j_F^ zFURw#2-LV7JfGt?`f%~c4=JE};ccKvH#$8|);2tE-!9iRTl?!3c#4t#x~kN8wS(3B zL&QdK?gDfdM!V}R^fa?F_a3CC2<&C0W!cg>zbnUloSh9+bXw%C`VV)SpIbB5CMC)&7!l-5{|aM&g4n6Mfco3jdpK3ICyRZ&boLns@*1=2&B>Fj_*=a~ zQXqHSg0sUR#XMaDs~jEikj~=p#Qyz~^viKaN!whN5ZJBSw0^Y8PU8ZdF6Pya*qXSp zP(esLGkZcw`BbSa6=ESoo~WXnFua3Pabv-ok&`EfVm9O|Irx_+%tL6VUPr2G+0$u3 z(y=+IK}i4J1_BMD)ybP$Q^uom^z^){ZZe_xR?n%X!A~5Ih8Dkdm$Kz>D>c~AJAG(! zno#$r6r#CnpD?iId+ROJ$1fGDH6Ln)&l)v1!NiWAkzU5N@?hb=`Rmu41!o?_B1P_V zjijr;C!03Y#ED&m1L~T9`N>yn7r?#!$3naH`R0Jpb`4)nc~Oi*3%6jZ+^>6;ujg_l z^pL9zc@^c~_a(D95r0EVuOp?<7wdHfD^p6+I#$hpRw!YAj~UkL$*|d!&%omp1Sr%A}9bv_|?*n z8`4|&dAIu-SdvjD8UU=RnVj59Pq*e;i9v4KdUjPg!uYI~4J{r?n|A%kh|M_kVv%(q zhiJ?1*dClT>WT^5db;6j%nwH_U1HZ?Qd~LSl;?2?!o@HhiW8SvarJ?sNM0f`Y##qopeJ8?omMOv8oGi3nR4>!}z&?6U3khtx=W<(yK zz#!^2ab*Go;Y0__a0WYvlg|v20cZAYl*Oycntajzt12NLpFa^8*^ga^PR(5~4WLv~ ztz1i~*?rL^)e_G=$cQ*DqTXeVzhjwfd)%KL0IApntUQ=KLQLMpST$ z*74O_u%W<{DeaIL~+gz8tF|zsr@S7MQQVswi z@HzD^-4`OC6ekqvMAnOSCaTjz63aF7o~+{R1>`0Uo?Lm_VS4)ERJm@6j4@MG)NGax z11r-&`Q%vGdu)(m(SRqrz#@HP;o+T>)AYUIGBfsbi=tF=hneYz3?(xs&SXgONU}T~ z7<{Lq_%Anm%Ef<(!?X?k$0pF=R~}`J_Y%$;XQ!Z_d?;ozJxtlmLlMyULajbe}Y~x&p)_JMuX2YB7C;DvX%l)nH4N zqo1pgWFk@lgHvN5nMbHon*LM3Ix+pWB`UZqey0SKOs|9=e=b|rfLkZTjd>Cm?ot+` z-S;$<1&@hKrHY9J(S2sDM~CIt*!jfU?lQ_J)>j2gp!d*HXSnq+uNn zsFS0IQ!l+aq2`!AQzw*to$CIY%INIpW9jFrp!=<;pX zh#3ykU*f$2RJFzw9!Yt%a55E3#K$#+F>_!$WTcpFK8K_uc3_E zyXS5(m~|ZUyzjh?7S?N3nQ{O*3iOncIsiq<@U(INul_%@eCcFBulH_4^vXiLBy$#3 zJgekGr4F}dmNfxRj7(gK&+q~PzBRf3g$jnq!&a?fBJk)`RAk1)JdBSk@@5C_CL3lt z6d6DcuDN>Pg9BuwMs)RZUXQiE_(9@~y^kyOktog;jIKfx15RPmMp=>qk$lFi&{7*t zH?Hm-Qtx^yzu*ezXW$*O=R!^ePsY__p5jp@K3r_}9LActOkQ)VvUGfLN|yAj*Nz;h zVA5w~KWKzV`ctPWEAIiXpFnox5T?kSvv6(}3myThx-CNRfRV1J6rdqrJC)tL`gxsy z?_e|0gQrIkkBX7kxl=4@h9O>Agpcbu)66RXjXHty0qkV9C4kDSSQ=?DXkk$j?Z+b* zsT#ozOQ9E0WhRDo)oIYky*hii6981Mt7pJ{hXtJo{5a-@?}r}Fu(DFGxRLzA6tNWW zi2)V_V2^|~ZU)&;&`tWb~yMM2#=VKndC1LB=<@OGKAVto6IkftU z*-9Nro-_-GWAL!Xb?RjgWL~mDV`R@22j{Y*BjWN>&Y=$b$lceDDO;KTNWOOo#8J7D zDD-k*zv0Ofla-Kglkf6$_ZG;2c6MGS^1PC5piSF_C%oJ`%4;jZPN)S%r8~#mIXQ2) zdSZ0n__Xn%!lk5~;$`#vV}kgcLeFoeKLbVp!=ln5&_^VbFh6HGf1jjSbis1VM)O&L~f$!Pdn71*B zo6$+Of;pDj79ImKuu9GO&?mq81)!36QVH@1IP;fCIh5xrJIOgb?0tu>Y1j5GJ7~w~ z4B31>UDhmOXw&LW+yCpfeJ2KODL*0bVB_y**}>a?ETZLdyUx_`rA}3{XsX}X312V} z;E6~)0{+LGKZdMRonRU0KHBZ!*-+d=Wmgf^GGhc7$E+e##MY9PbZKq*3JZT%e>0}F z`H~7na8x2Hgd-u6iqsvV@>lCT_foknY@L$=;ELolstIJ925CycjnzD=7Gb?dBiB%Lzzc64{z%nQEEu#(2;su z4g#5D#ifl$ifqDc8U+5?Z64AYrXoq#8$NpjvI&i_#A7huhxY#hv&bdvKUFq`#^|!Jz%eNTl~rdr8P zs4RN&E3qHJyDJ197H%5(9>Eo2wzwUne~#|FTeVM5Z^SgyWd8Ky%vq*PNkji#1}~0B z<%(s)OKR$`M@x|$-4eFb(})KqgyN9o5F;@j9q=-z_&lMZS^B|vtnaq(SU|${*rG!t zSYRRmvP%Qm{ii69H)a9+8F!}S=<}&!`iu-K-PT~TQJzDB*}H@@n7g++do@)&lyqqt zgPJl#pH|K>Evw8~?n~w*c0YV;hCOn3CgLX;9o&Sc4Fve4TG>xK=YjXvUcEat|M4qC zpN|qz4OY{Iz8FqoNhX za5_3Cp(K2`tqWKmQt67O6_=1$$MgVr)C+c)y0=0@+RJ1qJ@h~q&Q zzpN5rs&UH|nMQv77}wa<|)GUi_Id{|J6;KsaB4T3UVReT8_N*_vh^R04e5 zQaN>KG*A=1)OWB#j?gd`>W@(ug|V^Bii+2Y`8*4=99SKW1t$J)sD_`v*@1$y)y|H? z-M3r0S9x^BwZjU2ump2+&#tiMdz8Cr4NxyeaE5nqT4U@ zxzDv;hG^Z>t%`FBjv$W6O~BU>1_X!_#j{ME8x1Z4@TguB1bZ>#R85%xyVV)z&Gh6N zs@SK)cs}9ts{>3Bs_rkUW5LZ17^+-Te5_gSnl?o6$TM`Fb_+C;CHOQ4Fy*E(F{9T~ zRY)wRAH53`tL0m%MM!rPvS+YNGt_ zIiyh+3sxl7(U-_{^jC0{?oON{rfyu@$1j2dxyr>$JGxHSu{z_*80|n zU5cRKF1;w_YW6z&dPIL6AE^lfk9ptr1aSTHFI8rt)-pA&@whwjRzH-Ki_eq zQFpz-1Lp7?2IOy6Ay2RG&Y&WHisz!_5ani|(??_#=<*>|@!v!-z1xZ;8wwg#I{txA ztz9M%6c|$V*}H;3$@7IJ<}7h2nNYQXAMO$Eh`$0pYqTUiV}IFBPO}hh@0f6FKc2(A z>ZARti#;~CEzXKmVP`=s+-zg^%{BLed>vef;2|I#9Qr%%mj8V78L_+@QPLk!R)P)* zJUuMOur<j-G9(W6R>sZ!{y{FM+`0-00HhUfbc? zB!7%@H|I)=N`QGTXPLm9K87;%Q@o^`1$j%UC@bE}te`NuLQ5~B>K|UuTz_a6nJBi6 zQ@v~!@)53*=Xrr(kp>p!P?ZiFtM=%akTz5i3yN#4N!-kK{S(yF0-6bQGuh#$+efqKG%B8U6mvG}VA7wa=>VLJD_{+YBCn2R(eI7m*`s0@mcti0{VIzM%9d z8el!TqAex!_QaW2ao7ivov5I^=?-9bAK3D(yBl)L$0ytYAE_UpFys4G?e^NQP~S~- zb1cQSBPnr-ta^2FDzpgr*`^xfDv?(@LO{vw%lN866`y~Y@|~$ zzC@#kP;693WO~r|_Y%j@kYp&~rlfOUYn*On5SCleSWq9qmfDjnm zwrStN{4IDgFLaJ3CL#Hrl|?xxrpf$Sa$4;?V0;SVPhW!8iq=&^i|atBsTkd&IOo{yFkRS(hEb>&h9L<508Ppg<+m+bw#hio=`hNNy)Rjhcl0~aPI;?dlU#O$Q zl967esG4Fk7);g!E_UjFz}pwikvCl6)>9p&h3INBqjCXXFiU#ORZg|Qlb9KP`M3FZ zXrN}-uS;REDagW!qwaE_)Gd=_IG!h?A9^ZC_6}kpMN-EQ@n(noc4Aap?!E)02)SC| z?&5xJOSRD$+{N z)FWF=CG3{1pda{RCJ(k4;b~g3D7YFfv|28M`FyKb&M@=2A6BJh3%EeM6Hk>g{UDAf zUWQvZukV#)`%jk?Ld^B85sZgc;=o|3$rh z=`2x7Lc`nLdpDUX(BE&ix1;;NW;BBU@^E2&jzt5`4=W(N7wvIvF-_u+ccsh?-8YFB!1doaurQ3Ll zybI~_o|=T6fB79tHQhFeo%Cp_Z!L?L=5!sdq>gn}UWz$sjR^P5c}1&UgSZee=_NS& zz6zr4pG1@)lLD1Y19SHpbuWiFX-X2evGnB&=iPbrHf6=rpWCpMIs+)Arx(ys6w~O* zdg_N?1mPk4Ib0(7nesa zmek=|xZe@cf4jrP0V$P4*fgV;xAWm+hUj@*Tfla6uAn&X0zt$uDN#%y(3UkgVvSeR zU>0rtc##%(C#6yfkFAux;(}cDr{-qtA^YeorNKdomm(4so3(y;CHYFLw-ZmX{2ZZ<_sr(5AYohFLh>WDlLt8!FRlE&`f>FKrf2PN&(RaDz9=uKP%XwFr7 z&%hE>4wk2M8ixkrl_+A0S%*->1Ua6oP-|Z~4rtg8n}opWvC(K}jh?FEqZ{B1 zi%p4r2m%Z&z$IVoN8#k4zgfyDCC)Vl%UJVJQaKmde`-Y9MB%V8d$Y!VrXyT#;x}Xy zi=tJe`BVKycQoBYQ?d|jfd>j)QK&=Sj{N=FfEn|r_drJk!3XNts>x&E_++d<$OGZ&b`)VuQ_%ska74b!!4jhZ%{ zX~(AHF6jE$t$5XxUkZQw^UA#QsK?S=eZ(+F5p@xDW7X0urROTs>AdrHeNuKleZiud zwu=rZIarZ)@@@$-CInS6g>mIbt>L@4BNq*1{r;E``mQ(QUU2Seu;_V+Z)9&)q19M` z)i}BrA#R$E`y&&4-r0D-`0&Or8A9@_y*8QzOcsH*clSn%^iC`fx1gb+?$LotNNC$S zkeDdy4>WWEyEIE1z9;nZCAzX}RK>>3>Q>jQ2LSp0>Rn5%fCOs`{O)I7XCvit>`dp( z0E1MW^2skOLS1F)4dx_+4g zB~UOlxp#b>mX}#o*9M)Erg_z#uEOy!iCwQmOeKbSz|*54;o2b-1}OT{09Cz@iVy;I ziA2CBQ@kQ&LC2G~SBxhf+p}4KPq>=@X`4=5x{%|w#%Vopg2(A;zU<3#+c{KtbL(N1 zK4_8rv#CK%CEj>gNyeBPBGLORuHWHDPpR3 ze}Uca^~CtCl&|M_)qe90Sf=i1N_FNF>nIV%{Iht00oBMfYGa!I_@Z}ll{#mtJC+g6 zh#4S9X;IN?t=P&LNz2wwb0ONsif?*t*3~|5^>y!@X&c|RvA18vj`al|WZa)`MkHCT zeZo{?3NOT*wQ&9kUBCO~zqDWHLA>UhvP=DtI!%#H%74(Y5M1X#=xFo|h+QOL`W?qF zV`sU+*aj;PNYl3c19kU#u$`PbnmVb+o<8xRJk#u|L(+!6z$u-_Q#28ELI=b6wbe92EPGAp#{c$D_-705)%qgBj%Z}Y>pbGe7`2TClkCiSj z6f*&&l1CU3<@R+w@YrEgV=+c6%Z}zPT6Mnoz!?~%Ga`v6Z?UaKTGgO|x~*nTCn-)q z<)ku6dnqTQ3&+^v(n4<|>Upkg;f;&{;}g)2q20((n=%oHyd21eckZUpzyI?Rm6Aig_hftlEoVeb&R{;d>;c?1AqEKLS);2BESCIeoJkQ zN56@Zk$H}c3Wl7fD6n-O$NL=3HeAB%zfgERHef-{eC#T#vBU|&ns{6y{= zNG633P#Xt62;r`A3UKga`Yc*zygaG|ea4Lrp+F3#@(UVV%B_8oTl^x`U2_l;@Y{(A zD7E~5M2Z=xQ}->7v{I+X=Yw+LNnd==4CCrQupmf7T^?7lX9x>=(q|_!`O?#f9R-Y`Rb^z*= zmN9J$?dF*kD|`H2Ll39}y8o+}Do2~+Kw)u>g;Q~73!SBAWewaNI3$xp-qs>cCKy(m;;jltMC#c`>K97xdrTe^7dshELCmk(~e zfSJ}Gh`ysDhZ@@Ki$NwY!s^NY`vEs&SM|MqZ829zunCmXX2CfQF}WW z-zCEGGy@y8AF4s?h!D~~o3(CJXNs4tuEH^HsWTxDKVxnoAy^VVs#xN~D5a35Ng)p_ z0VM%#J}74#7_Vo<^`JiHpp+q^2*Z)G=Sxy9r-Nuz9w0wkK6sByB!4ogLzj{t@LEg-E#||x!s!o!5%R)< zR$_@3bNCds2GI=9%fe3RgJA(M{x{<6SK}QA1O_(%5X$$PTmg}rfzsg-imdZnxKdZ5 zlC&7C9Ib17Npbs^c~yKD7VVJ5D~(eT8;m88v8*yye++Hw-lfLCLwZ& zON)qJ|A!^HSm$q`#^wQ5r2l#MarXo#ZSyDTDazL1wG@1E^~P8PWqABBkZAn!DWK&f z76K&5W>j`&PJYaqHus;1^>_%p6h0QT#EGJ_3ZV8|wAzn#yvSySgZQLqU9h;8-*-~a8g`4va_HyFgP*DJIP7oT=|JeC~H(~(hrBC}cINoaHyQclCiMe)V`&&lW6+IHj zh$eiouhxbiYv`%Z&#coL01a=9mOK!N=Sn{YT_7cveL{1Fj3GR-TX zGg5L4djoiRQrn5#MTwyhFEg`66Oszc=~VT^W%bU)Y8KLA-tnj=I4Xtu#$6POz72oa zWxDz3M8$2#%JeUm<_8RjR|(%*jKJBN(ooe#sR~-k+4e|q^X<2SvFn0czS~h>_dVHv z+$lEp1Ak-9Z;g)E31iH5aw!>(Wyg=zrgsJaTS20z(KvN0{u2~OzT!XOy>D2QC%+5Y zMDf=FiKgpP#fUn4H?aJ(HfTk`*ncsz3Jh1?fHE&xi)vt%@ToV#I&!B_%Xlu807iIf-ZO6v_c=TrQh4cH)dyR8C&Gml-a&}u<+%#H?nENtCBvD0= z5rkO=;uo38mL}VrN_jh1 z>2wSJV;-nVc#(1@r|ei%oW5=$>!hrDNkwut}o^c>g)BY|2Sv{FzyC%yBydGLZp z)eEe$NgH|*MUeX5TAaR5P81Nwswf)Wjazf$ghj#sX!~;&V+7Z4&k0Q#w835Y!DBG3 z(w^+!-`|^eb@}$CCsE}WkTvCxCtsUH-#hf95U5U`=gG<()}iVB?oWYM-K7`|`kf0m z7P*oQdH_*X@19oMJna7mhl@nxsOZddWbzl{)?HUF)WKM@%jrj`tO<>*FR~C081sd| zb^wqc+sv9` zI_9kQve#-$&?{rGObIApuvF_lZWsCjRy25AoFL$jDriRX@rhUQCi|sg|J;#xM@$^Q zMhW=Ie2c&qudHZ@93WyU8@aI6O(}6}G-z-~r^2JsOo>e&pe*k6)YQ64SG`>SF%2$5 z2^i$*Pin8Svs4`g`i3N4z6`*diEZd~5fen`#DN{#yL)c*6qo}<}l~h_< zQo1|7hjV^=ANPCC=YQMFYp?mtIp!GmxW_%_urwrDQLK4V{hjIOh+avD>+$)tI(?at zRUSaD2Mrk-to$kxyL7Gcr6k@*RgQ(>iL8Izd)VpbjYfMf)oo1UCvaD{H~YF3T zK<)suT~#n^QpA=tiL9hk*_WA&@( z-R#1gJaMl0*b{~+f^ek?6NL_SEQ{$4Z?&qSIJ0DQ?^%$a2Tbv2^SK3axdF?zdmQDO zNfVH=>_m_z`(Cby-riq`b|dtKu&6m@@GZnANe+yRU_0trqG z*gceIcg&t}_s71Df5IB<49{80n$C|BGk+wx=eL0E){lx% za&rg3rF=L490T#!yGWb<)lW+M<*-O(UHT!r?F6p&BNNVfar(7Onh+WkyGP||WWHfn z)n`JEWkU$pKJ~8Q<$$IBy!wx|%l=HT$LJXNk~u#%lWt zTd2Xu?H#hQL5E}ehWmvl%E7!G7#OjxN9=+_(TWa*15v_3{lVDeCQ&p6&NB^zBX12Wo_~ zDXT#EGrfmnGw~{U$69TQbbc)Bn~@~$?IBe^qF5r=z?@Zg2daufYdP$P1m(qihEGK= zQS9m?7O$dl;?(I1BdA3c_PA!|O?Rh~zgpxZbsQJr z>@3$q$MR4NseHC-MIg#V-W0Y>BvCK`CZqSDBb_5c2?yqtSIdOShcQB~fX4IeZVX{N z>P0PcgMzX(5~hH>hqJTDV0}(1mm|j)_mSN}#v_M&Cl3lO`1&uPsuR!CNKe@W+6~?H zj+U!lV0s;X5frYBuXGvNp_kKvXTg#C(hvsqgX?xf0RQV4|NUtx;`%ONubmK*>|57R zrYCQi1|{RY?T5Vbj;Z@XS`v7msnvbLobi3W_?+?NYTw z{h1~xSxRadx1jZ!&&5Si*tZEU3oAT zb~Uayr_S`~i~F6jYJQR%TYVd^`RomURpHQcRuXQirXjXha+;!wHQ0C`4snUvuf>M4 z>am^ZuNTL?X)CI`cOPxOJMec{FK@jk@oTYn7L4gz#7MC9XRb^!yMy z)Y>)UGN~K*)uPO4*7WQ2rrM;Ha@&|g=S+UIviU~r}R->DB^Q}UvTSwVLvb8}XCIWCgLX|X-uUrwn-ot4i zNiiJv-cps*XjjsQ<-kT1f8_6Sj_ObrQG>4!em_)@Tt|uF!DwK#zi%-di1KN0=P8&} znd|f?V`C()2DhT*uCDX?C@$>-3E>tqUEF;?!6-I0cT_I&O(qQpBVgpf_u+)O;_?X7 z=TMJ^1_)dcDrJSUUZ>wZ585`*<;}tz6{bVcjUa_p_zhL#m?(1yDIB#heHmcnd3?_k z3D*UeB!j+P%BKO(jfUj0MWt^U9E2x`rCEfGQT<2eh9 zT}?QWkNVyPqZsca5K`Ihff|PBtzV_rI_b1Eia&qjQ&mQuF2!`?4jhdf1C-MQ*?wv_ z6mTmP;|Hk@#KQleHrgkds3(qvQAr*9Yr;VyEv3QYHlzDbF z+Pby1Np{-R71V)zZkw30vmxl(`!d9VWIDebn=$nI6Fzn#r|_^g zRn;c&I(+`8!<9no7(_Aph+T%7_@4LFf@mhOOi?OJwsYrOYu$~@F(>!?+&CgJhy*&Q z0rFJMfXVbbPwO}j^K^KeeitNjO?X*of~j?GXK*I?^Wa<$odG^w-5B!Rk6;$0br=cd zevDH8zUb;;hznyU^-7u9q|;S#J97xt)C zw;A>~iR}W_!4ktko6U0l7Emn0K3Ly1I`6IhSxGf#1B&>=HG7dMqhp3Vsb>pp`5c=s zXYRnw47U7X;N6_P;mIrVcDP3SncUZ#^KqqKsb8BCX>HOxa25xfRBo-}Ua5?5QmpRF zpzs93&7GTnHytO9rq+UH*tWw!Ce1rM5qc1zj^9_qeATY&owAm2 zHRsV_ZLeb%o6ZQ)Y}(Gb)lMPK{23HG!C_<4IHlD};@j^r?H!+VTWmUbP{b>}hpXGo zHhxDJ4*y~nwYG(&OUB@z@3>HP9-9Tj@xF))?J=T}AL8T4pIMG&=>m>-*~M>8(r(87 zrL)nFUgR6R;#{H1b-wqMTTe~VFuvIC)xwQ6RPMyhTToqsI ztW$?SzwVSu-9~zUq^IiweGrGZp&ah}0@iF^p}HWNk`w%Qxaw>d2YeWt>O+XGph42B z)-fwvkF}Bf><1QvT$zFpn83Bj= zy{ooSx4w7}OLw*O}*Ye6SH(KuRAB0AP>`YRt#YOil8zun6#1WWF`(*)*df1}8%N?3}nAL?&bPW^)U zLVseu;fMCq9V@j;jdri~>$9E8%QN<%u-4})^}~Gc_T)et!(@S-N;7UB367-u(EBZ( znr>e=(8LIR?5HfHoKP+;)2@DZcaqg+vHF76iO5mR&vhW8wVPP~E0;7Y`EM!2E!khB+3!mnj}VBg;8xu2NdAKnKJQV4s>mxv)` z!mhOBNKEZw@u~0a#%FABi|WZ2r2VUt`ssPci#?5RZ=F*(xTMLX1bTPZ`}q+BzHPo4 z7fNBda1geuW>QBFq+2CE*YX)-0>{M&JM_nA-v&95->{zFogMS2>Gg^WqM^$hw;N^= z)ULc8v0A9MR;JudSLiQ#K1izOkp7nRm8mlwQ_K);J>7=r$twk=$T9il_rI!Cf_&pA za$lPbu~>2f)t-=((TCfYA`U-*H=9_etqEp3PLA?p4o;NR-QVPichR4FmT|N^gdT?x z^n3Sv56STtleoGWJCu0boA;~@nejW(@EB_Py(IemF*Wl^(yf@;yIpCUt4pHN>be_N ze^(cH5P&UDeoUboq5gz}`~@sol)x6dmp*g#FF91l)#cqyB-lXfZz%{6h2L8f!BADC zxMPEzmPl7KG#XvlKe z{)!j$4O*`8eSA8Q33_+mDB5pBA8veBNS5fs&SPuq>^LfFb{*!8RhnJ1`Ii3klc3eB z{G=eMhIj5;fXHxZ=l=HP^ml$#AqAWO^{H2+g5nTP3Wqme-OCF1XDSghwhcZZW1+nl zI{uX`RQbuT-s@`FH^Vg=HuN-v0f53uBGd#yEyL8zm$c5LH&pq2g`U=*b^}&=Qc{I{ zOue+D>d5-$>JGAZlDan!oPo^pW+)g_0Q~os!1=d5&q?9bG`{Xtug}C9wZ&$N%t68W zn5sn!ahNxlCP9`KjCh}*h0KMzx}J-VC0y9Ih`X$#{@ykwO%FMER}VkMXun>&m6V(G7Sr`cCOGo-|CwLKJ@rx8;W9 zcBi{z6Yo3kdf)4TP_5w=TDpqTzUpKXAHO+!PSx`!^U<|W?LGVTKK54%*VmXe(=)sgV0+^|}Z8x6{1W7$yR_nz1-3p~RRxAu1u0$RPO?{^?AV zHq|3%>N9ZB3gHU}YNuZ!$DQSRci%d)y*G#mblj%ortegz8ooNJDsV0`_I;kQg%&xP z6&79fI4kfz`$oZedmbus$|fmxmQ@osO4702sP++=Crawg*V&VF&hBT7B8p0BES+Lw zR1yzMgY7Z6ZxaVAOsEeR7qilBuWMltBVlPT8CLPv;!fg)!0<9Geb{o7$jjvuS2{Rw z>rAEVn9m?T1 zjY3-#tYrGe!=r>i&&eOwb0QFwVnGb?$CrEtJ)Fl3>=lXHEWV@cJb@5P{drXQ2>wFi zg!*Op)p{dm(x1S5!8}-H9b;N^JIaPI)3APk3ZS)i-<+vw_8t9l^=cHV)5Z8Djn_Wst@24L zlw-eUV(|h2P{>AiGJ0kK&K6CDgB}`oEQ;Oy;h3vaZ(IAJlIehZ*)i=1P{ej6)-^OlP^XV#R(A>&qMkKtk}&TQD-{f(_gTeI4TZ$*Aq zno?=rrpV@ROi`~!SlPlNwM1tV-tsw`at?57-NrYNV!VFF590BInj0G_s7_1N+7pye zjTTM>EQkkg=jMOSgF#u5wQwSi4FKx9*m!tqDoe45`G@ zA5yhCDMy5ZhzKPKXFaRxkuk~v7Kp@@SX+d+*KitGQ9Y|xDd!pubAv@>rcWu9~FEAJEzdqTl z)SN70_>tgYDHF?OG5PI_THAJS`$FgAwDxc`^%F;1R;AImjbRfw;pq-dpAs+kybP*_ ztNNBVB{i&eB=e^Ww6$52H*E1w*D z^OEfQI~(erp;}%exw(kyG~`iCI_k~1AI2bgW%g`@VR^wjnst=zol*kuZ5M$MZwwVq z-!6kgd=Go!_zQ?ze}2Qv%LPMgQNS979qjJmKz}<4eKzQtmETbkD<*EZS77HWY_C3| zhY4o0!91SQWV~%Hwy!CAwmNhVcNe3++F@`l!-m+LF6lGYBQJ

bUwQUpJy6>F)9d zjbEr0-hTrVf1-AYl>E-Y<6R^ya5@7_SuFz?+I6E2^D>>ehdo=p*Tt`W8kF0py-CwP za%=dlw(8cwcGH)dKlvkpo>K&+;XoU3EndZ&G0%e}5c z%eNr#e^BW>*793=fBE9XLb0r#u-nlGFUO9%B$bo5()A@1%UPNQi!||w7Z>L$-?oBy z@8G*jjL@D8_1JJ36h`&;jm+~L+j<|Lit_@;EVJE{iAasVp75Z0nKa z_qBP)k+Ot0(y^ijXc(%@c&Eq7qDxOhTvV5+O$A5f9-TFga!zIYMoIlmc>)c5V#%aK zK@?lZ?Mv|wlw*9Z5wz-p-h2sSn!EWn)eRI7w`%gH4(EkXpFbEbeFdmpiPm)(EJ%qN z4PB1JeReRblJd8#a{FAarjB5kAXl2>Kp2(sXhnI2nibME^QO-OLJxmAp0P(MQOoiRQcf{_=n= z3B+aUXcL@^h_xInNb}si0YEd0BVZ}oKfILRb1cxtJR{`N6&O^&ane+^BvbrSEHOf< zlEE24**%@>|+CSznxFgL;P17Q3fneoy?ztjuEL9kk?w@YSuX1#Um^m;|jA z4iNejl-=Gw_{5pa*c00u%409vBV}=bN&9Qs-=xLD&8gjQBnt~q0)%!!lxlg2p8L9q z_&|h=^e-;cfXB^+Yp;C--DGy1pCRD?+*oY-&f;ic9tDuK(so_i3kv@AyFtYDw`P(N z${c%5N>aio+ZrNO=QtEMA78!t#%j@#N`aM$NEUn5W6Mq|4bzvVEHuUEr#=f`dXr8v zdNtqA1ZAc8l=Q}8xWpNS$@>ugU{I;BWDffMh0-fqEYKn=uq7w~06fMldr9uS3^aAe z$LGj8l)KeOjEFv*h{L)Wrs5AWv^@-~tDEgsArktG*Z@$Bcu7{l`S+^fU@87^G#+u6 zxs^>7Oc2ktl^c1Xl}itWrVK$lNma1aU46S{(|JkqUE7pp1g+h$0l6h(qqd_uO4WzT zp+h{!TLoEpKmJ6WtQvZsP@G7_X4qOp_QS`<5X7AVYH%5)(vf z;yi(lR-24t?lP>ONsz!NGH?(#UHj3adh+Xk!u#iR=<;nW4&r*UDL7o4)uH>hvkDy- z*S>DO@tB_CPqJU!w3?9}QRwlVeDU0e*{4*NFQ6`=y2^M;bvjD98%Ip6$9^p)?^Puh z z*$OT7tOz0f$BdpQ<52q07t(cWE^`}MqWBwGHb{}rHXmiR*mmqUTUC5M8trhuyhl%J zU^Pe@2w*!HXL$EoLZKU0^^0U2vmoxNriU~g^@)-?3~2I;lIOO!w_DbG zeD5Vd!D{jeOk3|H}Dm=4WY)cW{8B zuwI&$xJ>afwDa3dUkx zEFnDP+sL(jT^+^jhK&r>@pGK>imZg7rnn>`C3YGvdE?#%%B{=xh-yYopCd_vfhZI2 zdH^O2ta=X(>T6Pu?sXJ5IBfOJYCz=JYj zo{7hs=NJO12>K|oj*M~h{!}$=nW2G@*SK8Ak~TcM&;a+!b^bp21%^nDstO$wKgDIx zo$ukDtmJOw#Aa@mL(AbJHL;Ku$aLuA!~o||iVh3>{m*H(fn*T#nFkqF-BPp4w2m)N z%mRahnBNNbZ)_mV*Kx($iHijd!~K1_Ni6g> zD`11!H53=d>{Ijj-{#NcO+W+W+ewopW0&5&6Z|cFpa>)0O5X7qd_shDf7vh3d#d_+ zPw0E2b{Cn4HCBtz#04d?DxqamDrd87IfFwmCGV2g*%zb(HMV3tNybE($+Y7Gy-V!` zH^RY>8dZp&Nf6QMKoCL*;U6*hxjquO=KxnZlg4oD`TOEjhn4|UIr#b+!YRV32$e5( zvTc446c9j-ISyV-G91??ST7uJRaRaG2aGL0Z%ern8e2N~*p1P=HSw5T_Q74p3<*C^UuOmZVtYSI!YO7%2$1ov00 z)&cCc-G@#!g~trLd)21B(QSs^Fd zMyp1c!gm%g2kJ&A9m<)K*Hyo5g^J!j@-Z6nZ_aLsXvOotp0(uuh;(A1H zb`_Yf1eRqAeoX7_6el;l^Hgl7G6yQd#kvakySpj)d{8@AvKR|Y>{ck`Kd|fS$szAY zbNavlk`e?U3$sbr3Wf?*J~67Yd|~|kD}9@1PDf+Pl{Um*^f>kc16`N}a@0B{A8K3J zEgT4kBt}2z)gQY=5)yJyD*i$5;o7VhysT9GwwU^34#mT%5>=Q9W+2??fkvyoQO#fr zG8l~p{vYRs;-4C2F5sPZym{z!4bHz7z3~2AUb35995d`1KzZLcPVSu#Yc~CA6 zOJ#`sG*0$Khx{lNfiId&rkwA*YmC8Ej5l2?>#WQSufQ)6TS;b1=fE9xQ{Hb5FkqVy z*^ll3FW~B~N&Nz)8Ts!IXYm2IOyuf(#(BKz{z9mAQmN$q(VG^{Q(lX2MvIe7zUOq}uzPq%;jx8Ly!CeTEo;M(<45zpfbS%>h}`A&CBE(BZI$1Pq6?4dmVfor-f+W6-xc!+4NNNO zvfmkP&5O)IREusT0lfyAaZ1AAXb@DaKK%@AzZ$OegF9F(Zq$dj_|1(8Aw(ql6aIDL zf?KR!Qg)(NpaZPWH2ge1SkH0THi>;_XRmm3TT4mNqRMwUtK}dnf2@YsVneFhzk6yC zTYrQVAd`lKZt6(-vsUZ!29_GE=YXLsPN}GxVrPpE#Q}@==e*b@fcbrSiONk$EdV`C z7!(%zM==}N3T~quprDTJJlBAh_cc5_BT2$jOe3!QM_FDx^nMD|l}!OOh>X#stW0Rdr7-xZGqv_xmE+ z;twz?c}>mE-FE)Z;6Q)vylf!w*We}UZ;5RZ+4i<}Oqe)DQn3$LWwj!cOKPko_ft%h zGR3#Q^7TFzTQ6}1=VWL#a3x4c_0)Nx9o$nT4d=YBSQx(Wc=J7(GgDuM?h8sipUbP9 z78~V{Gc}qT#CrC?POFI^FCf2^@Viq52wm8mP0<_J%Usw|rt4z6OGn~*1dAYW&m_f4 zRnHc@x+x~k>8R|mH6X4vJy_L&3mdo;GnqwPC2myPHD8nl!h_*G-ONv9^^UvRbs5*r zvK-oqZg0;<8-_6YOw$k(h(R_ltMMEc93#S<2#%J>C=auGW#J%%^3VRy`dA^yTc2?C zzkP&Lrb9@nd1hig{*x&vvf6SkUqdPmg48~2Zl1OgPMWjYTR?|!IiAfwS^rXE z1G*yln#MUSQKSBgg;r5ceM*1Q|O;%nyD(3Mbxi@C0~X)tCs`OHeKkr~= zRG144RT~1vLPby8`A`Bo4_oEaJc1XwbYFkXDm`cULIu&u0w}tt8Snl8W^mx=Ia<&m z%Fa|f24&>$>k{VguG`698k^50o$XB11eHu~FLM$>bZhk<09s2W%x^h*6RqVO_N6>1 z6`5<3%8IuL5!IS>MqI+yXMD$4slu{JJ5Fr5JKO1y)wc<#d5scVd-}xNTMIEeHy&os zW-jYpfPe^XSMvuY@ThpRp?Vq!*B>rz-d`gX^r5M+Ym7SgV%GPD`(NIvK*=T*#pB>c zfjcUe);Vs#@FNa~+{cD6GGZt3%HhL#DeV(zl@TF2RbKY}+D$L*zl$?dJ&&y z7?#m9s^(4J@uBnE@7|roIjE6ga8SEO?OpuuIsS$J0WiR}3}N{bLDUgtjk+)95{QFl z#H-L7=RaGnJ4n7U{;osIr7ygis?fGlCui{WO6Jh|ucD!ZP*Hj<3-wZnLiTa3wMp zI2GvAKfN0qYzrR@cOa-J} zbslHio8`Xe-7)j@kguG(SHn-u`?VFQ1C@CSL&7ps(%KhhwB$0+9r-48Jl{fp@nv$O z^NO4=N344Tnzit^>iu`!%yRi;A*!UFY0qfK#c=*eAG({+|6B3g>{?fFe6>w$=BVtV=_KKuT8VMR+DTr&_ zIb9qkM}kFtJ?(o1H1AtV+5{u&op*>vtv(+Q0p4UJvz;StKxqd)$}u|T!~2DT30@SI>L$n;1gw z!}WEqxI{&1099bB#It2319Z$*Q~r0F|OR$lJY z3`I~Ub9(1O_%@nXG0eL1C#v>Lldz=j1P^AamVN?HmYk6{p?%gCAJu!XhJ;JE(BJi@s?YM&I zUCkg{EtyW(fQwdpB?=Zx0-R&XwOF7%O*Gk@4ayf%Em=d4pD!Ppic}eYb;92XuVXjg zH<#8%0m8cf->+PoDp7t`U7YaVI!lyE;(6E*dv6mB#Pc-v=4A-4R$&(1ndRvF^sZLfeb>um+g%pDFP2y&^aW`o&EhApsl%w}YNTE} za-+SMH)E#q$dYCb!x^`4y!!Hrj)e%xhZOYua_)&d+`mp+){9d7;vWYdf!vv~Pk5G@ zg3%^?K6eLheSwOK-ls0*iaaUQLG)Oe5x)f4psw7AmFC-UMp2EhQiZ`-BD|veI(K>*T;yBpw(thS^5PcBK#77dX z@uB*?H&j(H36;jXb@u7|-wGXVMnr)smqz)O$EAWO4L%(WoCZo|r07iQnGfaB!2Mr! z98iu9?xgjvqtn_)i)s1xoUY!tq#K7inZu~euD+3%?DCgy1`Px+K+)1^LQdT6@BjUyK}zyE<$U?aws~gyyFPuCarq#}vBKO0_=K$9HXDa`%c%kh_CPQzFLzL(mfxLND z-7I4PINC=|UE~bAkqd4U(5q7f)YbIFK2 z2bjMJrmKo?E=Oea|3fSbWB!Qn|G98*P$6>gj5XcR>lBNfIf)IfvcmZ;A1$aH0?)0Oa>F4Ju{=ysO=eGd-ugFBW49SSr!hi2K4; zxqnQY1ggdfM3GSauE_hGQIb(#JWsc)##(5}WeTYHq;Dz57@Xz#*Vn#?@y}_9ed=(1 zE>>UyKd5juCR!=F9UOSajQe)GcxqdC(*K@(X&RY>%=K+pC#I(Cx2c?3&&Ca#HtoNG841GcaT)uq zrjwQkiQi=Q1_^X;<0*8W&2$*%*eZ$@+%LAr1?XNyBtylZ-&sA?p`&#TY|ZfK==)6n zBaG>TptM8A>IGu-)Xf98WAW9)OAqIpgV!E1DBHysX(2AOEuSESK;;|hXS%Ho*V61l62Cp#l5Wbn=ywAbzT@WDC1UEQf z*H+|pwJu846J-c!mvF7JL`lEzqjGwtX#%RX%&c5CGSWPj0;-2X!E7BZQ11Be8 zvMIwn2GjKpZb~dLaDIm4EcCw!;sMynD`g{jLFj+`8hk&vqd5&@0-)wj6Zx+GYUU(H zpoXQE`eNGZ2O53DVsi%e-C3nxN+GE4QNHEO?X4WA>1c^sdv~~pwY&$OCug3$2(|(;vd^iouzyYxoxaZ9kfw9Eq9(Q#qe}ZI-FDlJ&D^5vO_{}YAw$D6K+N?iKTCD(v%qm!HzvRF zLbG$=-QBta5v$(f$9A@hAQ zpvK7GV^m~#U07X{b>$?_v^{?p=-p&L+>f+f%(q+5z38~xGa=Bs4Yu{(8RVU}Qz@;- zGD?IkG`wWw`7t4@98*p0F@N5wN=Td`s1XuODQWTP>4cZ>ySy{n3vy-&pM^u{3o*oA&RaLq6V2%io7x*1S&0GWX zH?WDsslAy3#;E!^8yUqBSMbIqbJE$9I{nP2UbP_pSge-dDubQO5$_222yrJF6Tf6f ztJn69CyjfB2c-t)FvF1C*qf?E+WpVh@{nvXzb{UOR6xB99rrW!|1k@9N=1l|UiOURcSKysM@7h>nEe0 z0D%jD4pkXRl&!AN7{UE@65d5-NW&f=p6v}M>rK+enbXn8aTWo3jKux=sjERYzpC(h z@u`|CFy~wZ!;1$#!>Ei3H|qm(;%O^jd~$71CkVM7)o`z{d8M_*ou;jSo`2eOj(|RW zgdlHd1N%6&g&Gdswl7@pD9ncf9z}yGkqZG7Zsz|H_QL`BOcyqTB_M`oUdKP0GkOwh z7>aWM%nco}iuODcL#kk&a9!|Weq8S(s>y@eVeR2|xwaw33&u11#UNL$ zMx$Wa*&z7SK_XWHc4UL4Q+>3JmtpEoK%NE-pdg>BuFibr%;w;N3S50NV}Y0s6;5=i zU$jPVIveLM58zY7fwCM}mVeg)rLq5`{soo@gN5(ReZ9)m_fda-wgbU{&7iU-#_QLnyrrpX@Pc38E^@&{qx8MI@ z$AXwPe96)pAAsBan3^CP_7KJ~&RCV|1wb$i^k-D(o#yS|TO({U$7MLn&e1BgGP zVJVKNMu|!^dbBLc(gc-j(zO9BCkM?tA+l^&F+gj_De!>JT#T>_rjbkBB_IYt2kI)B zBA)Yl|C0^is3} z8zVh43RCi%dg?}Y9XH)L{iW%X#l4xz`P9hN(Kp8F8&xp3@j}mN{tX7n*sq;Tc&8z} zt(N13H(g_4)Ifg6P(uY4B0zFlx_J#--fuSE^`t@bfc)tit8O3;AU3Dz)U~!=WG-FGx&K=Js6qjrA5EJ>>VW()`>$Uw&LzdmmP zoXGOR|I4lUn-RbCgCC>AU!j798XOOCYur_Bk;p%{raZJdn2Z8ZZIVd< z*oGz>tuO$ZEMgoPK2ZNpt8f4U$!tS43xh-RsJtxCqB`%cfYT^G$TMBEbdax~>CAgZ`d zBmCLdJKMhixvUo#phx^&^r3<{DV_xWU*y8qmk8wl@aZga;2S?U)D@x)e4vK&dd>zF zYsvLsA(Z^MN3)=W@-5p}=po6{VHyif^f*;d#;-OU1tKmvM?M7@D}1Z_tJ&7;ZN2t~ zJ6qqM;~3u8j9hcNf&Yy#Y^Xk{ovJYytoeMQ}A z@h;>e86=Z(EN=j_`sQlXTeZ(;Fj4$5F}m-j@KS&l?&N0(;`9lwgN#f$Pz561=`1A? zyoh^}6GS0gPBfUD(6IY_M_q4TiqnSIE=|gISzCG^ z{Z4v(jQgd@noB>q+$q-09<6=#()pds5bFpa;1>q^X3!t|q#{!6(mdLiOot$#EY1)A z+qXV<#rnW(5q`SZ(Ug6T?`zv(E@AA-EARZs>(bMfRM_GKc%P8yslbRyx0o#{8KF9E zUz#k4uiJ@3G&5#;%MLnb$B~JJelS{Toj>cI7ypDW>4G~ezWfVhB7h;7P%LdJQ617P zB{A8C{;@?0_0&ccaPS6~|FC{Ipq~yNs5UNz5!Rq7<*inIp%EUuWz`~g8@AGY^U<4a zLzKd4+2>->(<$P-{q?g%o(?_MG256v<$Kga)ItW zU0ksjjNpMSYhW#IE}?;ix{EO${^5au>({vp;Zq2x59ds6*p}53D0&-L?;AORoH}HADPdzHHfS*f=#lX-CvMgy{cOMm0Qe`d4(>$w`j2ye) zQ5C)(xFby02#GYejuWWmWRq8+A|0GvyXsE0gHDpV)~OSc_G3^r52fR!+8c5%B1_{G zJ|9InP;%pf9-#vCn{^WuMm{KH`Q%-C0ZB zI@&=5A*?X}NB9H&W9T{11Dx>$XjIc`Tm+trKuQ?=^j7>VD=uKnUqSt5?1d|!Hc6GSn zodwix{^vQeAn^6N&fAa2XPpLV$^mlp>GgX+kT=t?N42CDOxYm3y~*RFQ;F3(_4uJ= zH}AP?ktcr)k&*iVIslK_yc|5{Z2&t9?!9>N0@Ey&;!$?Q$H5p#{ECZow%}5MvQzfx z)95x6yzM`;$)As%h=BfIgYqJrKv@~Ot2xZl_ozHX5r@C4r-qg>Y%%LyfeRiJhZGU_ zbUZB$Q^sfT^9hlmMmvk1wz@41dT$h~XWY)V??Wlt$Df9X=K-z7%XBeLB@hN-UeV%?yW<`L24~p8;R3Si=l1LmEjvSfTJLicfO?mBXs`jb`=sV zk6EGmlNqT)|E28`n$R%Mx}4%=gr1$9GrYoozP+cy*1V;CMNV|7(%&cq%|Hq=Gf@Rv zKg{h7AHmEQiu=RCEb=;!$(#V=`jz|p!x)W^7!IhpYSY4oUFNw?@fE3klrZG-Ed zI4%1g-Uf4XnhWf2HTEXTed>w zFOw+8jwd@Lmm6V#Qg<<*af~|wxgzLaJV?t*h$#8d1pV2C^pb9i=@q@GyCx};fw}q5 zsSg7(vc34qfr!A?P@mNd(D`^;P>dHaivgGEVy2t_kJb(lU_UO8?XN83BKAyFXb6zG!fqfHZ9c6>{ z#cTJW>NhHQhlafR*$0TxWcbVpApXRwitD)wz{zJp;59FE)b!e-x9Q=UBsWQ(`b0e4 zS=b)H! zI$4cX-W9(u7VAK(NNYT*t^%9di|BCfxluCI6uhHPlPKYQ?d1JIn#LK_zylQAEOn!v93jKF zq5fG70H!|?NE;s9X8(@Emp+aktCeX|8kXc*0O1OzY*W6&uUY&6M)%!-6i{GpS^7d9 z!9s&UJb->vpz$F8)i<$ZBeAuXZ&}|_2ue2>!T<~Tr6M(t7~!N^!Yk7k{l9Y*Q2x7! z2bzAy7YXmjuP1%I=F?tH(vy{92Qog-`Xc!w-5aY*Lu6r{qhHJ*h>**Q)UeWuK7gOE z!#WR-d1%Xe6qreT0wM1Uvxq@0O^^Jlc)@7ZxQCpWlpF`T~QnP+Pg z!!IF=x!9l?30|)r`|#mnO7~pP`@t|j39H(wyiQfD27hl?DDzc|uQ3mn|Wr_0sjMr0izIVUM@TS}fB0A#kCpacc z$WC1j+s1t_jm%Tr((5ELY*5O7LINs4d8DrofZktGVKgHNuK)!&Zj&3=R_#kJ(U2YT2pKjqwqQ&X_Xhi znxbhG)UbzjU;@>96c{n^drO~TdAX1-UZbzH+XlVOn_Z|seF8f2?9^B$(!DC29<4M^ zkoP%Lp0H%{7H%%W6fcQgw?S zRcP-n=Ez+5EaUZ~;4LbM-O9xMT(QoY_(0QPhD-<_emg8`y55^%RK(94R3sPi`Ggm> zb&x}j`*7C%@V3lf+t^gZauAH|d#u+2`y|9yG`tQsG*+$5(WpDzI5Ao*Z7qd$Q4 z#fe)4X!5Q^XZ(S4M2V)~LIlX{gOSBQkH}kb0mwA;j*-tWBIaE;9+V29m@7xpw4W(rNk2*bZmQa~pL! z$-}q73ZgA{lT663FVbE1hKvljpl)n+fu7Iw{fhEUPE(I~A%ME%|YEQ91^d~E9; zXj7eJ@#Pe_U3-CepnRo55hzzv_p2~?Xk=()7$6w&pUch-h6tKaEb8rthc>GZv>;QR z^Y-o6uS3&^dquNancSb;QKe!I&DpD6(iUQ1lI^uE^rnj-pyb`8`{0p=2`BAA=Nk3L z)W}XA)REzg?*_S+3HnLAoNyLk8Z!AH~+cR1EBJy@DPyfu-NL$Ug$T^7UPTG zBF41x);?YxF1-IL^G@fvVL!WP`ce^V^j-w2-#yGSvS?wNT1l(SfQO=+K{~ExAab(- zKbLYFr3+d3H48bgvL8Kez_!94H9$iJxv{o-LG!<>Wzhy z*vjL7#sdQ`!w5&)5eT<^Z91Yy$dv2Xd5CNU|NQ{oIZ|-D--S zZxixrBn#$j8q>M%ubx(Ge9u#JK&uA(%8JNO*9x43R(Kcy+VD}X+ zs67Z?!s?@KEnGb2r9*`&vc85@)pj+0y=p9BhOlB2D~8s#c$OEV4AvL;)1n3I008%e z|FqVA`l|qj{M1AGv+r}!GQyS>P_^1>9e1hX))p+fG{X|H%LPRW9mv`ACIn;z+U!%L z+sf+Rs9H$3d#ox0lN<3wu3@qG>uhq^`k0jXxefCBfo4EdW4BcBc=inpq!rBhZXKnDh_Ek)?o88ba%=0I z21feo#VjSt33>RSkbYmz4Nf>+N60|lt^zyOGIw_5W5lt*M zf~aqWL*nQWWH>h+js$^tExOmRRptzHax_-Ek<)uo8hwTRLbby15pU;ZG27hI-r5bo zz4asY`wL3}U}Z6>Uv`gy7F>5j>6qCBa`r-jWwiC(f^}WkdO@IBNiFj;OKEMkc(IQf znfW!6o+BoGTQ|MWi3pk>Af|n2h3wd3Hdv7G%9VQ;tQXPRY8JV> zVBuWeVR!OyNj!FJXYTM~*cask)eGOTVDRn?q%r-Vmd46nI)C`fstF}vED`kjbPm95GRdkD zUuHIgplNXS z&Z%5TZyy67M#C|@^UJ>yLl+>%ifSXVyz2&S-vDqv{$|7yyNBMjY?Nht9X%cw)>1Xh zO_d_adzKZ##4yCH8Z*vcW)v5luNs~&`UNVuWo8WEf8E7CSIZ^Q5d5FC=E&x6wka5a z=i;})t@vT@#d+fxe}_(c_vlq z|AayAK8_27g0rhrcA?ruK(QhClVGiIVyKHi@z|t{XyUO0@U(mifQTSbTiOcCZ9Cs% z;Q7YqPmOWc?oXq>oV2ih>k}4frt+kxOf5 z2H35x(#EbE}7G_)ypyz3<0lkwyR>_e00tOET?@z1$1BiqVlgyI4l#KeN3urQ3 zg2d<+S`F2$@g0+lRF&m4hf4cw@pzF)Eb%a&SCQ`%6w*8s+)1r+-Ljh7*)7qG2nfKJBn!sk6&Q(+9!vzQs zJ28~SWQ!VWzFs60i3-mAkEsG|R@)p<%~p}3M5@Jw zZ8P97D9I3>ZsERQZ=oPcFFk32l&6uBL2UUUiBl!3=T-fb*^rp^FLGmIq?Lqo1Y9#Y z{PbkBHp}yF-D6$g4rp!vvGIVtAJK;6#2#+k(%e?Q4$~rW%2`wTk+OcdcOJU_!{=Dn zIi!dr0T3it6&DExG|qq9uYdheO9zdhhoJYTo%;{=`Io+hf?mKbb8n1ZUV;3_?)~F) zdXN9DKL7Yl!x!LQYE4_0F`+AxfB({%(*Mh+4!L~-w*M?Yzda29OF$zAL&5(^tp4G6 z?7RY~p?#V)j%c{u#xR8hH8r`hs|oXwQ|!q~gB)E5`~$4$&2Ab? zpa{FS594!(y6kzm%Ym7x7 zPukbU1wp}`ynnSaNgkhJdtl_gUq8$sEy(`-@^-r|*RH>%EN-)_Kq=0lZe1}n_}R$a z_46t}kM)93pXijbo&VCS;~k@>kRiV^!t=uqUesz->+=iT*9$ai11j7grwMQ`&jB2C zO+8IgiQ{&C+~7MXXs<|^*vFc4ZKCC*z$#}{f4SNi91hq* zNBLa2sF}$lQa>s_bhtSm?L_Jn^c;~9ZfW8K#ZxOcCAbSdEO-2Lw3nIBPe=)VGu`j1~E$BC+ zvPD}d{!OfCJ!e+~`v}ZJT+eFdik#FYUkeS5u#%0aS7=vw;~@J%j!n)PNZMtn(6VlJ zhUMNG7@I4qZDp85p$}3eS8SO{zQ|?N}1pnvg&Ym zK}a}K4%76aXk}6O;Cq3C!f%vP@#>)(I_cC5kx4jRbkcE})A2+4as_-d>!S;nOlXdpLmO1l%Z9Ku-D$L>- zLY9+RGn1_2O$nL>2Ba#M3~@w$GmS7bnl3^@Uyb$75`rq5eX9^utf_&HEiZ#+mf7;kx8qz1ul9y@s-cd58t{Koh6Q2ie4|U zhs#Lg9RAaC#s(bcBp8hp-xxptm9YVD5DUeM0qP}|)McWry$xGr-@}3te^RfhBgBfE zkNw-n>=jyD zMot<+VEo>e3+pAk_v<#HHP3cnpgUdEPSV^np-So7BzyO%WVj6DBG_nE$!GTT>1%*gh>t;NeQAwnt>B;Y~sGrMSQ^EJFyJCL7F!a+A}-RHfckS;0jdU&;7^R{?; zf3p|dRQ|X%1`%%glunIB#S*lp&M1)BZ|bmnwid6=^l@NdnF4gLi`+a2R$g5)_HHl@8 ziljpraCW#jg*7A)Y&?(>4lJW`+2mF}<#~{>jgis2xWVnSPAwm@IEHAW%IsM!9|JEB zm-Z?Zu8=612#PAgpD<1A8;5t(Dlj*CZw}mP4KLr?5jM8eGba%f5iBOrY*0GPo(lUo z7$KZ>Sp&w7 zc)7y%35w-`I}%4enB@1rnES@ZAu=AzJ3UJm>ikI=)EiVtx4l;EnY~61vreR$I;ojw zR(u<>nQx#c!JkRxxLyrjE+a=Dz{C8o4KL?5aRc!SaHI@IcBsaW9?(KJF=fp1Bog=L zRNcOBRM-U3j^p=Eyk&WB!cpGNN-V0!04;+xBs;_)QYIIPdv!R=(_mYioH=0JeST|D z!KpxxliOVSRi0@;z67I<1zMMrO)8BX@WL8dqYXwDO<()XjXGs>+1Ftc)=n+e85M_Fds0mYhyf|bdr(@+Kw~0h zRuI^Z?rTa`to3C<+4uR^2=zi*6f2a@m$NCS7c)y*lxh9gYYuFne)$d+RUi5cqW+xm z6mQuodRF27-Pnx}?8!qV^WjlmOTf;O)Nhj=X0@E`3_I2GuzHu&8;whOc56Tx*Kg!- z+f-1@Le^$uzTSgh5; z$|~nm58^OPECYr%B^oEP|0E8eHr`mOT1sch^=+{13VRfP>XA2QC9}x>nmMq2o}GQ) zHRg$fL#d^fSF2qCmF?$@0(cX@yd;Y()mPDfDz8lyZ1^~@QAkx{s!MNDvZCK``< ztYj@VUQKUbFke^Wl)1v4pj)*n!jo*mt1ctg$}|2BIrU+^ft3kWEgHm)$etbOnb>fv zU{>jo-*mJ$%0O#-p-}z`vU}QO`G#Q`J$gj+oko<%U{o9u!qHVArd|b<3CdooV^!Sj zfckq~JSO^=7UBL0oXDJM!(p%JIV>z9Ccw^=8AtUZnJ4!Lsgzgm$RNQ`CR*D-n|X^| zvPxZSq!a^EwE^6-+otMK0Mf0Xf<4wL?BT#t^$kvX5`CM5LCV+ zTQkdh8gcnoL0T2m#f~XXLaDnBkoJxaQTl+YnmsaHYmx?;w|00iMR4U?oNQftY{oQ6 zBoRpR@8cLZD%Vp4zt>0p3ky&!ss4#xt^<9`Fx&8Ya5$#1l&q-57}pG|yp$Ahl#@}- zol)ol)kK~xp_su>yG%GVbaJ9P*TDV*U#+Xw1vS+<*Qz>oqLvVSiWOrTD1+XkcJ_>D z&5ZxO$kYl5nMvXn+W!#_#^RF%QnHw~qrFSv+tkOVue7uFvBlKHis-xdXIvE<;?BmP z85O`qC)#q_GtH#}8tK_|yFwBYKrY3y__+$d#YCw<9@M!Vm)F+n)AO^> z&!cp3yEB`BV8Hb?5$ZjTh)MOMN82E^ldw(FmMIJQ{VT3m$!4@|I$9hm2Z%5wo!0lN z*^3D`%_2D^iQSEsHBhkm*Vp|n^T)ixAr4$f)ja`XfrdZy<0CppW4(O`OuD+dSPZib z9zM_bAgu=pFANVv4$8};F#Dde3#kL$U8UjVR|k1nh@iwzheEVMcp(u5T-I6d zSt}0%;deBlD6Mf>xBVs&onDLrsl7)uNmO6TTkh)iAvn>q!~j)M3!+iI!9s+N7*v%O zH#*s+lO|MDWB1}4GaGLD23}qcUS5^z^jl&led;B=iyv?x`MveJTZI{ia>VIb67XF;7z`Jp~WfzxDPD^N$UrxOL21FBc=Dr@lgG$xq69Fic>+XfG|ogL8AtYGO6&szsec!XW_*8bqky;=pVbo z!0)v)uVEc8ZPh>?&naqGKpVwHAO=M87}ceU&Sw<$Ra0lYAR*C&lG4#|_hM&erl&x? zt3%LD=p9{O>Rgtoit(1|k$FdH2^S)BFl)@v^G1pH)XpcC(r_;Sb$35R@bvy<(5-na z9GzS_JMGhq(89$;$HIY;#3Lh;-VYzKcPG6_FI{~A5LiwIuE@JuFl}xSa7sAU zVrQ*nN_*39JWe)yGvf_;*m-CV%wqsDCZTn9-$0JO-Zi|=ko1@8$TRLaecpqpGBMPJ z+&nyK{hL?OQA@ZHOX%j(A5D+w`>C?fJ7|BH z7+Z_XqW_R;0D32P`89<>CuX})A@}aE1C~VYxBWjk%xHqUa-~K^ZySS=3GGV$3F%ZH zcg7zK)+u2~>~lnl7zeJ+z9yS^zTpdR9v2_>T*KAyLtN|+Eg1obfuiejQL~dH`dxsVwkuuYTw_N|Tzy6CaH;fzQtZeQg(ES32b zT^4|puu@*=S1ud&G!?Ow&+6&%(h%;FHxY^1%qDO`usAF0PcF5qh+yH5DODD2H6t9b zHXgN_)BRG$rJAX9Ohd|vfLM>37m{6LcfME@|aPUuh_>3F?rP(umcMpQ4_2 z|CHafRIMz=z>u)jmk^XYW(DTWPLn2{d?+8Px8R{bSUIAXMr)G*D`_ex;B&r99cimZ z|C)EKksiuh1S;VfOtq$KPi!B2Yjz{Ev6T>>c znKr|TMP-XcY=gYa(Hl?+w`!+NBA-M@=Dq*kOWJGf_k#p_Uj$`VLSd4V5P?i|FS#(3 z<1(6pqt?zwuu2IB9ZJ!j+pA4@)IfHf-a^`k%dhXc;suM>V@&6V~HjBgcLTW%t&^ zMPkKc-Kh+dpP0_*q-sEh4~AO0A{o;svEzf`oN9BHB8cQp=NhnOUe0Nfg9s%bDXiMz zH5R_w^%M-L+)r&_6Hpm>YhO!RNBFIfuy$Q;&~@T#ih^0Eze~gLg`cJH9lT1r6r+Zy zPS!6U$Rb2Znd#+czx7D(rh^bRfns~z*wZ$$j_5Znx>N)22I9x2QN2X|i%F>catjh+@XS?T!?ct<0TGm~ z{m2(~X{y4CC{3xyv}7%Ea2KfqlR+4XFmA?pA3HGI)}T@zG+ya(5uB{1XKtF-ZlQet z?8|}~YH9Q+=qo%L5U=sw7@3(gbvp%Qs%XG!(LJUXlUuf@pfa(dGk9qfqByf3*lTm? zz;dpkMumu4?*pTJy66xQznPqItSXiuR{ix&|2e_?1XfaSzJ{Gq_ZVTQ?7KyIAOk!Q zKzmLXpF~rHp&5aT&X4<9A&@~VdI}vH2^~uB%r91QuL~o#wn1M_u7AtV#UjCqB;3(CNPz(>EH9mCEp)-M7K=4*F z>M<%*@2PxIpY3K$TRh~8I;(yTU;B|_vU#`%jMkP8G%`*PFD?XH0VLdKoiI~U`k(N| zxwpTT2^BBc5tUlpM-O5dG<|786A0DiYOfBXjMyZ#5(eFfqmoOM40%;iG@w$S&!U)} za{xhN)YvG-f@f3r8;#MD)yr)eTfdX)fO6#0!|jIhJi_>qFftu5a*}f7!KUE-K0tBN z8GF98p|rhz=`{h-W#cl8*9=BP#-fZL?ZD?V4Vnu&(z3hizOaH=;nJG=H=p>}sR~Ys zDK@0qKIuB!s#!R*)mV7eAYIThnHBaFUqf+YN2>j*aRxQ%OUhB+_)e}?>r0sn6d@h_qF z~Kmv>^jT?B5h z|MShj-VoL6M_d`n>(OtHTkC{xMifUPQ#+u1dZF|AUsCcD;d@WrflZo{Ewb z-`QFC!`7Slz4YV^wsT}iCYt@bTuLfRL+8vX9?QKwP=2=rBMIj7Btrd9Z-y28Yqm^q zWRb%lSU6>*A#e&0?4BdlTqw~8YFrr=8b{8Mv3F*~ zmEsw5g|)m~*dvAOFdJ>aeQ!h28gW^iE2w?lo77#>;VOHHSrHx5b@K7czeM$67jA0V z{j0>&u3E<%LA_?U+C-==Wy>jCL=^zdgs`t)BvgPe7M(ZjA!`01$tr)$g5#I!ugdb`Zi(dOFIs(RMvaRdjB`4nf?I!1)E~6QsmId+ z-+#IX2toz4sZy2u!$*!ALlgS47zFMV^oviH#kUl-9<4Wehd$}r%7&Btdr`$?<^E41 z3vUDikYLgze)Edj;WGmrGSD4lXduV;s>-u}6LG#&JeEMr2JHi{e6BL;FUsw_L*<+t zBdsK)ABFpqgmrr_+rJSaDF+~;7xf0c&n8dsZe>h*YsM*8lATL4$Kxej~j z3mAgm>#l8hubH!Iw3a}(*QQ|q#aQ-6?M+#yc)o>| zO-Tp*eC0kODFBk}W?*HsDvw7*-$y6a2#R(tB0}^Y3I0IT-KC#V;Zdwjke=4E9NAf= z{?Z>C4h2$cWskjzJE(HRWN9m`0`A&$4ywBf_xFff=3smYL-6i5Q;@ceR_Q8^#OCW? z;KAIC$iZLzQ$Mz;k^_u@g*$=2H~D<1o#}O5H3?T9x)?=v7MJODJfUxYmY}-bW;fUpo7NnT;*0O15;tB)qaFIk3LJ4#0+DnTO#V?=YECq^h{b^+? zTiU%TaC*t&IaJ&4J@I&`%^V`E-H`~zq-QUb?5;tQClDPf0JXRF$DC{{=fGxXsJ=~Md z#b|W71XgBQ>V8$`b9tQpS)s!VsG8;oN4RF|vLvRNA2JwEwbeY2+R_?NbzR5}z?r6l z==4^Ky{$M@2IS9!<-1zomdn%pDH!KyoUCAGZNXr|r1)c)n0bJktni+~Mz_U63>kin zd!y_e!<5bYVQaTi&R~W4ZN^-b`6-#I4bDQzO6>WsG}yfjIoWJdya-m-Fa&08a!pWE zMrV-qQcoVLg}LK3A4@8~7yq;!?2>x0k1v4)SEZQmiabU6CY)Vcv8v?q=@rM}5?j6J zv>r>WBqauHJ6`%sv*k%)zQAn&2{7~c*z265^~spMs!TbRQq(Bx)#oVc%IqEujf3(@ zvzoLLmntHS(@bt(?23-Fa+i6V8u~X5^c)*5cc}?_VhUkuzflSS$)U+f zT;?@Nr+Zh~>Tw!T>ixvV1XNaU1EXh$-R6`s&jPyzj?TJue0q&zAU9*u#O}KkF1gH{Dk&pkKD_Lsmy?OVe7gheZ9RCOmYLeUtVWO1t4d6s{A2KgtEkTfb4?86%j_ za!?$D7Ff5rxwEd#=hpcL#NQm$H2nZl>XwxQ15yzA=%WByJ{EFLlB4br5lW($KRrEP<>(f|tM8l1 zS+}s%N|mw$4Ei9(|LW<2%#@a=MpA3>S<)4fNn)Gzj96q z&^8g$1tAZN*VhSPs|un(0tb*&XzIMPUQVDrZ;J2i+b{9RcAa!<92F9S;eV{YY#=#! zF5+DoG4tI$Jn+DdQC9ml8K%*)xrSNNIf%pIo%KT5_Wsgu52P~tw%TTYbH)81fVYNt zsB7gTaE2<&_Xe%{{F+Dcd0S>R<5Jo*XM<^BliEjd;O49rv!twt9$-g!E59~Mv>6AO zWKQ_gRR7}yX~$=e?n8OEhfVM1{;lQcLapZ5y^lHH?q6*02@u(Q-rEEjWpUsP87#)_ zNK<(7c-{d}Q1H(sPz!)xMMgae#V($q7-+7KSDXQE{m55)aiNNIQC}C#|!^ zfJzSX6DE|4c@jd$Km7TI6hCdI_iCFU@dJEktXY+>4N2VL^Tjil-%M3tEkuP_U!^V% zyc%w~g#+|=v~ah*)BIHX2#N?t+M;7W1BuU1B#`@@xd@L-&fQ(0-r=F_#dSn(8OK$q zTn<1uSnmK4*k8W_cs9OCUG;6g4NH}}ilBHu0+2R5SFQA33HV(jyoamP)jLD|g*2(F zYl_XFZ($v8@{i>xujVsRCuiDo7LxX4iHt;Wu4hS>y;xFisswnpMMyk`7qp0RRtA|) z>(}5B2^FCFujnm!NLfEO5!Yn6%tQ)PA<%aLP9sk=E$;LrHQSq_?vJBs`et>Sa*c=L zvC|c&Qmkh}mS9gFmShiFd+ZqM_&u^Sfq3*MvK(E}gOE#+>GrJwu?FY&Z*EAd+?hhw zSVc^l&SB#qudXM41NxGSB>Cu3+6gw`7m@x6tewyFtG*_l6BYk~U6Vmw4Pzmx#-!)*n1?Y;D{5-$2=x7Iu3L0Dx70aT zOVV~(ePeonhlj?Z-UUyxQ9&A|26!4*t84qc+ajMd?8!Q6L6Bo9$Dzu8r02@PM zw*}5Pd}_)0@NktEh;V!?{rch>`E?Hb%S4pUjEKHpIS@Cy@21nGEub5hVXp1!&o;N^ z>jem&oc2Kkru@WkubKS3vpAx}W^LFmf`VHFi8?E2K_v~PIKyvDN^zQ_#B*nhHC1Kh zP${1~)SC@&v>Ci1`5$#@c3&J~W_SY9vqr1X|LRxXF$c}0wp!JpMU_U$bdo_XgWOR= z_;wimejvi<>V;#@_V+xXBAJBy&01cTmN&ny#g=%$o?+SvueAqM3Y0z{E;#dkwRwI* zqy9(vixZ-M^swW$d#+OT1$uV0Fi{XBtC8T-uiuGrfCE?#Bk`05PQg4E zHG#+BOs`Gs7@)=X`!&RMKL7x?&ktUL?5|*l-BvX6Gu^w)P5D+L zfw%WbQTewY&WSyK{(3&hlF&No0c^&@dTIUMuDs_^Rp#x1Dc`zEnb$35<_RZ_ff8Ro zSHbc_UTfoH?Pq}-e*yvL{lUz~f&A91$;Ou7ucsO&@AZA%r!9`7mhCiM2=Ka{;?r&3 z1_6yh=`vf_qvgHN;z)d^8<&7V@WWikO)mj=Duc%}?jt(TBDuR#(r2AON8TKE`C$vo zNo!Lb5l}dQ5*BK;m&U2tz}*vPh;SGFSgR>lv}w0=!prv*p1@qai2;YRjUwFfVXn5s zDe!17YRIet`SGwvPy9n8DOQ=aWyL_L5-lZd#HC$;Vw~c8C0AZ&jbGQ+%eLa^)_~Ba zb<}NiUaxdPBN+G=QCz|KlV8_qIuvWdJ#t53I9rgi>OJvIeS^(F{fBGV3;-KNY7ZE6 zY)>~&kG`fXjPn-lvC~x|joxC;;iJvS{5Fviv6dRxVkxT&K!*ne{NRf3)U44;mhAnP zci)Uv@L1;#H~Beo^Nc5zo$d91aB`*4U|nsU-=E#`0VxUoRtcMaXT~~?r1`Yog`~lw z-fi*j?rusd2UgZw$ZXi{?Wu!#scKr83N9`VWnn@Pfb=)sj(*DExw}_A7|5*O%yT=^ z)h&fxM)G1pmc;w2D!KWt?U4QSk=q#GICbW`2XM{++6C?bFQv7+J?60?vOuko($B*+#$B$Fm0=K7i zPbc%wgar4C12VO$Y1SWT1M!4a#6{-)K{y2B^5ae7(mT`5piyWi5ohU7rmoO<-g zWbO>GX5pY)u;&Oj!i&O5!M#IBzbVS$cjX(lnov>E#$rumkOgwt`T34 z!`zTclz*wY6hO_nXytOl>%ZCA*HD@LF3nROdV^9@U|i?c97ib4EtZ|}!hi7HZ@+jk zdAo&_`@6pOMh@w#YZL+Ibt85Z$Q5iH%b zl}UlgcLcpP3w0AP`ILuf`?2uOM_Wb;tACo>f&U(omitrHgPtlbtefxXo0pF+8sN~E zDw|k;{@lzNP0U1ljUsGmA3b|B^vG=(yic2`(s+Nw1G?$x&(XhiR}(lF@Oe5`*bsrT zHL>rmVV7Gufte{y%BnrrZG8a7u|K4rlQ?Ml%4c!Ja;{gmRFRaQuc8WUhsifxh%tFw z?dv{=6WDs)=L>j`0|NuD(v}|%e)m~u@qX5(KFCPxPwH0+XUR853TCk^bOh))f}7fv zWz0Bx`AwTiW9yqSBU@BwaLe~;6N}uiT*$(LlZ(;s&IR+!58GuvPXWiz^J+&e=U4MK zk2ixPk3AvF&xst*k3i=jU}oA8TbakE^z$0Ubj!($VfUe`GLJ1*kO!c-AZry#T0XPc zB#yh}OzszAF&-Pg)<5%;Qc8810e2@GyFP z`1s4W&%K?mNH{}N(0OlyeaM=})m0GopU0hd(0da`Ly}ycUoO%uI>qVD;cQO1uRru_ zS?nOWH0P-1i7tKZK}n&B)2nggyP^>RhLHdP1xrM|_b)$wx(;2N1FY*0rm;GQLWoWj zdIC$75~(Vf3S;#~2DP2ro-R<;E6+jqG)2m+vqoCh5>$^pO^05$7Ry4;CQO%38&4BB z^;&bInp()LUZ>N(zg8)XY@0RnQN5DNeh=IXj_=WRo`MyHI&p2ikD@k+XU__~X+aR( zXd2aknOa#e5|upl>mILm3*VnC$X6_6%@RYWVUSt!Jf1#&yix;%pVT#j(!h_StT?-b zn;j-S+_eMzsXfDaqOxXg0bojlvasaxDs%<$9U{pyU3uSjq|%nXpkdE0wqf6`8YZ_X=V{(;3Z{lTrc%!( z-Ikl%Y3=iLOWl)VTrKa(s#1?JC6L?gW)lBe783E@$vI%6t={z5^?~z4QwD(Mset8B zxXWm}zqIO+aUR3X#yohtz=sh=u>9DiY0eu?I9!O&HodPxgoTM{mE$M`(j--uLET`Z_NBFGtGiyo)wJCu)E)`W~*H zpStT>-KS+qJdTTW?H5^}AMEA59dXokEx8zETChA(HSM45E8qs79`z0j1=t?(~9-f{UVI3nQ zg7UPdW33I*Bf-X#bJl4}3U5m2i|B#^Xu*@$zJ7tB)~!40Nc`%x^w3;ZSY={Aadwly za^N>&M)vk+vA7_n;1D?hiWEuYYbGiI`HpAcYvJMHJvycx+gjC0sl>ir+~`UayHHZc z5oA1u*f=RxUgvsUg1~_#^&&iFeYw;%fIe zi1cD`sF*=?VSJb4?(@UsFd$XKziWb<4wy>s&-3|qA41YuN0#HH5DdozZ4K<0Pro|K zJuY3h%)L&FH~(Rap=mj_osBU5mgt$R+W0>4^J-UZ78Jj|mO*m^3qkm&_7H@X@90Q+ zF8d`Mm+vrvlaTu3Yn0coDZhm&$q_x(dA4GRfk={1!J-MI6s}&wmGY4o$T0JPe)LNY zZq!feYd--zDNnRbYC@}9Z;gX$xw5>$cDZEAQsYCJK!Vie#RX+tF9@^*0)dQJ60n{- zG>>)Jg7J&@_+5;DzHC%T% zg2K2Oc)E*sOmE}JOO<*-Ey}ITNK_axz6a!eNI}%q$wlxVh%=+fzoN#r+$`07^gC@e9rM8~)r;E#`sUJhtWPEh1O2`Jhr>y^dJN#S0ItSz@ro z9sQ3Q)kc~?`=ZsC+{URAqE7lvjGj3M^}@vSa=qj#t8IAUZi2!ptC2J&@}CgV4VO<3 zf+38jiHjO{HdPsTGJcIaG}Z(FWg?&mCZ?0U0FoUdR>n1SxWV>exK36z~V z4E>C16=^fA5B;*ypRt!R*204i>F@kKtiGSnp>eVUMPM&A{ZOg=T)TkT0zvZIMWw!o zq~gsL0G7?_#p_n?u-|39>w-`&!yK(1vxba`hw15lJh74&*VnI6QS(JB&mW%+E*qa) zg$wf(y#c0fQX1BzhdMh5Yld9Uhh9HRTIG6R{1RzDp+jln3)_hPkT{vVywh9APjM|RAabZe)64|m=I{SwtswxIkjpeUr1%& zOFrCqx&AzJMW8Srd&{+<6(sSg^<>2l{vSndoKJAkZ~cOhqhDB*5NRkh+37kiIAC%4 z=uHtsT;5^)sIZ8ts=z2@Put8>sVojZRMt`>RW=@2X+h5)1qTDLiDokiob`r%TA`8e z%5{f@>jmi%-&@`EYmFxgBW@RV%6x9enS55OY<=emGH)aEf5&(7Gi!@lJ?`3kpRbwppqC!Lh11#a`;#L9)~_ryglg*fcJ#W`_mXay=b97@ z>KM^`{=9S-?EBCbMRL3Ia_JP+*8TF5$#>M5$!%{ObkifDZP%5OpYAa?v`X~Y?ERAc zTM@y)FKa4K3_h@EA;;)+<^jphM@mefvi7N^BY?zdil#9nXurlxKgih4&2HyTt@W(L z*8LZct=s%_%c(ZW!-}VE%WVKqDc$Pz*UY<#5Z~)YT{+n(7RobechC`M z4K-PS%vI4#rK7nd0t{}9{LmL;#2J<9L;Ymeq)YNRpLaJQ)q(Wj)=o84!igRz2bfrIHx)@86} z34@&6=Cj-K^TQc%pzM|Rb^AY5U1eC5TeuxUDV0vip*tmH06`iN0qF(-QD6w^?gnX) zQbMFbx<^`4x;v$%o4YxlbMJG1_}Agv@y1$fuXoRB@4Q=M@9K)8+T$VvUb~7fFnjd} zAfX*jO?UrJJp>xo8*le_PaBr?_B=0z=Z~wLnzpP28V-y0TtP|bv@9&P|Kss3KsoD< zRR!i9FN-oRuX4T4d#J82#>KAt;GPLDZ~p*v+4il?Bw6YUI!dQiQ`*a$4SRvmiSFPh z7L_m|1+9^_gN{d<)h;7zJ4E=0ECGBE^fuoruhjL)>!s}V{v26y(DWW>Vg%^a9VvnM zLr*>XKm&RlXKL^k*Ed^7oj$Z{yy>KbSa<*P8y;H#_~Z$uwC~PdYv>)H4Y;qx)-`o$ zstyxn2H*1;wPXQM!Qi*aswEeOoUiN2ky%q!OLb)H>h+3Cjdv-qFWT=; z*xtD6S5#~&=X8yn=7ph z&$VAg)t=cDT3}C`97Ou7?qL-2A)r(pKHLab0^EKn(Fe~}jKeYhjD?=)JuP$(F#G#SkEPZd< zXHN<@BFGz@hd+j8N+D_m9FY;b=Y!bIZatlF*V*?aUI4Zy-Pnuw>=6lh11h7h9|?p+ zpV~HH;QpE(XXR->Ii;X>1pp`5s%2c_bl|n4cV1oM)hE_;+h}mPnRv6_eEZ(4?(L`e zi7!)!*L8d2Cb#A}qs5m#yRP)yTEExGAhxv}z?1=m&zWJ`n90zt4xej_ncK_-q&5}%wBbh*`X9_6!03o4f>)en^wj^bFB7NL*Rjxd_aD<>e~(f zw`EfVNK)xZguMjkbSQwnJV<&zE^c`D>IXMu#iedN&yKw#-TnF3cg@!)QDLb=WhSG) z3^%zGMeRI2VWKXrha-Zb-O&%NU>3=OkJrEIb_&eLX+(1v`IGp+wJwJ`zzJ$+hNnDR zUzt6p`ytVc`cH9fh>uZN(H!*XS&Grd&63!S$LD5q=Wp;+j%ZJwWRPc192%m>!`1~*If^T(0ny0@XZu=79bqDMdK z9Ut}l#B+61$xXA{jQnC0P5OLeW|h8QfSH4?u&)4`EO|8i>R=JuYacw)zkUcmO94>c z{%O-`-{tP*?bom0GfftzTRQVsZLM9>$={C&2}qS7IE1Z7v5%_FNJ6;<1)X;d2wdyoX$qB9_A8auR?4>=*9a+0ztd$pX6Yoz2h;GF3j!U`kl^+GWzc1Jv5@A@;MnnT1$;klPsKD2y=UERwfi`&`NHRC z5)G{BTbGnvo~$nO0JYU%#2T34YH-#fhW#)^F3{BEsx(OCtu@DhOV(_aX{f?D{%}ZG zJ3a=xM#-v>MhV6s`e02iw+6jqAET>Y3UTyn^(UC@n%?!pLuV8^lV#Z7>%* zBvo=dh^2G_Ws>OL44PbZ-VdLq$WJ>va>u79MZH)|l5n_^fkA$AwK;YC_MY5Pi0s@o zZGR&e57KX+VLuAe>=r=44wk9rg`ZxyDe4@+hEJ_XeF*{`8}%#M)Sl|`GPFdI7APD) z4(y{QkOr1RsCV?oPFxkTg9Z}Qq-8T|1Y%?}-@u@!W6{WHoO(qLft?Ux_=B+&Qf_u$-Dzd() z{|PGi*Ydq|6TA~*bXLtM9<4tm;YyisXB!zMl_W1!kq~gcG4%>wD6R<+|51$Ne}iUd z>S5Dqn3M5qlJkD0MnXS&{ZOR`JM8RQ0)p&}f-GpMjJ|N0leCn1isci5zOWi-B?aM> zLHp2x8aaM{nZ-18Sv{-kyp2&b?gc{|!K|(EPeLR%%l;XGM+At=lnJ%`GcI8o@4dvB zz_7pFSs_E|&<$nBy*l-jDCq4vFkD}za;hDv5Dp9+5Ib!cy{Iaw&gH%Rc%-wtr*M3l zquyiU;trSZT8rOVF}y|Wrq$oSxS%@tjAn4zLab-^Cr3EY@g(QMM1<|?%jIQ^*X2d? zBX^~77BI);iN=SLTDA`+dqu6mbN#{Rp2r16*3lYbqE+GxlEB(QKM~Tj6v~<)Z!a#3 zj&H`H>8BxGmSIQ)N&fk1*T zg?bC4RNCUR@nw?+Iua-k@OoXuQZ<3oo$Au@o%4f13C_2n{ptBc@{PUUd$DFl$)zll z^NHJv82Hwy&GMGmM~rA_uJ_SYa?`&r-$6v5i1n`nn{Vsuo88BO6@8yEP3~CSdjn@h zFZew8cvm<7T0wpuMo`K2WbvDitj&D40$bv=UB}8?{|Ki}W>13Lz+3P!dZ8lNKt1HM zvM7)3rJ+J9XUZpSx&0NR3B`nML#zja^*;(z$#Vfb$WZ#^Ug?9aoY!85DF*ch5XNk* zqZJn7w??dU3&_M9eHt`PK*Iqk6Xf zL^70^NN&#-+Hn6V8((5}ery8_^u&39#cn+gg0YxwsaGcgfs48?&OU>5yLyCLWwhk! z-s(UY{jNt{|KvL{J-#tS=fWDaATD88!*TpiE%?=|3%6zhv5wSP{cEW1#C#hP$TDxe z0$x>Y+mY~lH17&NnJ^!(B3?N(*U zb&AGytMJ^_E?6I``P(@i(VM|Lw!HcF?DF*bj~4^O5YWGrYgtzoGTANns!`?`doH|u z125wD>ch%lH9wtge9v{_^^zVxq*KpD%fdo^CDHMS+U5~1Lalqn?%CtG2{V zrm%x+Ab-5u>w_N7jFb%H8QTyJmDv{LhLBjKnWzkzM1u?Thx^)!QyBCec|3id1hO=uvd+p`W7yZ)WR(Xju6XHa@(;pF5iUZTj_Qowm0;&k))9gb$f z)Z{AV6V!cIeeTFwFN|l95(S8XsM+ zz1lQZv1XM^AQi#%?v?tJUW?uLe_+r11XX_~9h0&gl}|tZ*DbJBq-n zojBc+HV^vHPs(qklw*Hs!+JgsSICb}y&`Y(?p1>-jxzQnpaR?+yV3B&LSiU9}m{}zI|_8>qvIgJfCVKm8Dq2 zMDn3dgyRIA`>`v)pPpxLP2iJbwg*`pU-9eM5wj z;Gl>ri;Iij8+6dPD)}4+ZTZe(2qAoc9?G;C8pA95u@@(htF^b`*KEA~?CURk^E%ZA z11U#lNu>Ilt+}Gd%yS={W-rDRo89_F*3WZ=a@*D4z+Xe0+N@#;IezVwC$V?Av`i%X zH4P0ne!a|PxK@)u`bv$2gXpTxTl<(R=ltOn862TVL2Bzo#shmeH?0V(YgH z$M31J<94z#=heE=Ypk)3iXp9J=C@xn3wi9)2g9&Fzoc?2fa=7kTvZ?Qr-)rl__4oS znt0QzHAp?e9CB4TXxDOvC5)C!0zPYt&D+4G2?t?3X<3P^8HmJGsK%9iANiT#GQOc? zp^gI5)r@@!?&eMusn|sRL@8mESimK9YyRxt=1o4ms%Q`U^28HFFSV-J` z5F_+JQjNMlQk0e@!W@T#jt*QPQ@;*^;dLVKKdW<8+Ec2tb}I^8*X{#*4<50;Z7#B( zI{dF`s3E9-ovsa^pg!HKZuH3G9WIs4&TZ@aMtn&&kSPqmZU&Yfk&rp}Fc)kQcPjLS zQEH0vNXYHec3^^hA8F?I!2%e_YJsc*F|o|G_^=$|wV9X4Bl28M&DBjFi&*rhP-UU1 z+)~H4=xp^EGS!CLfTjN|t&_-+x0t+jHqwP}_~9>=$`;rx5h>RE>r~h?X@?{fmL(r>Dnr)qPHl2M)XeS9{ zdsJK7Iz`^xw2Pu7~J_;*cH@#Lzu$%muF*`$M7>LS;rQB-ne$y)>uUm`W%PVt9ewkH-Mz z?^gw#`RLzAmqiNy7{9*JaM-U-m{X!5nZuSC*NQFN_FWqNPfT0iAq4-SQM4P*=l>QD zf?PmTdLJp3H<3p5{*O)c1@`p;qFQBn=p%Iluj3P8>u&96^qV?k?O%iS&v4k1w3Qr? zse$#O((%)$QyCIM^=SxAB=>%y+dLL|F9Rveh1N$Rf^rfa$epB1ux`6f#{`>Q@l_<` zXJGC#5?Dm_=Y|iFYvP?Tsyc8HjUMsS*3H~~&n3uTJmBUdCXMf)lSD=Z#2_ad+{J^5OhN|3NpeOGPa-{ReYKuS z=`d3NlxQI)-+i|tc9^eaA_5x0jfNk=gR*$hMvS-n-ZLq18ptwmMA>Wre8}* z`fw!1y^|8!Dlk|}#aS}4lt=2t@5S{CP}~bnR{hljy%zK-}hJ z3pSciBLC9@1aLO&&lm@NnYdrb((Qw`J^hyL=XVks6dDvZ#IFu-L>s)l}DXh8TzmZ@9D|wjuU@TQhA9?Z2rBXhFPl!%0#o3C+wF zk&$MI5OVJV24z3FrVGTZZ}?)})YEz^dy+ItaIyO2O&yL+10Jvqj5C_e!;rVhfbCnltf}QvH%M<4n}@Bi~Fycxz8vr zQ_LyDLAWA!3z2zXFB`7K#{=j?6|5oZKDNd2RoBPM!6I3TtSP&?z_flBN=#(=rjn^S?>n2r$Y#IH@f%y&a}r zqoo{c9IGOH@I+pZfGjnuld9Hft7tu5o?cC@XVosRaAv<+%r+AD`%tfG+naz;Gf66X z6Z#3VM*Xyt`*Ikl3@MPin>TTYrc+dkgIEEQg>De=&WwU^mblhx({T{o?{KEr9_9In zL!P6dq3YWshi`llYpVsQzn2Zg3BX?XQ0*wT;H?g<;XWR|wr_+@H7+-Mz! zNxuJtMUXu;L%d%XWvQnUl0UYk@%DRW(i;ZN8V#j#SxGOdn#u+YYAA4A=pkH%d)@M` z3q~pe8(W`%+cXYvi#VNp9=(^vkDIVr zEi~oi4e{)2ANXLQ{HlLE5<=@rfR3{FP~b`*b3r~YpQSspWcp;%oT^7h)RYX`>e54a zNf7ETOYLn?KaSM=0QH|NKOBcR1Ew^L4~`=tH|t{URaudc;<1qw>l;?|1&fQ#FB36f z(W)T3+2RM+t}*@qpZaNX2=UtR+cW8Nt` zGkZIEwr&w|dUEuLNTei15|Da3bV$B5#6jR+MJ_o0O(I;!7=`ta{=_61$!vujRYoOtg@9Tl~ep0Ms%dIAe@*50cpXeiqNW%~SGt{gotMdI4Y5@kPuT zx>gcN5=k5>wYP>&#zNGyg-TjPFl7+5;c&py(Ke?+7t(Bzm?oLIMw^%u|y>-}uhrYq)c>rbnI|o&BiAAt5vZgL_Du9k-kUJb_fhbJqVGUo}~M zY*9;X(&c9&Auop)ZZ6?z!qvI7-s`#Dp{tJK94_7QWM`sqR`XCB4%jxO&WvNN#gU>beEfC!E>iJsrMIvm)| z3!&aItyEE0aN8}@A)jtv8j+2$NP4S0vjU5RK1AJrP>j6~UTWXv*HTZ^F&1wr?*hJ$ zJZDXp*2%oNW4MTv-V}#{#%lXWkrIH*T%Wa8Gl1c}ce$=7P2ze}`Ay@VM^F?YBG+rN z+=VjWOZuul&KO82NU+}y#F)Q;;Un@Hh!2}P%yLM&%<-pFhkbDuY-L%_f_)DDDd3@6 zku~D*Zz4d{;X4B-DKPdXU8H^r7jej+=CS7iE`+|*)c#Lq*?*QoRegJ#-R_*MS7d|s2M|zQG6C~MX+#6;Ri?cqabF0F^ zn!jI*&{xIJ+z7C)Y%%YWmoFq?a^O>64jNU% zo+i@O4m^$ao=rj+K^Dk)+$cUF;18p8_De-GxEL}A#r^Yn7hp#f;zeO2^Kbh7irPVp zAW2aHvOw{?%hTrDFS_d4_iA3VST**oMTwqJ|G!(zQ79dV{y3%P`E$;_@&RiVhz2Wk ztRK6{%SZ-7Tj&P~JV8NaNC%N*1KXA|)$<}Z2a;g%G17S)_~kO*I3Otge!1Z%JQ5j* z!fl=)zbWMc-JjdD&I0+IDu}w;v4gPn<&kga8#20Xwo-`F@Y7$b?LhSJ3yCxl8Sn$$ z8kj*|twD%;ldp}t&RSCQ0&{`So(A(nVl}Dr)lVq(Fm+{()09O9fmOLKGqb6ha-{2R zH2CqY9E8WeKR$&^VgSK6ZZAuwYnr%7lxe;gRmz4W=>Mv3u*fCWcV}3)B?qS^ceWr1 zSpg(d4PfJ(ZA&S3xox6jEu^95zf-M3BdFLS(314?scix2hbAzKfPBI?_HT*9`06nFQx6wX(}C3F`mobC++WVNuf*|X5Mv2`Z5YK9}i9)0mTF~7utpwzeQnO!@ zJVD%Zl~*%ndXb1@D9QLuF4=ZSt}{PWrQo$%&TEws5Z~C)7dY}z_LKg-dy98l9xep^ zV@~F*?`Q9Rb8fDHq+6s;C?&Lj@Oa!Oo^atW2xWW3ZHme!eKhDRj#J1?uw!wQ^DJ5& zJo*H2lzWhg*S)#leZV>-Y@mJHBlaQ`mGS7sjvT!a>p{9Vsrpsbdol6Q1;#1wjP;za&tQn5u>f*h9! z4RycGwN-JLMPM{^Ru5V52Lme}1-CKYJG^{inb=p2I0$tb?>{KmGt9JxKkbziJ+=qY z#+4z&6h4|JhAV1mQUpGzJ%?n?!lUo7=;mCB5Z-mul031};P_Ae7baanTa7 zPhC!FXKI!uY>mCYTlb*)av0^L?3YE48cZt`WD93LYU&W(!$x?Iqpw_*F z5JSsn*@Q(OFG0(gD{0@D3Dqsay>@@&T2to4Oc)7zl?#OtvtMZtdw*1uM11ES>>@jX z#8x4QEM#Tcs~U(rLJ8(tVq-)34X$#|G`52WdJaiKnugXpYZ40$JLfeipjVG@lDbjb zC=F*GC|_qWk{5lGUkp>rPhibWbvI^>VCLr{Gpa~`is&x3`&0|X< zcIEWrxMXEr8D$Z04<(jfB;!gy zl(&)x2;~bg`|gk-X1fyvo0>A9+)fXPu#k&JLvcZrHVu(W7XKDmO4+XH`=En7^kF}W zP)rq1^C%{184izNly7OI2|GF{;xsd{ABz5{Wqh-bx=B@|k%+$`jg)FgBS7ug>4r)3QfCbgTBOFRuq0!E-u zsEFn_4=ymH=KJna#95TbGv=8xf}Ga{uf;Btl_Cfc%uh(P#UW7^iWJS*llN1yShaSr zg#1mQ`LPu@ycuhSOBGf4!A}7cKyB&F14R`x)%DY{m-2OOwNN=_c)tp`HIY6 zSyGoSqGm%LEk!Sjy2hzUX1|V8QL1#D%3~}kf$Ub4oZK^Q>1oB5&a6qUcJI%kbI^sq z4OkQUT4{au{0Aq<-H^LWkz|OxjBY4#O!5T$SIB;43no+|(wGZAO`c%m9fmq{ApPHQ z@KKEZxG;Nb88hbjm5~N2_M7xCtFzLzVLqQdtf1z?u@lSmBq9@q-E{-X_|Ojs=~}HFXt>?(4FGw(l|ygKMXN(8;PsXjV3a#p*7VQ zDKlZ{&N9$dyVedkcj_e`|K=I668I>yN5@h?>;@Ixa9XRwrOTzwWdn^C*o2n1qkvHZ zx_|!NNZxP|lr=4nSlK}BCKc^)gf^$65+9R!a(t8@YS-~QR}P7dp`#6_{v6Mi;LivD zcytrqP`>#R-nA!WVI_5&2T`6!etV)zzhYlrO=#R)hfl-n2W`nxX$SB{)sx-^P>|?; zHi9qv;{hLZB9Ln>Hsz4q7jNBV=rok2>dIsCx64m=t481SwoaIZ=#ltDXjmapvIdTS zXw!X4)NJ$NPr9>9K4jvBP-~#*m z`?XTtLND(dat1uWfO z*Uh)Rym+W&Ci;uFg*nM-)w&X(&BA@+CloG}x(r^hF`|)|nisLenEK zHkG>P8iE^p>9_36-pmddPp%F9>CF;^(FIJh>GM<{eCmgLU55ERn$hr&;$R&O{n&Kv zA(GOc!fLudX>j{4J&O(N?iKhO;U0znl$nb60H6dttRRu9KC^f80hKumbiqv#0A1L^ zsI*ixiv_8x`UC=W`Lx3=V9Ug{ezAk{yJLMEMT?RjA##o-n9+@RUo}hiRU6x7V zd@nZcK`(Cy`U5xb`f1ds>=$w4#UI0iWgp{OyI;jpacIOrX};LxU9@#Z%^M=ICFa2T zf8#5`oPXTAy)Jg5;Bm56%E=_RLFn{9-3pH%&zD}VXm-TL`mf=9w(tZB&T*tNZI2W+ ztGty&Lym&M#4>xmJd&=;NKEFLy7nD@(1g*Io9>M3}GGa5UKgNMwc7oAh=ka(V?ObdyD; zOpv3Ff8JCOKV;kKiPKJ*V@*Js8dNM0x7z;+xC+h;A4#!O+EB_3{Nx%T#mC>`i#Q<9 z!3dQ=qsR5yvrRH1WV!nm|Ctqo|0lJa*)rEoYx)r(WGuHM$on^6WEj zT#?W%Zi{r=HRd#?UzPI58`uqr)xmp@YM{&Q7P{*_ROF% zbH?uQVd^k++6LB&-ntCP6Kd~7EJNHY1};IRNa34SlY9G}N`ge~EqYp*h67X_V|Cd^ z>SPv)GCnVP1*AXiL&UWQog`Dk+KZa6R;Ls=YWGjaZ=}Zqg_MxzAE5*t#@T-|wT*zZ*W%+oO zbG_S>m+3U~6z^8mN!WhkV+Hl8FD+{3P9P-lk=XNICId@CMUh&OpSIF1uigm0VRPQh z3mUlCOst-C^@Jy4o$6fZa>HK_pybTS~@| z$Nt9_defixpBX+!4|bpJ{ha4AcWzKJ7N=dL&Y__YS_cqS#&4l#8!+?$z8u7}NeAhwUb4g0=_ zr}OanH1H5falMaXqoi;8&DdkdshhMt!Ho%%$fl#1TaW!8^~griUsH#ve_6T-_FT#3 z(c7p}a}lC*WtO*P=ehij;wXF_|NTr!c5K#hR_N#`ZjvMd2R0+WGf|S;X4WPF>iGyL zpQ#_cBhHwW+eeiYdrOk%@#c;E$<+cuT``cdL*Zi0kS z6(Db67r12~K+h?zfDpU+eh?#J;h{;E($3NxPwb}F^k|HCN$HKI{Y|VSwj9oxs;{ol zC}OCMb&hZ zb}>*As>!#ks`w{yhS*oCkZqJ$J%yj_!abLpz0Qw1DLqQ#RpmVfh7Vx!Tx>BvQtK5k zxKy?UWy9xn56kVOaK)#vu=W8w>iG6|SgH)__;7YIBM~MUa~U%~^B9+fVP;udT!cU< zUw`|=)nJt8E5ekk`16#$SQC3jkyZx#weCf&i?_!kBVL!)enOpbQ+8pVVQ5BtF{>|$ zBT4tW{>3(DF~VuRO=0VN$DxZcuzf_@wFhwHRS11r;I%+?I-kZ6%*`1IfWkPfq_;+N z4YbpggD%hV+-4m#ewG0ou4=~kCUp`8K4H;$*yLd?2WIHDFWJGBEE4sq!l3MOx<=CX zvAA%Op8XS!7q~2|1P3Fct0@|q(T|D~3e?J^9ey|^n!~bsL!&2@YA&cXr5>2S;PZFr z&!T=y(h)P@bu(P4J$*H;TF@2ZfUEFXTctbySHlvHF!Xh_p(5q?65Ox3)jOO^4=YI4 zEgEky(G54C^$FhL$bCFpYdW_x(;5lL08wM-&p2JUc9KO(HFuTxK(KF0IR?+!X6_)suPMp7HliqS((J?w;NZ+#_z_NQ0@b7YZV1#pen~cb+8ns(g?$0{S>oQ|uMWm+nCqKCi z>Ad~Tnd?D#y*&l{BE&_ZwU^c!!O6)wUZ*9P0 zPxV!t&&||caZ}78PF6IZ#geRLe4_H_@;1z@FMQ>=))zm}*9Tck*v>XJl!)C9u!4%; znVx@cnoe=NUZfXuUARHho4!O`M#TvGpj}8Y+N>q#GK3hkg+-!23H$Y-)n8(+g~LI5 zV!!)A^WTn8@-F;>arZUpUnx7x(zC$RUvWXPD9nZ0@^vF=s=_x|Y|xn$Q-j zF3rbAKmt)#NFzU6K5!G|aWdx-v{UVQNrT3rf7GJZ+@xZOu}gT8t|B+-IPFq*BOl%d zJ*FG-)^Vco;UGXT&>9b^^LgfZwm-?K+7l4UEn#!{!|t}Njc%AzJ(k7Nt>o!mCi{I! zpuCOnG2utejhMNlb}e_k6-j0lKeO8B$v^O>9fCyQ{@i;zLFClX1;QIjz;mnh=3*7V z-PYJ&yjTT!*UJlTz{urY0XaQAmTetDi*z0E&81q0AtB8K6cJEr;TcM9^DMzMkGhAa z_eueR#p2E<$@Md=*-5$*#hi?fv(*3>7&0riy>*F3#4 zA{ceS%2fA-+(*7U*gn5y4E0dCXw=iQQs6f|nn(>lXC^tDk6<0vG~Nyg6UuDRPB|buhue%|RX;2{Ovfoxp||s4*!amv>9X8!ysM+GU~EvF3BxbWb(rw5vR&`pEXTy+RJN zi%?8cLtzCjp!`dxvrY*4{GnLq7ChQxhw)rUIvS{{b(^l9Ek}7C{0x#@&QvCFD^fpM z@Vnih`gVMRu~n*>kFWgm!|3Y^ce>kx;ZK)8%>4@VjE}Q6Q`AP zm%rZf^m3@BGhRYJWmTJW7^g^N*CFXNi>aAChc4tXhCOq_FvOKoZyVJ55(2s%R2>GR zg&D`Kh!m^3kls_hf_(dnQ62ad%7E_#d>% z;cwWx)q6Ss9xgb_lb2GHNAW0cyD^rUT#YEXoxAmPay|=SJH<@=EvVS2&Khpw@%HUv zJMo=If)20&9?w-T=$2!oPzvt+)%{fF-NMiOXEp}ZTt*-Qg^4t_WV&^b8k;LGW+}5U zk5=#6BbE{k7TGBStjV#W!ujxfhNS#>vbxZb71u1!2BU6d_*q>gQlMX#}PtL$F-lMel-1ql5(A?OpbR^wMJAo)#Jv_C0!eGsg%4oBFz zQxQuQ&K`h>5}w513G318Xm?UKOgTLO{UWa)pjr}w-}uRG>N=&_WU=u7Ok~MAuBU;9&5CYFsevq4Jv=>ok=_`zr)WwbxmzOn*AN?q_V_ZEwIH`Pu7A zIy>sHZ@b=K|Lrn=zSn<)s;1^Rz2op)f%pI>o1FGaK{EM~3|=Ph1MyPBivJ5f~%t9ppEgeyxW*n26;ZD+_p2+uLpEI$+w_k@GuI`31P6@T@G|8qG5T*kEY>n zTkKxzu#o7$(o$K*y!h%Xz<=|=;Qsbk*LxXa=8-d8g-54qPSXzSKTN}THp8Es%R9Zr zK|CJ1zfeCM;5}g(^+{P5yXAtl1a?_RQ5CJT>XzS_ukv(#%iNqfOhTYXA^~0IK|+#p zHVvJ&(_*xdZRGNV`_Z5q&?YDVS!_y_s4M5X-~)$N%?=@GTP*UKe-ssCU-RfE(3Zn#t3=?L103QB0hAwEB+(ticg=ObXIj)-QCv%E|dYcc1M9 zb*J=N{Zo}>czzqsB0Q#yXaTBbL=%qj1dyF_4<#H1s1hd8gmTw2ZXf35^w38K+LScT zt<)J$l40$j5gC%GFh>4E%de4NHocTPyWZ3L%+h_;w`Tnm?kJ~r;(oZLXRl@CR7uLC zYHUv#v@6@WDSVQ-@#;geEnjGbV3m;4%d3@6X^$rXNAcpNC$r`y2qy|1lMsrmXf84q zmH4U5o?yOt;<0=%1U6UXNu`SQbmqy_Avq42f zUuN=JDp}a=WhLP4Hg!%XPixJI_la63B9{POXKZQqNP@^jKOsQ*4Ir&>az{gl`4-5l zwad_rf5JK%po7&xrEuX3B(zGN5f>K7+1H z9r<~>yk9K;W>2X*3ijK}WO3PPi}O%c&)3XRX4|jhDGaJ3jMx3Q|FHEDZ$YwDRJdTalSl4<6ZQMccGnuC(yNes)Nm@(63rM|~ zt!4xv1n+=Rnw6UJ8+k%C<+VP-$Kg?~w{AiM6gmpLi98Qu?=wWuIeec{P%YUX%@(`- z9Tmz{xf;4Z_WES<{a$;RzI+H4$FJe{Nj^i?Y{*&2f-xL;VvScpX$fit!P&meSM39W zO76{C?$j-9U5C^Uj;VirXX`!eI!%G5x)F7sP@;ZXe}eP<0M`8-hbFguGAl}?V)jI5 z)OAXTDqn3C5SI(&!eczXA3`4zL}rhC{+3)8vXv)5^!$wCKZ*$O1KpTf3T*!2Fc}~a zrytVOs^i$J80JrS689BJ;y!~h{`}@h3D7$(J|b;blwey-ZukB2qkYe9uf79wfz#tR zpMNS7UY_4#4#X#f?pGSJbFVz16{q?=p9DJ5b?3zvMkUd6e;=Q}EsbN%X@B$btK~eZ z%ZRuMrnd*`{=Q~1N0E(8PYKF5gxP+($pt&@iB!YOkJm&hW6&9OnAO@J8Lrl^XLP!} zv{`WNF^2ie(S`=$5+SW}^WRAZulL|LiQCqpKRtdUuCaL@Mtq6C3@*FB7*hDuhLf7> z2WqIu$^91a7*9w>N#uBc7d|KDDz3qr>5+Ck>SfLr45fXL;-XNfgl}wQ8EAxW5_`y` z*eEzgY9G_ae&E@e+L3mY4F1 z^&rT3jjQknna4)Si-bN* z#on^rczBL8U|ABjHBPwYjcG7oR?<^ zF+Wh0*Q-4tr!DGQ!ZA>cGJCrrWr4H?>sA#wx-WE!pBY;-n8t~mPWCSu{RHS_Y^J~IXnL2k-2ki8 zaa=_F_k#`r>pel*0`!IWkrJ6;pu7|8|F|5!BJ{lww?7uh4;pMN3G^dUdUrGkSJU0B zaa#*`<4kWV)-VDx96{kg9N{?fNViZ=D~nb05lw-T6Wg$Tm#k`PW&@jfaq&XsmjHXYsWEY$N??ct-{3rOVqG+KhYuT(7ZLU(H9$G^x_@sl@3yPA*<-l~`2z zOI4%K;@&fAOxtqfW9Xc?RaD8H@F~H4*L`MhTbN7gxpx`4@ta*EzXe%0FO))FZi#oB z3ySB#Ys?^N;Q3a|L7-KO0l zp(*y$UFvn37FV3mY(J@D@%4~SD)6YNylMY@fZXG#{*kEjo|5}g>-<@V#$NsDqv5yY z=ew<@?vs7|gu)L`-L}%hL#*W6GaXY6d9xh#lYD96ZPjQNg@@{bPmm8qM0eRf+Kzb4aBln1&8?okJRqhE&lgDsr_~#6LZuwqrXUVPW(*knC5D z_6pES7r>L!UM$GFY@!TYTYo8Bo2wo(+Xq^{N?n(IDs0Iw*vQUx0zyo;uJ|7>R4X{? z4jxx(msvcTvuWLHzB%U1aGIOc&_8coTuc-M4+aQZ9hnY8BM2K!O2SYBq1&mtZqSi% zlUc5<%bjMY+RQlCP;ET2vv6L~Rv~1hhB^4drhmn~su7@T(9|{+jADOJ+Oa!->v>I- zGQgVG()VtzK~zm`?!5on_p{H(A1;#Le!6tkl0>q~-BTA z)nroCx>t}Wmbp>VfR6sC_R6lBOO{8{Y_(=Y?R|6({%Bu=rMGM;Z+D%<67ytMH#H34 zMa|WF!x>L)fB4F@yyE1E&Rlx2b*xbg#4!A60y>^57mm9?mBt;~fg znlKsn<t;Fl(9o3fxZf=rYDerR9y0c3(R*q9g#ePlG z`l?%3{Z5skYRteXNxJArA}KS#o?S$chF;fw{E29p`1K0?pb; zsXU#B(xLR+Wn63Ltxy81p3|#E)t5s0YVqKP`gkVKYM??Utf$%Ulyl9OJ0WpU;np98p(nI}L7Wf$k73w1`*-heeN0bzhRES8yvPI9^C0khoG=N$vB+7&w>hvhN>zy2SAYNs@(B#Ay!Ex*~fc*y|!domqx7BRu#;n3#wAw2sV&wCq)OfDv!s z3=uYtb;mc*_PF+NaqD}Y|MbJ2tKat`8gf#<-Ja7PD7-;pwsmvMFE>9vIaUWc#FFYv z7I_1BZAmpyOxH&V@?lbhyZf)CzrjH~`}`P#%Q&!ULVF-dGZoZ~;cbufyV=A@8ktVuKBCo00LI;ftrICEpw-Hw3Hr4 zH*^?>u&zS{wlwTLX$aqMboLy$v=!MF?-@HHOA&gfS%o2f@!>raSd` zZKk^UXT)p1n|og(a1B(ijeAWgp(BCH(mQdQWd^5(rh=9S>RpH4l2d_VY*)xQn(^SI z#iQE9{wfR7b#Wy`7G!m#>=x8if!OaF4RzV&4iezH>VrT5sK(+h`0LHQlYIG{W~Y?J?^>>a@FV?`D}b7BZcdw5$OTfu+?yX6Eol_}*iYQ0K?EoB$e0P?z3i8& zsErgN27^%;7Z0lbW~6g~PlP{8uMvLwy3Gwpv0yUM7%lBE6eBEcaz1W1Afch>|01P|`+ZUKV3 zTX1&^?(QDk-95OweK(t#{bpv*+2!0{&{S9T?OQGNJXP+2j|~@I7NoQSLZa09{)P{Y z9xswHz)Pea=+qVQ0qLbw$p~?u#yQv$>aYxjG*Up4Wig~cntIsr%Ec@t^l>&8pYK9I z#6eC8=%18M-Kp;ydH%S#+QczEul5H=LG+YNF^Nr93}%i3<_?O>Y54B8 z#w*7?Nl_ZlB(Nt1zX#^Mv+Q<2aqA?%Ql1j}OD;4jA*7e2RCYlM2Bec$O%a(n!G6?V z&f+VNX$NflclfUvGi{F=uOi>2HMvi}H=jOO2H@sP)r#5&G7bEA+4duEqTV*MmgDBa znv=u)Mq>}kfo-@6Qc&n#lb%l^cQgc?h*Qtt8BlA@>Qa9~|y_z$xlvv0BF2=qL&$N#9*O{xp5w|`~(PcN+%Ah&lby3%z*dOG_n8?4BFI12< z7@{0XTe+_vaa*4^EipoFO(wPQq6r#GuIENUqqafqhjZECmeqvkp7DA4lM`amn7fcQ zZ>$w|jEmBBrg!e^g@c|gCWSzE2re!K`Z58L%$L2WS(TeXV)w^$OR0xhVdO>2aP!(( zy{D$9q3sKcmfbd9=L45P|FDPF{ZfsKby-|HpS#ctYHQU%?E6r-LR>52H}ouUMYAmm zgcviYnoK4ymgxhTR|wV}SCzy#!rh!Nx3VDiqL)+8lIL6jjNxF#?6n<#7ty5Ar(&JV z&qWau5+6TP{$620U{lgEWa8ZTYAiIlB6eM!04VrwQRW<0U4ER_n+_(f77JB*9Ls)R zXWQMNH1&i$Yz+=9-gUG!Zm}O@BIJ-ez~QhsU%vk>E~0+ zUi*ut%ZfC$$Zx1`-$`Y@8O6ccI2Pr16)@N}?FPU82?Jgt_jtF}yk6G#?E?`KG}6oE z6k#~l(4GNuBU<%~3-s{C$JtH?-n&r(fR@!efbjaf=tEZdCu-MIc2fJzDPuEwJs}NO z8F&L=BIe!MCPr|$l-lUzdSv8551;18Yp z$3p4RCJGfqjfh8B zGny$(wVDNsK=kEt7Oq#r{uX8BzJ++cp|-%RrMqd)_AZ)8y^Q&#W%btf3g>k)`IoL9 zU97g7#_>jv=OuFBv``uz>cBHPp%j;KNMuQJCSE$m%Uew#D9+<$3=vi)r zuT<-f@zO7#hh{D5^>VumjJ!k}2~l7*A;1#>AOSxm|9(gc591=$`E@2KzWO3^0K@@f z1Hkee<|&keHhv(1Az@aHFKjZt|K7-#S;Kt+PCn=+av<3~I+v$if|`{E8LXrmJ>=}x z6)WNoH&mLpHt)V?57K@8v4G;@)V`s;$=keoDn|RbtnJ_0EJxcStK@y}WZKL#1w^pr zF}KPDQ2JyL5k_BKlXjGb0^EzQUL>Rfe%~4sM!tQz3iX14$IIZNUQEiL5ao6}nH>3k z;@Fdc)j*uV#ji_jSaRY^W-pXdPKQzg04YbgjWZAuImob_WJzZ1kAvqBdA2enB<7VHbc`k<$X*(Mg( zR5g>@DBs`z-W|YkN0eMG0+nWWEDOGiN?95&=T>Hec(<6|kx{_&a|JEEsd{Y7q+aJ{ zDDF8fZM>VD;BCH7a)@Bv1P&CBQ?0k8?H>wBWoX-P?h{+)N*=8N!VQUsNOqqz*da$yAM2=1 zq{)yoJP}ICL(D_WS7yRpuC)t@yo76-(_h>HH-(KN&ikdAl&_zDNYk}kQ11l3R)W13 z2_g?x8!00|(&ifwi3Rw2O6CW< zp>zgU2vCparGU`SnR5~?>d`9wWZj;oH>2F8?T(0$C+zfVX@8hvfc_02Hu6J?A(UaX z!73+D0J-3(3JT1C+kanBNkPyLNo)k zr##5TTas(L647Of!{LfIko?V|?$Du=0g>0vAM{IFk}?+*D?@So=2iR^w|mW%v)B|M zh{Tjv(~V`Dy;fU94%`9=pzv9}AXZ3)VxJbFu7GDcDB7lue6$Z6Ym3UN#kq86y&E2>v?0lV2+O*g?1|;;#AG16M2^XH^l`VGGox_Sga9)}?CeAy8YJ`PaZO z`2ld^S-X9{hc#d4gHu15{KG4kRZnL%r&C9irwuG2>S5i~7Z^!rsCy1}!VBXIFPl>k zaNM=eH%#9HY>#ZI?e`$5J1P$_2m;8r1#0cE;=;SIv2#ymh)+ETP1D)9Tdi*h&su!<{aXe$rtQ#u2P<%+F=`)&ti# z4Hv@V_nHiXYVZP4bugAX<<4pa68Iwl=h%ckw5W6gm3SB2X`Jb^E|VO4Q6xW>pu`O$ zEq?8X!=Q#LY5hqjG)Rc1)YaUM0dK}%E@}*pJ`;Od%Mt6*8>68xmF=#0?Zxk50>O$a zgA2pFP45Qoc)%g8`@Kjl)r5fm@csi>0P*LG`lXU*$uH&)mBzUfb!eO7pFvlk2N2Zn zNgo1&1(=zCYX6r8K#92bAct<#RP6!Q6ZZdT;CTrM1`;Fu9^3yH2s8u=*rB$mpC-=e z8bh^!fA{m3|Bu)HpUNVt)_C^*f4+e~wJLf62!7-7=Q#YO({w5zQzKCPuZd8M_|K~* z5cuDnwjmP#FJ%p9E0DO6|HB$B9zZY*#2=*De+vWw4S`yKP*#df+m}jso~3`$pzYAe+m15;9m(RKv4hu+fR7l69UTimG+LqxfgWqvyCUN(En0)q)h+S zSN#95rp*Zuj0padEv(rKP|Ea7W%|hD-=$EX&3=aru z8pxvb-)Fl9CHO@_E@o?Ij5p}zm~ydG z(dUVt2gU~i*dpIHJZBQB_A{m4BV^ubQYdPnkKIb;Gb)a(Q@1nnT!k!>wdossV8HsB zaS6R2DsEa#uZqzr%DdVJqZ8m*=*O%U13HDqS{*p|?dp}pAf_3$LSkR=va$d-Y-p6* z0lLGS89I_2P8L`*XGQ3fT_451kL9Z%nqsgZ)Q=CArLL9l@S_P3fWTQ$Jh7RvM2id;zYKv^z`<}sQJev?=Yws>%3>FF#EZ685 zrgw&tLMb6mXXJYH;t3ueBw7pysOy-9V>=klv64ni`eb5Vo5`dG{50Z-`1{g};xhiE zWco1rFd6ITS&uP4FE$w(Ccy}_Os$EYAdLa8;cqd$S$JPVKn6dwexxfAe-E_U8C5jn z21d@yVK032l?*=zboApveC4+moo*ka?07Y_`E2nh|AUmR7qBKl0^$gGaK>cW%HLP6 zIIufd&I9}m9=>mD>9CLks-*BF`UPl^Rn<%J`fBC?^$&><@c?C$ZJn4zOS#>9W- z#&fR%ZI$8aOBgE_sWZfA8#S3BUZjkc zEo%llBA}wQ7r^{n^2XZ`jrMCS(z`b_lyI!ZMH92Aek(sRB049^VxVyCx@fvKD-y&l}e8o^GZs>e9$+ zC0``{P=@?bR!2-6HzH1luYLIETZ3=DeS*NogGF;)FUG_UTt}Z*#;I*5E{s}&O`zBq z9;D0D!w-qRJ>I3AKOm#XDd;eHY=Z!JccoPgUyp;*Y-pu;7hl^T1?uHpnMbl&(ZD1$ zHsTMzpcYY69OCWwVL+@7{mAYY??dY|G! z1Wf$kCwwZ8UKIy@?_D#O4y7B9?sA|SH`wIxOMN#URN1T}k?+xL4thNrZjTC%skIqA zlG+a~uP^w)>M1gi@2KWI^AO<4ce+ru1b+}IpQ5dkbx9b1D@XOk3Zw}-@R^6Jo_A); zyz7dFKVqbTEs_RJ7)0X5GiTNjcH4;~ikkOui>ixr^SfHpW6KKTD_y8(p^KKI*G*Ul z2FsJ6KIA09=>;k+>vu&Df61%~fY$T}{9m7U*YHn>1;!ah&BKBQ<`NJqEM{23I_esn zPe!~S;>{Y)>duM4zc8R`ECQ=@^X$ka%XcqJ1b6x&{R=;o7jN|02yZ zZEre8>uX2)h~SlzkWBV=3Cv<1jVeKP;iX7;fd~(4GhB;fL72`i*&qYp8JGg!B?o?mVufAzsTBstaS_Nb;ZEu8U@N=TcrYcY_#ugjgQ~`!M8Bx% zBB|3e51IjH$Fb$HG#Sqkaw7X6cdiGx4B73+vgqIlaI)&i(fXUR56ixUyo{v=! zK(FIVpn~9Xl0WvJ+tjOG3=laLAf{6ek-;jbmU3B4RN?t?m@NPR68ain#f*4aEd1~;#Y|w5MR`F7c>lG%d6H}L9c?g6J_!qe^Sx@Xw zE)zZiP@F+DbaV-!M)Kt3X7UPr)yjih{otqmiv5y2!5?~q0~JGYKV-dkIp&5lm&}6dtTppy`(aP|K96e$MTr zx$Cquh4WoM$O16q@_eMmFyMPocPgR19R$uWBJ)XG1hpCsgIsMKlgu49L6SNve}amDfK|6(eyT#c?l>#@K~F+c-^KZ8dvI&KqW z*bs+=T<6vW>A24iqDFYHCxOIJO-(;v}5H3`9aF*^N>a`Sa zvS-Pe&2+!&S)E44X@1@A>rK@>+04XFeWg+JW6}>&k+>Z4ajL+)Ch3`x(nAqmZH1Nf z)8#8cKXVpgzqnrz?T#I6?&j6Sw-*@W*40XW)`dCZb*KCoou z!~&ok$7EEtvuXvr+VR;*7)_Vc-JLY&z1y8sr=#1v)cfbd6gb5V_Da9!XOzZs36!p2 zEUs6c?-hE7w*@u$ZKXu!JiZv^IwyLpaB$!{c+9%VQSQsfh<0pu7+l!Ym&J~y4;rk9 zB^DIP-Bc;_$cr^Y?zrjfcDKL6{`^|?!O6i%1+atL`xvy^E)Y?kTDXMR2L$~SGXF_2Q25o=C zM=`J?Yc5T75K!$tOS*KIX_&fQeWrY#MibtErNwc){;;~k>ZB@=LHpW(u4IJn;XOz; zb;*Rq#VKgO1{dnOwi!!AbALW+(Ylmp1#{d&$=$i-m5@LR0ndt1%@_PSUXXPjY8xHT z8A8%$>l3*#7yE`(i=b-JOt;o8=Msfh5?2m~1gnHq@zFP0j0Xn$r`I;p`DLHHkGIyH z>&ay*-Iow{O`mRipquIlAI{NVvJ-m@*ckVt@$%+6w%~_bs!GuE_}dQWtjg3aTB|db zDMVd6Y2YBUCSB@Qf7+0i_X(Ge&&%Q#glBFT@qC{Ft}M*Rm#$KiymL^ez_B%-u_wW9 zxfooHWZKVNz(=;M(5vVZAoh^wW(D7%+cBu^S&~=@ffSRhstL(4W44^Q_ngNulQq;@ zeH1#v1SZ;1uGy@)7vQv-tv0@ugWc_Z7PpqK@$M>O293iTjkHq7kGyzn48uS++{{-? zs!pO2nV_7JVP6VkBV0+8o04*>tUFkd^mv$ZTRH2T-XihX`1){zlV{BQ^`{+I%W8@4 zTjF_MTlL!O!<_@MwF&<#6 z(C%X*mHt^yom*a3-p3j*q^H&mNG=DzBXgHJ6Ft6@+*mRYPfTiA+hub4?Ol}UP|%me zcXHXaGEBB7xsDsyEjSQ|rO0;h_8P%NZH^3LGAhC4YLX2EQdSF5$s8r9UJN}PGtUk< zwVdW0_{;A>?hFezbQZm^tJEk8r$+31EUF#W)H9@p`l^f9oXKJfWZmm*bBF4-_4vDZ zf|en3Pr+i{4jOMfnZWVzW7xs;_*JT2XQ?<2=Dq05A05;ee6YwHMzNw!d7w_9S&!1{ zfpm9l$@vMmGJQq;*rGHR&NPLm5>5u&_itQruW|F*bF7{dLK~B~3*_R9dmR~BdihF1 zE_G$}sI1okG9EjM3(#JLWT#B)FG&zg;ntjHpk~Wfl z-HSpP7ZX#XIM2Kfg*wfL3Wx77o)FTk`c@o;KzVZ{1K=F24e7Lcq~YY;okmvl4qNr3 z2DP8hvX!_@s_dXXH9aT0HR z%-QgJ&$!#;b-5HBYRzMcFNEN7%^-T@SZrib+bmgFry}7dqGej;YWAwO_!Ql7A({{# z?!rz8mcM+BvfgEWNxQ(9&&k8JI4UE&Aq6PcJHGhR2lN~@Rz$}(1$J9O{0R0&lEy?u3C%#}py4*t3>U1{ zSmcF{^ytWRmg^c7u}1{>F{WsJ=Xfg_BuS=>wS8;D=w@}`r#mN6+Nqu>Z*8{5DFZ8& zC&1;^D3L}0w<=P(Bp#2% z#!Q@^81Xh6kQH*+=H@ro$WVeYOb7O7E5o45lq;;iN=+Ci4hQM5gy*Ji+IOCP6tk(w zIV^(5EZqs=kkDLSs*!?Q^;~Yi2iJw=+KuyJQ+^uPu21MS9&I$2HV5}h?b7FUE~RR* zg-J}eIgr{!P8jF8_ZXe19<1k)He2!XO- zr_1xF&g(ui2TUF_uN7Z3uu~ew$U?D8#py?M1)tQ+Tye;^Mr$nSw;X=z&5=)vm?Xi(q5Es~ z=A77ff(v$^U=WsV%-ZYCSd-+SvxxH>>QeKZALVbdQ=#CS^EZ!Dus}(=F{5Vc7>Elr zbCFJM77X)Hp72-F(641xa;9P@`Z_;=j{C7N;5UL)P=QSHGlRbHtlf+Q{5-eKvu2UZ z%7}zcGVB+b38a-5eKX};Qt(0qbSXyy7qPK=tuKiTNhk05Hll|PI>dICK?9P z5rU44!Cp`1{tWl8&&C=`LN-QOKk;)G=cemZnqt7(f3dcvEk-RK@~zhU=WnVxch1&ZEj)E4aQere_+h#O~8vJUL! zSRFfCp7^xgP49tHwN9y94J&Hbs+Gn_Fo#nnYOw={tD*zOc>0IYC+D`!=HoYyBZ5H9 zpJa(B5baKb7F}^c9;cGY%V8lW;}4y7B?R~V<*x>-U3cwN4woegKT&v|D1lxfJ=70^ z74Pq1lb4_RCk3g-(`B@CI`lY_5mlOz&+9w!XKG4{doXQZ6_WvuS14C$Z9RmDLc5A~~sqF9mUZ7H4OtuCbwd z`^D0+vAeuMr7KG>&_!sYgZd1%;$r>!AlhPVhcU~oYipxY$oV27c{PZ4a8BA~+uH(u zr}-l|+W>RxeT-mY*SQvF(_yuW#F~gdQ*ixEva-x9S)NukVvNeq9KE=&bo2)(L{{^f z`Clvgvhqw4-c4vt)*CAm-lu7~i#+iSKfmi*DOT7xk{mRs6=9?>{?=NUefh8o^n&%| z5BnaJ2C4o%o$@DzWT3B{i;+dpK=Yu^480@QrglJsvy!U8mde(N*q(vEBU8f`&8q9v!x)hSw8ya%SyM zA7HLK?(6BQB4gx>895hIt8d>jD(;iO?TqPh9@eU6E*UI^IXLg5yr`9C7LO8CE@4P7 z%1B9W-kNyoKQKspC!6JSuGbL16iPT>tKPa4DUo(*kvP#O&=hv&l5ZH4CGeSa#yRTe zb!DEALkTuSzYpa`W_mNoc$`GFSYcx9miaN<~7Y*J1CvPci z@|B`0#6z9ie9@U6o`f?>?Ru_mZPH9i*wXR9X&qDAO7H2c9HuYG4Y~%a1r~gx#x%ie zH+NxltT1m|M2;mdsKF(XHD$sXP8NI{P53~$EQbpdeR=SSuVsG%`OX)_il;&%HCXOIVa5p>Rai>+8hE%`J;|SImrVjKCetJoy73WfPh4nS)%oiLK^8ygF9Pt{NTQ z#8RNlhEAyRU{aXl6jQvbo}9+CAh=+S)xiP@fLagAH2YYdgPj@V86?^@qRM4HgTpL^TNzvHKL6phl+;mHyCa?f!^BcTkS##!mFf2tXm*n162J{DAh(v~&&XJ;YS>69@avBKS=b79p z4W8>I7WWE@LNgXDW}_8RM8sT)!fF<10`=)o7&LKbGp?lrt6dbL-|nKaNTA^SqCI(!kU_AFfR)pn3 zL%5VoU3%DL+Q3)myF_Elp387J?ukp=f6@5Xy4=d@XvAE$%OUi5WU7dvdvqIjw44w+;Ms!&{9U6Zd&By zB+fD+Pva#XY8Rrt-(D4t*V{)f31iHf@%U`-9t?>(3gtEpxWPzL^c+Y4~d7ml2rW*UXg(V|7UIw>CGpDLjCw(ZZ)c4=H zAyxC9?B_ou*)S$?GY0RAe<)h=ut_D+#+TZNx9J>@HYxi6n&~rm(l;EV@FlUXUQda} zJj71Ho)8a}=N#xjy(={qkg zz{02o@{&s4!-0FBDCu&OdX3I;wz`=mVK~<;xVri=9E(W^$aYU+>Yv0E1CMVhp(O9A zn9>>RDf?`IaKnb+{l4gWx#X&J za|_{f#F1KkL6%2w!7I3P(+0b0c&QsEK<=+o@WQ)@RAzS87|i8fJ*4D#lql&2>u#5* z7uq<*^%&D<<(9hh&}6n*>C=hl?VHm~0&@2~IvIdkJ}wRGm9r#xKHF-pa&%b}{8b&t zFr6&tL@@ih35FK4Cwk|bM)c)#MDVQy@?E-{x32dCajgf;BR&*;`bUQweem(6Vh;fU zD<{!q(lMigMkt;8?HRAIRG0Y^BE(H$T87UGhuCWK)83rRVxL`W@9R_^7MHQSUzOxa z;2eNliMwvFEdv zqAP`De7<8li?>iGQbo7<`YX<*-nQBq9X+Z)nb3Ji zcs-u#z69e~>>+_q6kGF0TH0^L(zeu};K6mnxi;&|Z#|^m&)o+rnld^#zv7K*AHkY= z3vSBuhm=@tM!r+_JGZW> zUnm}9wT-r&^r->{y&h|CjlXUF)q{Ka^z+n$Cx}-V@Q}X!3Kv93O>ymXKrtkk&MeP1 zTkx^XD4h(v`!}Vp(Fl(ZYC9pgt+!inKOwd(`g#iQ1bVA^u6i|7;Ve#4pq6(_&pas! zkw2`OOirTr{a5eC*3<*?ePs2pdlX zz>zfGkY4Ir7N@i~;d!-AXzs$&lk)FmWnK3T3y*ynT*lM3EH#>0TE42WHhag%>G#;? zrt$J?Tr1~I=IgoH)19(f#j4iCRxglSrC|O@^jxsR9ThQO*h*_t{VL2e2!biJ!kN$9 z_*;v6`di*ziZGt>+YKov@45p7BCT9k&6cz)73?o_@i%oi;2qb=Qz>n}Hz)g0VKjRW zr=@8KD^_bzZ#-5o+HRl$D8b(!&(in6?w6`+-FKv7_3S-R7VodmDjKl8695o10AAv6 z&!iWC>7YrxMcY=fLIMCTe|t{Kf$rV{Fp0kl13{U505CRKLp%Z|`5+M3QsmH1%L?ohpry)X#gu`G86dh zW1$TJXw2WFdWyXP;1vMC;%_DZ7JWtl>LphjZHvX5wzK?GWLqy#{?!ivy!>4l1nPHa zpgf`q^Lg)Z#p=O7MOwlA_knSNv!$s6(EWdxdZPp=0^oW6G0GrtHK4g#u)));GFCFd zKL>->^S=)UopuTI%zub{Ee7C!0JzfMW&!XX)3E@}O~(dba}9V^{&PCCkpge!zYPZI zVD&2AKSi$U0&C2Fn_Ieu%2xLO9E>`s|2`NkKJ{2?kpG+lF4UgSFB-GnOi0-CNrHeM N5kbk1CHz`m{|8~M9iRXJ literal 0 HcmV?d00001 diff --git a/literature.bib b/literature.bib new file mode 100644 index 0000000..0ee2027 --- /dev/null +++ b/literature.bib @@ -0,0 +1,241 @@ +@misc{Guingona, + author = {Vincent Guingona}, + title = {NIP Theories and Computational Learning Theory}, + year = 2013, + howpublished = "\url{https://tigerweb.towson.edu/vguingona/NIPTCLT.pdf}", +} + +@misc{Chernikov, + author = {Artem Chernikov}, + title = {Topics in combinatorics}, + year = 2016, + howpublished = "\url{https://www.math.ucla.edu/~chernikov/teaching/Combinatorics285N/CombinatoricsNotes.pdf}", +} + +@misc{Chernikov2, + author = {Artem Chernikov}, + title = {LECTURE NOTES ON STABILITY THEORY}, + year = 2015, + howpublished = "\url{https://www.math.ucla.edu/~chernikov/teaching/StabilityTheory285D/StabilityNotes.pdf}", +} + +@article{blumer1989learnability, + title={Learnability and the Vapnik-Chervonenkis dimension}, + author={Blumer, Anselm and Ehrenfeucht, Andrzej and Haussler, David and Warmuth, Manfred K}, + journal={Journal of the ACM (JACM)}, + volume={36}, + number={4}, + pages={929--965}, + year={1989}, + publisher={ACM New York, NY, USA} +} + +@article{goldberg1993bounding, + title={Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers}, + author={Goldberg, Paul and Jerrum, Mark}, + booktitle={Machine Learning}, + pages={131–-148}, + year={1995} +} + +@book{surveysCombinatorics, + title = {Surveys in Combinatorics 1987: Invited Papers for the Eleventh British Combinatorial Conference}, + author = {C. Whitehead}, + publisher = {Cambridge University Press}, + isbn = {0521348056; 9780521348058}, + year = {1987}, + series = {London Mathematical Society Lecture Notes Series, 123}, +} + +@book{ShalevShwartz2014, + title = {Understanding Machine Learning: From Theory to Algorithms}, + ISBN = {9781107298019}, + url = {http://dx.doi.org/10.1017/CBO9781107298019}, + DOI = {10.1017/cbo9781107298019}, + publisher = {Cambridge University Press}, + author = {Shalev-Shwartz, Shai and Ben-David, Shai}, + year = {2014}, + month = may +} + +@book{Shelah1990, + title = {Classification Theory and the number of non-isomorphic models}, + publisher = {North-Holland, 1978. Revised edition}, + author = {Shelah, Saharon}, + year = {1990}, +} + +@book{vidyasagar2013learning, + title={Learning and generalisation: with applications to neural networks}, + author={Vidyasagar, Mathukumalli}, + year={2013}, + publisher={Springer Science \& Business Media} +} + +@article {Laskowski1992, + AUTHOR = {Laskowski, Michael C.}, + TITLE = {Vapnik-{C}hervonenkis classes of definable sets}, + JOURNAL = {J. London Math. Soc. (2)}, + FJOURNAL = {Journal of the London Mathematical Society. Second Series}, + VOLUME = {45}, + YEAR = {1992}, + NUMBER = {2}, + PAGES = {377--384}, + MRCLASS = {03C45 (03E15 60A10 60F05)}, + MRNUMBER = {1171563}, +} + +@article {Pillay1986, + AUTHOR = {Pillay, Anand and Steinhorn, Charles}, + TITLE = {Definable sets in ordered structures. {I}}, + JOURNAL = {Trans. Amer. Math. Soc.}, + FJOURNAL = {Transactions of the American Mathematical Society}, + VOLUME = {295}, + YEAR = {1986}, + NUMBER = {2}, + PAGES = {565--592}, + ISSN = {0002-9947}, + MRCLASS = {03C45 (03C40 03C50 06F99)}, + MRNUMBER = {833697}, +MRREVIEWER = {A. M. W. Glass}, + DOI = {10.2307/2000052}, + URL = {https://doi.org/10.2307/2000052}, +} + +@article {Shelah1971, + AUTHOR = {Shelah, Saharon}, + TITLE = {Stability, the f.c.p., and superstability; model theoretic + properties of formulas in first order theory}, + JOURNAL = {Ann. Math. Logic}, + FJOURNAL = {Annals of Mathematical Logic}, + VOLUME = {3}, + YEAR = {1971}, + NUMBER = {3}, + PAGES = {271--362}, + ISSN = {0003-4843}, + MRCLASS = {02H05}, + MRNUMBER = {317926}, +MRREVIEWER = {A. H. Lachlan}, + DOI = {10.1016/0003-4843(71)90015-5}, + URL = {https://doi.org/10.1016/0003-4843(71)90015-5}, +} + +@article{chase2019model, + title={Model theory and machine learning}, + author={Chase, Hunter and Freitag, James}, + journal={Bulletin of Symbolic Logic}, + volume={25}, + number={3}, + pages={319--332}, + year={2019}, + publisher={Cambridge University Press} +} + +@book{Anthony1999, + title = {Neural Network Learning: Theoretical Foundations}, + ISBN = {9780511624216}, + url = {http://dx.doi.org/10.1017/CBO9780511624216}, + DOI = {10.1017/cbo9780511624216}, + publisher = {Cambridge University Press}, + author = {Anthony, Martin and Bartlett, Peter L.}, + year = {1999}, + month = nov +} + +@misc{malliaris2023unstableformulatheoremrevisited, + title={The unstable formula theorem revisited via algorithms}, + author={Maryanthe Malliaris and Shay Moran}, + year={2023}, + eprint={2212.05050}, + archivePrefix={arXiv}, + primaryClass={math.LO}, + url={https://arxiv.org/abs/2212.05050}, +} + +@inproceedings{Alon2019, + series = {STOC ’19}, + title = {Private PAC learning implies finite Littlestone dimension}, + url = {http://dx.doi.org/10.1145/3313276.3316312}, + DOI = {10.1145/3313276.3316312}, + booktitle = {Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing}, + publisher = {ACM}, + author = {Alon, Noga and Livni, Roi and Malliaris, Maryanthe and Moran, Shay}, + year = {2019}, + month = jun, + collection = {STOC ’19} +} + +@inproceedings{Manurangsi, + doi = {10.4230/LIPICS.ITCS.2023.85}, + booktitle = {14th Innovations in Theoretical Computer Science Conference (ITCS 2023)}, + url = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.85}, + author = {Manurangsi, Pasin}, + keywords = {VC Dimension, Littlestone’s Dimension, Maximum Biclique, Hardness of Approximation, Fine-Grained Complexity, Theory of computation → Problems, reductions and completeness}, + language = {en}, + title = {Improved Inapproximability of VC Dimension and Littlestone’s Dimension via (Unbalanced) Biclique}, + publisher = {Schloss Dagstuhl – Leibniz-Zentrum f\"{u}r Informatik}, + year = {2023}, + copyright = {Creative Commons Attribution 4.0 International license} +} + +@article {Bhaskar2021, + AUTHOR = {Bhaskar, Siddharth}, + TITLE = {Thicket density}, + JOURNAL = {J. Symb. Log.}, + FJOURNAL = {The Journal of Symbolic Logic}, + VOLUME = {86}, + YEAR = {2021}, + NUMBER = {1}, + PAGES = {110--127}, + MRCLASS = {03C45}, + MRNUMBER = {4282700}, +MRREVIEWER = {Alexandre Ivanov}, +} + +@book{Wasserman2004, + title = {All of Statistics: A Concise Course in Statistical Inference}, + ISBN = {9780387217369}, + ISSN = {2197-4136}, + url = {http://dx.doi.org/10.1007/978-0-387-21736-9}, + DOI = {10.1007/978-0-387-21736-9}, + journal = {Springer Texts in Statistics}, + publisher = {Springer New York}, + author = {Wasserman, Larry}, + year = {2004} +} + +@article{littlestone1988learning, + title={Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm}, + author={Littlestone, Nick}, + journal={Machine learning}, + volume={2}, + pages={285--318}, + year={1988}, + publisher={Springer} +} + +@book {hodges, + AUTHOR = {Hodges, Wilfrid}, + TITLE = {A shorter model theory}, + PUBLISHER = {Cambridge University Press, Cambridge}, + YEAR = {1997}, + MRCLASS = {03Cxx (03-01)}, + MRNUMBER = {1462612}, +MRREVIEWER = {J. M. Plotkin}, +} + +@book {vanDenDries, + AUTHOR = {van den Dries, Lou}, + TITLE = {Tame topology and o-minimal structures}, + SERIES = {London Mathematical Society Lecture Note Series}, + VOLUME = {248}, + PUBLISHER = {Cambridge University Press, Cambridge}, + YEAR = {1998}, + PAGES = {x+180}, + ISBN = {0-521-59838-9}, + MRCLASS = {03-02 (03C50 03C60 14P10 52-02 54-02 55-02 57-02)}, + MRNUMBER = {1633348}, +MRREVIEWER = {O. V. Belegradek}, + DOI = {10.1017/CBO9780511525919}, + URL = {https://doi.org/10.1017/CBO9780511525919}, +} \ No newline at end of file diff --git a/main.tex b/main.tex new file mode 100644 index 0000000..e69997f --- /dev/null +++ b/main.tex @@ -0,0 +1,1986 @@ +\input{preamble.tex} + +\usepackage[right=5cm, marginparwidth=4cm, marginparsep=6mm]{geometry} +\usepackage{pgfplots} +\usepackage{nccmath} +\usepackage{dsfont} +\usepackage{csquotes} +\usepackage{tabularx} +\usepackage{layouts} +\usepackage{emptypage} + + +\newcommand{\notimplies}{\mathrel{{\ooalign{\hidewidth$\not\phantom{=}$\hidewidth\cr$\implies$}}}} +\newcommand\Cfin{\C_{\text{fin}}} +\newcommand\eps{\varepsilon} +\newcommand\samplecomp{N_{\eps,\delta}} +\newcommand\ra{\rightarrow} +\newcommand\VCdim[1]{\operatorname{VCdim}(#1)} +\newcommand\Ldim[1]{\operatorname{Ldim}(#1)} +\newcommand\Xtwo{\prescript{X}{}{2}} +\newcommand\Ytwo{\prescript{Y}{}{2}} +\newcommand\overlinea{\overline{a}} +\newcommand\shatterfunc{\pi_\C} +\newcommand\Lshatterfunc{\rho_\C} +\newcommand\mis{\operatorname{mis}(H,f,\overline{a})} +\newcommand\err{\operatorname{err}_\mu(H,f,\overline{a})} +\newcommand\errNoA{\operatorname{err}_\mu(H,f,-)} +\newcommand\errNoANoF{\operatorname{err}_\mu(H,-,-)} +\newcommand\errNoF{\operatorname{err}_\mu(H,-,\overline{a})} +\DeclareMathOperator{\EX}{\mathbb{E}} +\DeclareMathOperator{\Var}{Var} +\newcommand\symmdiff{\bigtriangleup} +\newcommand\supp{\operatorname{supp}} +\newcommand\dens{\operatorname{dens}} +\newcommand\shelahrank{R^\phi(p)} +\newcommand\shelah[1]{R^\phi(p \land #1)} +\newcommand\Th{\operatorname{Th}} +\newcommand\Adm[2]{\operatorname{Adm}^{#1}_{#2}} +\newcommand{\tF}{\texttt{F}} +\newcommand{\tx}{\texttt{x}} +\newcommand{\ty}{\texttt{y}} +\let\HH\H +\renewcommand\H{\cH} +\renewcommand{\exp}{\mathrm{e}} +\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} +\DeclareMathOperator*{\argmax}{arg\,max} +\newcommand\ACF{\operatorname{ACF}} +\newcommand\DCF{\operatorname{DCF}} +\let\emptyset\varnothing +\let\phi\varphi +\newcommand\cFx{\cF_x} +\newcommand\cFnotx{\cF_{\overline{x}}} +\newcommand\rhox{\rho_x} +\newcommand\rhoNotx{\rho_{\overline{x}}} +\newcommand\ops{\operatorname{op}_s} +\def\outlinespacingscalar{0.8} +\newcommand{\fa}{\mathfrak{a}} + +\newif\ifshowmarginnotes +\showmarginnotestrue + +%%% custom margin note for attribution +\newcommand{\contribution}[1]{% + \ifshowmarginnotes + \marginnote{\textcolor{gray}{#1}} + \fi +} + +\begin{document} + +\maketitle + +\pagenumbering{gobble} +\section*{Acknowledgments} +My journey in mathematics began in the summer of 2020, many years after I last had to pick up pen and paper and solve an equation in high school. I had always enjoyed challenges, and the prospect of tackling difficult problems excited me. However, personal circumstances meant that I could never afford the education I wanted. It wasn't until six years after leaving my home country and a year into my new job that I finally decided to pursue what I had long desired. + +Now, more than four years later, I've learned to respect and appreciate mathematics for its incredible complexity and its abstract beauty, a perspective only so many people get to experience. This journey has been incredibly challenging, many times pushing me to the absolute limits of my abilities---and beyond---and for that, I'm grateful. I've grown and hardened not only intellectually, but also personally. While I'm proud of what I've accomplished, I'm also relieved that my time in Bonn is coming to an end. + +I am grateful to my employer, NRW.BANK, and my manager, Klaus-Martin Karl, for giving me the opportunity to pursue my academic dreams. It was their support that made it possible in the first place. + +I am grateful to Lisanne Göbel for guiding me through many of the difficult obstacles during my studies. It is my working alliance with them that has enabled me to complete this thesis. It really means a lot to me. + +Most importantly, I would like to thank my wife, Polina. Her emotional support over the past few years has been invaluable to me. She has been my emotional bedrock. Beyond her help with my studies, I am grateful for the wonderful life we share together. + +\newpage\phantom{blabla}\newpage + +\setcounter{tocdepth}{3} +\tableofcontents + + +\subsection*{Conventions} +Throughout the text we make use of shorthand notation as common in model theory. We denote +\begin{outline} + \1 the set of integers $\{0,1,\ldots,n-1\}$ as $n$, + \1 a finite number $n\in \N$ as $n<\omega$, + \1 the set of all subsets of $X$ of size $n$ as $\binom{X}{n}$, + \1 the set of all functions $f:X\ra Y$ as $\prescript{X}{}{Y}$. + \0 For example, the set of all functions $f:X \ra \{0,1\}$ is denoted as $\Xtwo$. + \1 $\log$ denotes the logarithm to the base 2, +\end{outline} +For any set $Y$ there exists only one function $f:\emptyset\ra Y$, also known as the \emph{empty function}. + +%I should probably find the exact place where I use it and put it as a footnote. +\clearpage +\newpage\null\thispagestyle{empty}\newpage +\pagenumbering{arabic} + +\addcontentsline{toc}{section}{\protect\numberline{}Introduction} +\section*{Introduction} + +\begin{outline} +\0 This thesis explores the fascinating connections between two seemingly disparate fields of mathematics and computer science: model theory and machine learning. At first glance, these areas may appear to have little in common --- model theory is a branch of mathematical logic concerned with the formal study of mathematical structures, while machine learning focuses on algorithms that can learn and make predictions from data. However, there are deep and surprising links between fundamental concepts in these domains. + +Our investigation centers on two key relationships: + +\1 The connection between Probably Approximately Correct (PAC) learnability in computational learning theory and the model-theoretic notion of NIP (Non-Independence Property) formulas. + +\1 The correspondence between online learnability in computational learning theory and stable formulas in model theory. + +\0 These connections allow us to bridge abstract logical properties of theories with concrete learnability guarantees for concept classes. By translating between the languages of logic and learning theory, we gain new insights into the theoretical foundations of machine learning and expand our understanding of the expressiveness of logical theories. This thesis is structured in two main parts: + +\0 In the first part, we prove the fundamental theorem of PAC learning, which establishes that a concept class is PAC learnable if and only if it has finite Vapnik-Chervonenkis (VC) dimension. We then introduce NIP theories and demonstrate the equivalence between finite VC dimension and the NIP property. + +\0 The second part explores online learning and the Littlestone dimension as a measure of concept class complexity. We present the Standard Optimal Algorithm for online learning and prove its optimality. On the model theory side, we establish the equivalence between finite Littlestone dimension and Shelah's 2-rank. This allows us to show that stable formulas correspond to concept classes with finite Littlestone dimension. + +\0 Finally, we illustrate these concepts with several examples of stable theories. These examples demonstrate how model theory provides a rich source of concrete, learnable concept classes. + +\0 While a deep understanding of these areas is not required, readers are expected to have some background in key areas. In model theory, familiarity with first-order logic, languages, structures, models and theories is beneficial. Knowledge of key theorems such as the Löwenheim-Skolem theorem and the compactness theorem will be particularly helpful. In probability theory, knowledge of basic concepts including probability spaces, measures, random variables and expectation will be helpful. + +\0 All contributions are marked according to the official requirements for theses in the bachelor study program Mathematik at the University of Bonn. We indicate the source material in round brackets after theorem or lemma. Margin notes indicate the degree of personal contribution: + \1 0 indicates exact copy of the source material, + \1 1 indicates minor contribution: worked out details and improved structure and clarity of the argument, + \1 2 indicates major contribution: there was a significant amount of work done to extend and explain the argument, + \1 3 indicates original contribution. +\0 In some cases, we will provide a brief explanation of our exact contribution in the margin notes. +\end{outline} + +\newpage + +\section{VC dimension and NIP theories} + +\subsection{PAC learning framework} + +The Probably Approximately Correct (PAC) learning framework, introduced by Leslie Valiant in 1984, provides a formal foundation for analyzing machine learning problems. It offers a mathematical model to quantify when and how learning is possible, bridging the gap between computational learning theory and practical machine learning algorithms. + +In the PAC framework, the learner receives a sample of labeled examples $\{(x_i,f(x_i)) : i\in n\}$, where each $x_i$ is drawn independently from $X$ according to the unknown distribution $\mu$, and $f \in \C$ is the ground truth they aim to learn. The learner's goal is to output a hypothesis $h\in\H$ that, with high probability, closely approximates the target concept $f$ on future examples drawn from the same distribution. + +At its core, PAC learning addresses a fundamental question: Under what conditions can a learning algorithm reliably generalize from a finite set of examples to accurately predict outcomes on unseen data? + +\begin{definition} +\contribution{2 --- Synthesized from multiple sources, independently worded.} +\begin{outline} +\0 The framework formalizes this idea by introducing several key components: + \1 An \emph{input space} $X$ is a set of all possible instances, + \1 A \emph{concept} $f$ is a binary-valued function $X\rightarrow\{0,1\}$, + \1 A \emph{concept class} $\C\subseteq \Xtwo$ is a class of concepts, + \1 A \emph{target concept} $f\in\C$ is the true function to be learned, + \1 A \emph{hypothesis} $h$ is a function, representing the learner's prediction, + \1 A \emph{hypothesis class} $\H\subseteq \Xtwo$ is a set of hypotheses $h$, + \1 A \emph{sample} $S=\{(x_1,f(x_1)),\ldots,(x_n,f(y_n))\}\subseteq (X\times 2)^n$, $n<\omega$, corresponding to the restriction of target function $f$ to $\{x_1,\ldots,x_n\}$. + \1 A \emph{hypothesis function} or a \emph{learning function} $H:\Cfin \rightarrow \H$. It represents an algorithm or deterministic procedure, which given a sample $S$ corresponding to the restriction $f|_S\in\Cfin$ outputs a prediction $H(f)$. + \2 $\Cfin = \{\C|_Y : Y\subseteq X, Y\text{ finite}\}$ represents all possible labeled samples from $X$. +\end{outline} +\end{definition} + +\begin{remark}[Restrictions] +\label{remark:consistentRealizable} +\contribution{2 --- Synthesized from multiple sources, independently worded.} +\begin{outline} +\0 In this thesis, we focus on PAC learning with two important properties: + \1 Consistency: A hypothesis $h$ is \emph{consistent} with a labeled sample, if it correctly classifies all instances in that sample. Formally, given a sample $S$, $h$ satisfies $\forall x_i \in S : h(x_i)=f(x_i)$. Similarly, a hypothesis function $H$ is \emph{consistent}, if for all $f\in\C$ and all $S\subseteq X$ finite it holds $\forall x\in S : H(f|_S)(x)=f(x)$. + \1 Realizability: This assumes that there exists a hypothesis $h\in\H$ which perfectly classifies all instances, that is $\forall x\in S : h(x)=f(x)$. +\0 Given our focus on the realizable case, we will assume that the hypothesis class $\H$ is equal to the concept class $\C$. Consequently, we can refine our notation and sometimes write $H:\Cfin \rightarrow \C$ or $H:\Cfin \rightarrow \Xtwo$ in special cases. +\end{outline} +\end{remark} + +\begin{definition}[PAC learnability] +\label{def:PAClearnability} +\contribution{2 --- Synthesized from multiple sources, independently worded.} +\begin{outline} +\0 Let $\C$ be a concept class on a set $X$. We say that $\C$ is \emph{probably approximately correct (PAC) learnable} if there exists a hypothesis function $H:\Cfin \rightarrow \Xtwo$ such that: + \1 For all $\eps, \delta \in (0,1)$, there exists a natural number $\samplecomp < \omega$ satisfying the following condition: + \1 For all $n \geq \samplecomp$, all $f \in \C$, and all probability measures $\mu$ on $X$ (with the correct sets being $\mu$-measurable), +$$\mu^n(\{\overline{a} \in X^n : \err > \eps\}) \leq \delta$$ + where: + \2 $\eps\in(0,1)$ is the \emph{accuracy parameter}, specifying the acceptable error rate, + \2 $\delta\in(0,1)$ is the \emph{confidence parameter} indicating the desired probability of successfull learning, + \2 $\samplecomp: (0,1)^2\rightarrow \N, (\eps,\delta) \mapsto \samplecomp$ is the \emph{sample complexity function}, which determines the minimum number of examples required to guarantee PAC learning. + \2 $\err$ is the error of the hypothesis function $H$ predicting $f$ given sample $\overline{a}=(a_1,\ldots,a_n)$, defined by + $$\mu^n(\{x\in X : H(f|_{\overline{a}})(x)\neq f(x)\})$$ +\0 This definition ensures that with high probability $(1-\delta)$, the learning function $H$ will produce a hypothesis that is approximately correct (up to an error of $\eps$) when the sample size is at least $\samplecomp$. +\end{outline} +\end{definition} + +\subsection{The fundamental theorem of PAC Learning} +\label{section:fdmThmofPAC} + +The fundamental theorem of PAC learning, first proven by Blumer, Ehrenfeucht, Haussler and Warmuth in 1989, establishes that a concept class is PAC learnable if and only if it has finite VC dimension. This section presents a complete proof of this theorem. + +\subsubsection{VC dimension and shatter function} +\label{subsection:1} + +\begin{definition}[VC dimension] +\contribution{1 --- Synthesized from multiple sources, independently worded.} + Let $X$ be an input space and let $\C\subseteq\Xtwo$ be a concept class on $X$. For any $Y\subseteq X$: + \begin{outline} + \1 the \emph{restriction} of $\C$ to $Y$ is $\C|_Y := \{ f|_Y : f\in \C\}$. + \1 $\C$ \emph{cuts out} $Y$ from $X$ if $\exists f\in\C : f|_X = \mathds{1}_Y$. + \1 $\C$ \emph{shatters} $Y$ if $\C|_Y = \Ytwo$ or, equivalently, if $\C$ cuts out every subset of $Y$. + \0 The Vapnik-Chervonenkis (VC) dimension of $\C$, denoted $\VCdim{\C}$, is defined as $$\sup\{ |Y| : Y\subseteq X \text{ is finite and } \C \text{ shatters } Y\}.$$ + If $\C$ shatters arbitrarily large finite sets, then $\VCdim{\C} = \infty$. If $\C$ shatters no set, then $\VCdim{\C} = -\infty$. A concept class $\C$ is called a \emph{VC class} if it has finite VC dimension. + \end{outline} +\end{definition} + +\begin{remark}[Learning problems and set systems] +\contribution{3.} + \label{rem:dualitySetSystems} + There exists a natural correspondence between learning problems $(X,\C)$ and set systems $(X,\cF)$. Each $f\in \C$ defines a unique set $A_f\subseteq X$ where $A_f = \{ a\in X :f(a)=1\}$. + The set system perspective often simplifies proofs and combinatorial arguments, while the function-based view aligns more closely with the learning theory framework. We will sometimes use the notation $(X,\cF)$ interchangeably with $(X,\C)$ in our proofs, as this leads to more concise and intuitive arguments. +\end{remark} + +Informally, the VC dimension measures the complexity or expressiveness of a concept class in relation to its domain $X$ by looking at how many points it can label arbitrarily. A higher VC dimension indicates that the concept class can represent more complex decision boundaries. + +\begin{example}[Easy] +\contribution{1.} + Consider $X=\R$ and the class of threshold functions $\C = \{f_a(x) : f_a(x)=1 \text{ if } x \geq a, f_a(x)=0 \text{ if } x < a\}$. This class has VC dimension $2$, since it can shatter any set of two points and cannot shatter any set of three points. Note that the definition of VC dimension requires only one set of maximum size to be shattered. +\end{example} + +It is important to note that the VC dimension is not an equivalence. + \begin{center} + VC dimension $n$ $\notimplies$ any set of cardinality $n$ can be shattered \\ + VC dimension $n$ $\impliedby$ any set of cardinality $n$ can be shattered + \end{center} + + +\begin{example}[Intermediate] +\contribution{2.} + Consider $X=\R^2$ and the class of half-planes $\C = \{f_{a,b}(x) : f_{a,b}(x) = 1 \text{ if } \langle a,x \rangle \geq b, f_{a,b}(x) = 0 \text{ if } \langle a, x \rangle \leq b \}$. Using elementary geometry (specifically, Radon's theorem), one can prove that $\C$ has VC dimension 3. +\end{example} + +\begin{remark} +\contribution{3.} + Prominent mathematician Terry Tao writes in his \href{https://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/}{blogpost}: + + \begin{quote} + In the field of analysis, it is common to make a distinction between \enquote{hard}, \enquote{quantitative}, or \enquote{finitary} analysis on one hand, and \enquote{soft}, \enquote{qualitative}, or \enquote{infinitary} analysis on the other. \enquote{Hard analysis} is mostly concerned with finite quantities (e.g. the cardinality of finite sets, the measure of bounded sets, the value of convergent integrals, the norm of finite-dimensional vectors, etc.) and their quantitative properties (in particular, upper and lower bounds). \enquote{Soft analysis}, on the other hand, tends to deal with more infinitary objects (e.g. sequences, measurable sets and functions, $\sigma$-algebras, Banach spaces, etc.) and their qualitative properties (convergence, boundedness, integrability, completeness, compactness, etc.). To put it more symbolically, hard analysis is the mathematics of $\eps$, $N$, $O()$, and $\leq$; soft analysis is the mathematics of $0$, $\infty$, $\in$, and $\to$. + \end{quote} + + This distinction also characterizes the approaches to VC dimension in computer science and model theory. + + In computer science, researchers typically employ a quantitative approach to VC dimension. They often seek to determine or estimate the exact VC dimension of concept classes, as this provides explicit bounds on learning complexity. Their proofs typically follow a two-step approach: + First, they show that any set of cardinality $n+1$ cannot be shattered and then they explicitly shatter a set of cardinality $n$. + + In contrast, model theorists generally adopt a qualitative approach to VC dimension. Their primary concern is whether the VC dimension is finite or infinite, rather than its exact value. A model theorist might prove that a theory $T$ has finite VC dimension (equivalently, is NIP) without necessarily computing the exact VC dimension of any particular formula in $T$. +\end{remark} + +The following example illustrates the \enquote{soft} approach in model theory: + +\begin{example}[Hard] +\contribution{3.} + The theory of real ordered field\footnote{A reader without a background in model theory can safely skip this example until later sections, where we discuss it in detail.} with an exponential function is o-minimal, and thus NIP. This implies that any formula $\phi$ is NIP and the concept class uniformly defined by $\phi$ is a VC class. Such examples provide only qualitative information about the learnability, without specifying the exact VC dimension. +\end{example} + +% \begin{remark}[Concept classes vs. definable sets] +% \label{rmk:setsystemduality} +% Since we restrict ourselves to concept classes with values in $\{0,1\}$, we can and will sometimes identify functions with their support, since any function is defined by its support and vice versa. A model theorist would say we identify formulas with sets defined by formulas. \textcolor{red}{Should add about CS input space / concept class $X, \C$ vs logic set system two-sorted structure $X, \cF$? Relevant for Ldim equivalence part later...} +% \end{remark} + +The next two theorems establish elementary properties of VC dimension. The first theorem demonstrates the monotonicity properties of VC dimension with respect to both the input space and the concept class. +The second theorem shows how VC dimension changes when concept classes are combined using different Boolean operations. + +\begin{theorem}[Basic properties I] +\label{thm:VCbasic1} +Let $\C \subseteq 2^X$ be a concept class on input space $X$ with $\VCdim{\C}=d<\infty$. +\begin{outline} + \1[(1)] Any subset of a shattered set $A$ is shattered. + \1[(2)] For any set $Y$ with $Y \subseteq X$: + $\VCdim{\C|_Y} \leq \VCdim{\C}$. + \1[(3)] For any concept classes $\C'$ with $\C' \subseteq \C$: + $\VCdim{\C'} \leq \VCdim{\C}$. +\end{outline} +\end{theorem} + +\begin{proof} +\begin{outline} +\contribution{3 --- Independent proof of widely known properties, warm-up.} +\0 Let $(X,\cF)$ be the set system corresponding to $(X,\C)$ by $\cref{rem:dualitySetSystems}$. + \1[(1)] Let $B\subseteq A$. To show $B$ is shattered, we need to prove that $\forall S \subseteq B : \exists F \in \cF : F\cap B = S$. Since $B$ is a subset of $A$, $S$ is also a subset of $A$. Since $A$ is shattered by $\cF$, there exists $F\in\cF : F\cap A = S$. Now, $F\cap B = (F\cap A) \cap B = S\cap B = S$. Therefore, we have found $F\in\cF$ such that $F$ cuts out $S$. Since $S$ was arbitrary, this holds for all subsets of $B$. Thus, $B$ is shattered by $\cF$. + \1[(2)] Let $A\subseteq Y$ be any set shattered by $\cF|_Y$. We need to show that $|A| \leq d$. + For every subset $S\subseteq A$, there exists a set $(F\cap Y)\in\cF|_Y : (F\cap Y)\cap A = S$. Since $A\subseteq Y$, this implies $(F\cap Y)\cap A = F\cap A = S$. Therefore $A$ is also shattered by $\cF$. Since $\VCdim{\C} = d$, we must have $|A|\leq d$. + \1[(3)] Let $\cF' \subseteq \cF$ and let $A$ be any set shattered by $\cF'$. Since $\cF'\subseteq \cF$ this automatically implies that $A$ is shattered by $\cF$. Since $\VCdim{\C} = d$, we must have $|A|\leq d$. +\end{outline} +\end{proof} + +\begin{theorem}[Basic properties II] +\label{thm:VCbasic2} +Let $X$ be an input space, $f\in\Xtwo$ a function, and $\C_1$ and $\C_2$ concept classes of VC dimension $n_1<\omega$ and $n_2<\omega$. Then the following holds regarding concept classes and their VC dimensions: +\begin{outline} + \1[(1)] intersection $\C_\cap = \{ f_1 \cdot f_2 : f_1 \in \C_1, f_2 \in \C_2\}$, $\VCdim{\C_\cap} \leq \max \{n_1,n_2\}$, + \1[(2)] union $\C_\cup= \{f_1+f_2 - (f_1\cdot f_2) : f_1 \in \C_1, f_2 \in \C_2\}$, $\VCdim{\C_\cup} \geq \max \{n_1,n_2\}$ + \1[(3)] negation $\C_\lnot= \{1-f_1 : f_1\in\C_1\}$, $\VCdim{\C_\lnot} =n_1$ + \1[(4)] symmetric difference $\C\symmdiff f= \{|g-f| : g\in\C_1\}$, $\VCdim{\C\symmdiff f} = n_1$ +\end{outline} +\end{theorem} +\begin{proof} +\begin{outline} +\contribution{3 --- Independent proof of widely known properties, warm-up.} +\0 Let $(X,\cF_1), (X,\cF_2)$ be the set systems corresponding to $(X,\C_1),(X,\C_2)$. Let $(X,\cF_1\symmdiff B), B=\{x\in X : f(x)=1\}$ be a set system corresponding to $(X,\C\symmdiff f)$. The statements to prove correspond to Boolean operations on $\cF_1$ and $\cF_2$. + \1[(1)] By \cref{thm:VCbasic1}(3), $\VCdim{\C_1\cap \C_2} \leq \max \{n_1,n_2\}$. + \1[(2)] By \cref{thm:VCbasic1}(3), $\VCdim{\C_1\cup \C_2} \geq \max \{n_1,n_2\}$. + \1[(3)] Let $A\subseteq X$ of cardinality $n_1$ be shattered by $\C_1$. For every subset $S\subseteq A$, $\exists F\in \cF_1 : F\cap A = S$. This implies $\forall (A\setminus S)\subseteq A, \exists F \in \cF_1 : A \setminus (F\cap A) = A\setminus F = A\setminus S$. Since each $S$ is in one-to-one correspondence with $(A\setminus S)$, $\VCdim{\C_\lnot} = n_1$. + \1[(4)] Let $A\subseteq X$ of cardinality $n_1$ be shattered by $\C_1$. The proof is a character-building exercise in basic set theory. We show that any two sets in $\cF_1$ cut out the same subset from $A$ if and only if they cut out the same subset in $(\cF_1\symmdiff B)$. + \2 For any $F_1,F_2 \in \cF_1$, we have: + \begin{align*} + F_1 \cap A = F_2 \cap A + \iff & F_1 \cap B \cap A = F_2 \cap B \cap A \text{ and } \\ + & F_1\cap (X\setminus B)\cap A = F_2\cap (X\setminus B)\cap A + \end{align*} + This equivalence holds because $A$ can be partitioned into $A\cap B$ and $A\cap (X\setminus B)$. + \begin{align*} + \iff & (X\setminus F_1) \cap B \cap A = (X\setminus F_2) \cap B \cap A \text{ and } \\ + & F_1 \cap (X\setminus B) \cap A = F_2 \cap (X\setminus B) \cap A + \end{align*} + This equivalence holds because membership in $F_1$ completely determines membership in $X\setminus F_1$. + \begin{align*} + \iff & + \left((X\setminus F_1)\cap B\right) \cup \left(F_1\cap (X\setminus B)\right) \cap A = \\ + & \left((X\setminus F_2)\cap B\right) \cup \left(F_2\cap (X\setminus B)\right) \cap A + \end{align*} + This step combines the two conditions using set union. This equivalence holds because the sets $(X\setminus F_1)\cap B$ and $F_1\cap (X\setminus B)$ are disjoint (and similarly for $F_2$). + \begin{align*} + \iff & + (F_1\symmdiff B)\cap A = (F_2\symmdiff B)\cap A. + \end{align*} + The final step uses the definition of symmetric difference. + \2 Therefore, $\C_1|_A$ cuts out $2^{n_1}$ subsets from $A$ if and only if $(\C_1\symmdiff f)|_A$ cuts out $2^{n_1}$ subsets from $A$. This implies that they both shatter $A$ and have the same VC dimension. + % You can align multiples align* with a table: (looks kinda ugly though) + % \begin{tabularx}{\linewidth}{l@{}c@{}X} + % $F_1 \cap A = F_2 \cap A$ & $\iff$ & $F_1 \cap B \cap A = F_2 \cap B \cap A$ and \\ + % & & $F_1\cap (X\setminus B)\cap A = F_2\cap (X\setminus B)\cap A $ \\ + % \multicolumn{3}{l}{This equivalence holds because $A$ can be partitioned into $A\cap B$ and} \\ + % \multicolumn{3}{l}{$A\cap (X\setminus B)$.} \\ + % & $\iff$ & $(X\setminus F_1) \cap B \cap A = (X\setminus F_2) \cap B \cap A$ and\\ + % & & $F_1 \cap (X\setminus B) \cap A = F_2 \cap (X\setminus B) \cap A$ \\ + % \multicolumn{3}{l}{This step uses the fact that $F\cap B = X\setminus ( (X\setminus F)\cap B)$ for any $F$.} \\ + % & $\iff$ & + % \end{tabularx} + % \2 To show that $\VCdim{\C} \leq \VCdim{\C\symmdiff f}$ it suffices to prove that $\pi$ is injective. $S'=(S\setminus B) \cup ((B\setminus S)\cap A)$ satisfies $\pi(S')=S$. + % \setlength\delimitershortfall{-1pt} + % \begin{align*} + % S'\symmdiff B & = \left(S'\setminus B\right) \cup + % \left(B\setminus S'\right) \\ + % & = \left(\left(\left(S\setminus B\right) \cup \left(\left(B\setminus S\right)\cap A\right)\right)\setminus B\right) \cup \left((B\setminus \left((S\setminus B) \cup \left(\left(B\setminus S\right)\cap A\right)\right)\right)\\ + % & = \left( S \setminus B\right) \cup \left(B \cap \left(B\setminus\left(B\setminus S\right) \cap A \right)\right) \\ + % & = \left( S \setminus B\right) \cup B \\ + % & = S. + % \end{align*} + % \2 To show $\VCdim{\C\symmdiff f} \leq n_1$, note that for any $G \in \C\symmdiff f$, there exists $F \in \C_1$ such that $G = F \symmdiff B$. If a set $A'$ is shattered by $\C\symmdiff f$, then for any $S' \subseteq A'$, there exists $F \in \C_1$ such that $(F \symmdiff B) \cap A' = S'$. This implies $F \cap A' = S' \symmdiff (B \cap A')$, which means $A'$ is shattered by $\C_1$. Therefore, $|A'| \leq n_1$. + % Combining both inequalities, we conclude $\VCdim{\C\symmdiff f} = n_1$. +\end{outline} +\end{proof} + +While VC dimension considers all possible subsets of $X$, it is often useful to analyze how the concept class behaves on subsets of specific sizes. This allows us to examine how the \enquote{shattering power} of the concept class grows as we increase the size of the subsets we consider. + +\begin{definition}[Shatter function] +\contribution{0.} + \label{def:shatterfunc} + Define the \emph{shatter function} $\shatterfunc(m):\N \ra \N$ as + $$\shatterfunc(m):= \max \left\{|\C_Y| : Y \in \binom{X}{m}\right\}.$$ +\end{definition} + +\begin{lemma}[Sauer-Shelah, 1972] +\marginnote[0cm]{The function $\Phi_n(m)$ counts the number of subsets of an $m$-element set that have size less than or equal to $n$. In other words, it represents the number of subsets of $\{1,2,\ldots,m\}$ with cardinality at most $n$.} + \label{lemma:Sauer-Shelah} + Define $\Phi_n(m):=\sum^n_{i=0}\binom{m}{i}$. If $\C$ has VC dimension $n$ and $m>n$, then $\shatterfunc(m) \leq \Phi_n(m)$. +\end{lemma} + +There exist numerous proofs and versions of this lemma, which has important applications in model theory, graph theory, computational geometry and other disciplines. We give a proof using the \enquote{shifting} technique commonly used in extremal set theory. +% https://cse.buffalo.edu/~hungngo/classes/2010/711/lectures/sauer.pdf + +\begin{proof}[Lemma 1.5, \cite{Chernikov}] +\begin{outline} +\contribution{1 --- Improved proof structure and clarity.} +\0 We proceed by contradiction. Fix some $m>n$ and suppose $\shatterfunc(m) > \Phi_n(m)$. + \1 By \cref{def:shatterfunc}, there exists $Y\subseteq X$ with $|Y|=m$ such that $|\C|_Y| = \shatterfunc(m) > \Phi_n(m)$. Since $\shatterfunc(m)$ depends only on the size of $|\C|_Y|\leq 2^Y$, we can without loss of generality assume that: + \2 $\C$ is finite with $|\C| = \shatterfunc(m)$, + \2 $X=\{x_1,\ldots,x_m\}$ with $|X|=m$. +\0 We construct a sequence of concept subclasses $\C_0,\ldots,\C_m$ of $\C$ using a \enquote{shifting} operation. + \1 Let $\C_0 := \C$. +%\marginnote[0cm]{Assume $\C_0=\{f\}$ with $f(x_1,x_2,x_3,x_4,x_5)=(1,1,0,1,0)$ or $11010$.\\ +% $\C_1 = \{01010\}$.\\ +% $\C_2 = \{00010\}$.\\ +% $\C_3 = \{00010\}$.\\ +% $\C_4 = \{00000\}$.\\ +% $\C_5 = \{00000\}$.} + \1 Given $\C_k$, construct $\C_{k+1}$ as follows: + \2 For each $f\in\C_k$, if $f(x_{k+1})=1$ and exists $g\not\in\C_k$ such that $g(x_{i\neq k+1})=f(x_{i\neq k+1})$ and $g(x_{k+1})=0$ + % $$\begin{cases} + % g(x)=f(x) & x\in \{x_1,\ldots, x_k\} \\ + % g(x)=0 & x\in \{x_{k+1}\} + % \end{cases},$$ + then replace $f$ by $g$ in $\C_{k+1}$. Otherwise, keep $f$ in $\C_k$. + \1 This construction has three key properties: + \2[(1)] For each $l$, $|\C_k|=|\C_{k+1}|$, + \2[(2)] If $A$ is shattered by $\C_{k+1}$, then $A$ is shattered by $\C_k$, + \2[(3)] If $f\in \C_m$, then $\supp(f)$ is shattered by $\C_m$. + \1 Proofs of properties: + \2[(1)] Holds by construction: each replacement preserves cardinality. + \2[(2)] Let $A$ be shattered by $\C_{k+1}$. For any $B\subseteq A$: + \3 If $g$ cuts out $B$ and $g\in\C_k$, then $\C_k$ cuts out $B$. + \3 If $g$ cuts out $B$ but $g\not\in\C_k$, then $g$ must have been added to $\C_{k+1}$ to replace some $f\in\C_k$ during the shifting operation. + \4 If $x_{k+1}\not\in A$, then $f\in\C_k$ that $g$ replaced cuts out $B$, since $g|_A=\mathds{1}_B=f|_A$. Thus $\C_k$ cuts out $B$. + \4 If $x_{k+1}\in A$, then $x_{k+1} \not\in B$ (since $g(x_{k+1})=0$). Since $\C_{k+1}$ shatters $A$, there exists $h\in\C_{k+1}$ cutting out $B\cup \{x_{k+1}\}$. By construction, $h$ must have been in $\C_k$ and $h$ should have been replaced with $h'\not\in \C_k$ cutting out $B$. Since it was not replaced, $h'$ was already in $\C_k$, thus $\C_k$ cuts out $B$. + %Since it is both in $\C_k$ and $\C_{k+1}$ and it wasn't swapped out, the only possible combination is if condition $g_h \not\in\C_k$ was not satisfied, so $g_h\in \C_k$ and $g_h$ cuts out $B$ from $A$. + \2[(3)] Assume $\exists f\in\C_m$ with $\supp(f)$ not shattered by $\C_m$. Then $\exists x_{i+1}\in\supp(f)$ with no $g\in\C_m$ such that $g(x_{i+1})=0$. But $f$ would have been replaced at step $i$ by construction, removing $x_{i+1}$ from $\supp f$. This contradicts the assumption $f\in\C_m$. +\0 It follows from $(2)$ that $\VCdim{\C_m} \leq n$. From $(3)$, no $f\in\C_m$ has $|\supp(f)|>n$. Therefore: +$\Phi_n(m) \geq |\C_m| \mathrel{\overset{\makebox[0pt]{\mbox{\normalfont\tiny\sffamily $(1)$}}}{=}} + |\C| = |\shatterfunc(m)|.$ +\end{outline} +\end{proof} + +\begin{corollary}[Growth of the shatter function] +\label{cor:shatterfuncGrowth} +\contribution{0.} +Let $\C$ be a concept class of VC dimension $n$. Then, +$$ +\shatterfunc(m) +\begin{cases} + = 2^m & m \leq n \\ + \leq \Phi_n(m) & m > n +\end{cases} +$$ +and, in particular, $\shatterfunc(m)\in O(m^n)$. +\end{corollary} + +\begin{figure} + \centering + \begin{tikzpicture} + \begin{semilogyaxis}[ + axis lines = left, + anchor=origin, + xlabel = \(m\), + ylabel = {\(\shatterfunc(m)\)}, + xlabel style={at={(axis description cs:1,0.05)},anchor=west}, + ylabel style={at={(axis description cs:0.1,1)},anchor=south,rotate=270}, + xmin= 0, xmax= 15, + ymin= 0, ymax= 500, + xtick=\empty, + ytick=\empty, + extra x ticks={5}, + extra y ticks={32}, + extra x tick labels={$n$}, + extra y tick labels={$2^n$}, + extra tick style={grid=major, grid style={dashed, black}}, + ] + \addplot [ + domain=0:5, + samples=20, + color=blue, + ] + {2^x}; + \addplot [ + domain=5:15, + samples=20, + color=blue, + ] + {7+x^2}; + \end{semilogyaxis} + \end{tikzpicture} + \caption{A schematic depiction of shatter function growth for a concept class $\C$ with $\VCdim{\C}=n$. The y-axis uses a logarithmic scale. For $m \leq n$, the function grows exponentially as $2^m$. At $m = n$, the function transitions to slower growth, bounded by a polynomial function.} + \label{fig:enter-label} +\end{figure} + +\begin{remark} +\contribution{0.} + In the special case where $\C = \binom{X}{n}$, this bound is tight for $m>n$. +\end{remark} + +\begin{proof}[\cref{cor:shatterfuncGrowth}] +~ +\begin{outline} +\contribution{1 --- Added details on growth bound.} + \1 For $m\leq n$, the bound holds by \cref{thm:VCbasic1}(1). + \1 For $m>n$, the bound holds by \cref{lemma:Sauer-Shelah}. + \1 The growth estimate holds due to the following well-known binomial inequality: + $$\Phi_n(m) = \sum^n_{i=0}\binom{m}{i} \leq \sum^n_{i=0}\left(\frac{me}{i}\right)^i \leq m^n.$$ + For each term in the sum above, we have + \begin{align*} + \binom{m}{i} = \frac{m!}{i! (m-i)!} = \frac{(i+1)(i+2)\ldots(m)}{i!} \leq \frac{m^i}{i!} < \left(\frac{me}{i}\right)^i. + \end{align*} +\end{outline} +\end{proof} + +This result implies that for any given concept class $\C$, its shatter function can only grow either exponentially or polynomially in terms of $m$. As the cardinality of the set increases beyond $n$, the fraction of subsets of the set that can be shattered approaches $0$. + +\subsubsection{$\eps$-nets and the VC theorem} +\label{subsection:2} + +The next sections lie at the intersection of statistics, probability theory and computer science. Our primary objective is to examine and prove the Vapnik-Chervonenkis (VC) theorem, a fundamental result in statistical learning theory. + +To provide additional context, we present a correspondence between some statistical and computational concepts, adapted from a widely-used textbook \enquote{All of Statistics: A Concise Course in Statistical Inference} by Wasserman: + +\begin{center} +\begin{tabularx}{\textwidth}{X X X} +Statistics & Computer Science & Meaning \\ +\hline +estimation & learning & using data to estimate an unknown quantity \\ +classification & supervised learning & predicting a discrete $Y$ from $X$\\ +large deviation bounds & PAC learning & uniform bounds on probability errors +\end{tabularx} +\end{center} + +The main goal of this section is the VC theorem, which is a variation on the theme of large deviation bounds. These bounds, which include the well-known Chernoff, Hoeffding, and Markov inequalities, provide estimates for the probability that an average of independent random variables deviates significantly from its expected value. + +To build towards the VC theorem, we will introduce the concept of $\epsilon$-nets. These are subsets of our sample space that, in a sense, approximate the entire space well. + +\begin{remark} +\contribution{3.} + In this section, we let $(X,\cA,\mu)$ denote a probability space. Let $\C$ be a concept class on $X$ so that each $f\in\C$ has $\mu$-measurable support, i.e. for all $f\in\C : \supp(f)\in \cA$. For each $f\in\C$, let $\mu(f)=\mu(\supp(f))=\int_X f d\mu$. In other words, $\mu(f)$ is the $\mu$-probability that, given $a\in X, f(a)=1$. For any $n<\omega$ we consider the product measure of $\mu$ on $X^n$, which we will denote by $\mu^n$. +\end{remark} + +% \begin{definition}[Error function, algorithm] +% The error of an algorithm $H:\C_{\operatorname{fin}} \ra \Xtwo$ is defined as +% $$\errNoA = \mu(\{x\in X : H(f)(x)\neq f(x)\}).$$ +% Put in words, the error is equal to the measure of a set on which our algorithm $f$ is false. This quantifies the probability of our algorithm\ldots \textcolor{red}{I should focus on this and rewrite this soon. This is algorithm error and not function error.} +% \end{definition} + +\begin{lemma}[Lemma 2.3.4, \cite{Guingona}] + \label{lemma:expectedValueOfError} + Let $\C$ be a PAC learnable concept class on $X$ and let $H$ be a learning function for $f\in \C$ with sample complexity $\samplecomp$. Then, for all $\eps\in(0,1), \delta \in (0,1)$, probability measures $\mu$ on $X$, and $n\geq \samplecomp$, + $$\EX(\overline{a}\mapsto \err) \leq \delta + \eps(1-\delta).$$ +\end{lemma} +\begin{proof} +\contribution{1 --- Improved proof structure and readability.} + Let $Y_0=\{\overline{a} \in X^n : \err > \eps\}$. Let $Y_1 = X\setminus Y_0$. By definition, since $\C$ is PAC learnable, the probability of sampling $\overline{a} \in Y_0$ with error $> \eps$ is less than $\delta$, so + \begin{align*} + \EX(\overline{a}\mapsto \err) & = \int_{X^n}\errNoA d\mu^n \\ + & \leq \int_{Y_0}\errNoA d\mu^n + \int_{Y_1}\errNoA d\mu^n \\ + & \leq 1\cdot \mu^n(Y_0)+\eps \cdot \mu^n(Y_1) \\ + & \leq \delta + \eps (1-\delta). + \end{align*} +\end{proof} + +\begin{definition}[Definition 2.2.6, \cite{Guingona}] + For $\eps\in(0,1)$, a subset $N \subseteq X$ is called an $\eps$-net for $\C$ if for every $f\in \C$ with $\mu(f)=\mu(\supp(f))\geq \eps$, there exists $a\in N$ such that $f(a)=1$. +\end{definition} + +Intuitively, an $\eps$-net intersects every function $f\in \C$ whose support has $\mu$-measure at least $\eps$. This allows it to serve as an approximation of $X$ with respect to $\C$ capturing all the \enquote{large} sets. + +\begin{fact}[Chebyshev's inequality] +\label{fact:Chebyshev} + If $f:X\rightarrow \R$ is a random variable and $\eps >0$, then + $$\mu\left(\{a\in X : |f(a)-\EX(f)|\geq \eps\}\right)\leq \frac{\Var(f)}{\eps^2}.$$ +\end{fact} + +\begin{lemma}[Lemma 2.2.5, \cite{Guingona}] + \label{lem:suppfUB} + Fix $p\in [0,1]$ and finite $n\geq \frac{8}{p}$. Let $(f_0,\ldots,f_{n-1})\in \Xtwo$ such that $\mu(f_i)=p$ for all $i \frac{1}{2}n\eps + \right\}\right) + \geq \frac{1}{2}.$$ + The left-hand side of this inequality is precisely $\mu(Y_1|_{\overline{a}})$, therefore $\mu(Y_1|_{\overline{a}})\geq 1/2$. + \2 If $\overline{a}\not\in Y_0$, then $\mu(Y_1|_{\overline{a}})=0$, as the first condition of $Y_f$ fails. + \2 This implies + % $$ + % \begin{cases} + % \overline{a}\in Y_0 & \implies \mu(Y_1 |_{\overline{a}}) \geq \frac{1}{2} \\ + % \overline{a}\in Y_0^C & \implies \mu(Y_1 |_{\overline{a}})=0 + % \end{cases} + % $$ + % and we get + $$\mu(Y_1)=\int_{Y_0} \mu(Y_1|_{\overline{a}})d\mu(\overline{a}) \geq \frac{1}{2}\int_{Y_0}d\mu(\overline{a}) = \frac{1}{2}\mu(Y_0).$$ + Therefore, $\mu(Y_0)\leq 2\mu(Y_1)$. So, to bound $\mu(Y_0)$, it suffices to compute an upper bound for $\mu(Y_1)$. +\0 Now the second part: + \1 Consider the product space $X^{2n} \times \binom{2n}{n}$ with the product measure $\mu \otimes \nu$ where $\nu$ is the uniform probability measure on $\binom{2n}{n}$. + \2 $X^{2n}$ is the set of $2n$-sequences $(a_0,\ldots,a_{2n-1})\subseteq X^{2n}$, + \2 $\binom{2n}{n}$ denotes the set of $n$-element subsets of $2n$. + \2 For $I\subseteq \binom{2n}{n}$, let $\sigma|_I: 2n \ra 2n$ be the permutation that maps $I$ to $\{0,1,\ldots,n-1\}$ and its complement to $\{n,n+1,\ldots,2n-1\}$. + \2 For $\overline{a}\in X^{2n}$ and $I\in\binom{2n}{n}$, define $\overline{a}_I=(a_{\sigma(0)},\ldots, a_{\sigma(2n-1)})$. + \1 Fix $\overline{a}\in X^{2n}$ and $f\in \C$. We compute the probability that $\overline{a}_I\in Y_f$ for some $I\in\binom{2n}{n}$. + \2 If $\sum_{i=0}^{2n-1}f(a_i) < \frac{\eps n}{2}$, then $\overline{a}_I\not\in Y_f$ no matter how we choose $I$ because it is impossible to satisfy the second condition of $Y_f$. + % \2 Case 1: $\sum_{i=0}^{2n-1}f(a_i) < \frac{\eps n}{2}$. Since $\sum_{i=n}^{2n-1}f(a_i) \leq \sum_{i=0}^{2n-1}f(a_i) < \frac{\eps n}{2}$, it follows that $\overline{a}_I\not\in Y_f$ because the second condition in the definition of $Y_f$ fails no matter what. + \2 If $\sum_{i\leq 2n}f(a_i) \geq \frac{\eps n}{2}$., then $I$ must index elements where $f(a_i) = 0$ and avoid elements with $f(a_i)=1$ because of the first condition of $Y_f$. By assumption, we have at least $k=\ceil{\frac{\eps n}{2}}$ to avoid. Thus, the probability that $\overline{a}_I\in Y_f$ is at most + % $$ + % \mu\left(\left\{I\in\binom{2n}{n} : \overline{a}_I\in Y_f\right\}\right) + % $$ + \begin{align*} + \frac{\binom{2n-k}{n}}{\binom{2n}{n}}= + \frac{\mfrac{(2n-k)!}{n! (n-k)!}}{\mfrac{(2n)!}{n!n!}} = + \mfrac{(2n-k)!}{(2n)!}\cdot\frac{n!}{(n-k)!} = + \mfrac{(n-k+1)\ldots(n)}{(2n-k+1)\ldots(2n)}. + \end{align*} + Factoring out $2$ from the denominator we can estimate each factor as less than $\frac{1}{2}$, thus + $$ + \mfrac{(n-k+1)\ldots(n)}{(2n-k+1)\ldots(2n)} + \leq \left(\frac{1}{2}\right)^k + \leq \left(\frac{1}{2}\right)^{\frac{\eps n}{2}} + = 2^{-\frac{\eps n}{2}}. + $$ + Hence $2^{-\frac{\eps n}{2}}$ is the upper bound for $\overline{a}_I\in Y_f$. +\0 Now, we use the VC dimension to bound $\mu(Y_1)$: + \1 Since $\C$ has VC dimension $\leq d$, by \cref{lemma:Sauer-Shelah}, $\shatterfunc(2n)\leq \Phi_d(2n)$. Therefore, for a fixed $\overline{a}\in X^{2n}$, + $$ + |\{ + I\subseteq 2n : (\exists f \in \C : f \text{ cuts out }a_{i\in I}) + \}| + \leq \Phi_d(2n) \leq (2n)^d. + $$ + Therefore, for any $\overline{a}\in X^{2n}$, the probability $\mu(\overline{a}_I \in Y_1) \leq (2n)^d 2^{-\frac{\varepsilon n}{2}}$. This implies $\mu(Y_1)\leq (2n)^d 2^{-\frac{\eps n}{2}}$. +\0 Finally, we conclude $\mu(Y_0)<2(2n)^d 2^{-\frac{\eps n}{2}}$, which proves the theorem. +\end{outline} +\end{proof} + +\begin{remark} +\begin{outline} + \0 Exact measurability conditions are discussed in the appendix A1 and A2 of \cite{blumer1989learnability}. +\end{outline} +\end{remark} + +The VC Theorem provides a bound on the convergence of empirical measures to true measures uniformly over a class of sets (or functions), where the uniformity is controlled by the VC dimension. + +\subsubsection{Proof of the fundamental theorem of PAC learning} +\label{subsection:3} + +In this section, we prove the main theorem: + +\begin{theorem}[Theorem 2.1, \cite{blumer1989learnability}] + \label{thm:fundamentalThmPacLearning} + Let $X$ be a set and $\C$ a concept class on $X$. Then, the following are equivalent: + \begin{enumerate} + \item $\C$ is a VC class. + \item $\C$ is PAC learnable. + \end{enumerate} +\end{theorem} + +This theorem establishes that if the complexity measure of $\C$ (as measured by its VC dimension) is bounded, we can efficiently learn it by sampling data from $X$, independent of any other assumptions. + +We prove this theorem by explicitly calculating a lower and an upper bound on the sample complexity $\samplecomp$ in \cref{thm:VC_lb} and \cref{thm:VC_ub}. +%Let $\C$ be a fixed concept class on an input set $X$. + +\begin{theorem}[Lower bound] + \label{thm:VC_lb} + Let $d < \omega$ such that $\VCdim{\C} \geq d$. Then, any hypothesis function $H:\Cfin\ra\Xtwo$ that is a witness to PAC learnability of $\C$ has sample complexity + $$\samplecomp \geq + d(1-2(\eps(1-\delta)+\delta)).$$ +\end{theorem} + +\begin{theorem}[Upper bound] + \label{thm:VC_ub} + % \marginnote{Note that consistency restricts $H$ from $\Xtwo$ to $\C$.} + % d>2 to ensure en/d < n in the shatter func estimate + Let $d < \omega$ such that $\VCdim{\C} \leq d$. Then, any consistent hypothesis function $H:\Cfin\ra\C$ is a learning function for $\C$ with sample complexity + $$\samplecomp \leq \max + \left( + \frac{4}{\eps} \log \left( \frac{2}{\delta} \right), + \frac{8d}{\eps} \log \left( \frac{13}{\eps} \right) + \right).$$ +\end{theorem} + +\begin{fact} + \label{fact:expValue} + Let $(X,\cA, \mu)$ and $(Y, \cB, \gamma)$ be two probability space and $f:(X\times Y)\ra \R$ a random variable on the product space. Then, there exists $a\in X$ such that $f|_a:Y\ra \R$, where $f|_a(b)=f(a,b)$, such that + $$\EX(f|_a)\geq \EX(f)$$ +\end{fact} + +\begin{proof}[\cref{thm:VC_lb}] +\begin{outline} +\contribution{1 --- Improved proof structure and clarity; added minor explanatory details.} +\0 Let $H:\Cfin \ra \Xtwo$ be any hypothesis function witnessing PAC learnability of $\C$. Our goal is to compute a lower bound on the expected value of hypothesis function error $\err$ in terms of $d$ and $n$, and then leverage \cref{lemma:expectedValueOfError} to extract a lower bound on $\samplecomp$.\\ + \1 We begin by analyzing the hypothesis function error on $X\times \C$, viewing it as a function in two variables $(\overline{a},f)\mapsto \err$. To find a lower bound on the expected value of $\err$, we consider the integral + $$\EX(\err)=\int_{X^n\times \C} \err d\mu((\overline{a},f)).$$ + %$$\EX(\err)=\sum_{(\overline{a},f)\in X^n\times \C} \err p((\overline{a},f)).$$ + \2 Since $\C$ is PAC learnable, we can choose any probability measure $\mu$ on $X$ and on $\C$. We opt for the uniform probability measure, which implies that for $a\in X: \mu(\{a\}) = 1/d$ and for $f\in\C: \mu(\{f\})=1/2^d$. + \2 Since $\C$ has VC-dimension $\geq d$, there exists a subset of $X$ with cardinality $d$ that is shattered by $\C$. By restricting the measure to this shattered set, we may assume $|X|=d$ and $\C=\Xtwo$. + \2 Since $H$ is consistent by \cref{remark:consistentRealizable}, given sample $Y\subseteq X$, we can restrict the domain of the error function to the \enquote{unseen} subset $(X\setminus Y)\subseteq X^n$. + \2 These reductions allow us to simplify the integral above to + $$\EX(\err)=\left(\frac{1}{d\cdot 2^d}\right) \left(\sum_{(\overline{a},f)\in (X\setminus Y)\times \C} \err\right).$$ + \1 Now, we compute a lower bound of the expected value. + % Maximum Uncertainty: + % The uniform distribution maximizes entropy, which means it carries the least amount of information about where the important points might be. This forces the learner to treat all points equally. + \2 Fix $n\leq d$ and consider sequences $\overlinea = (a_1,\ldots,a_n) \in X^n$. Define $Y = \{ a_1, \ldots, a_k\}$, the set of distinct values of $\overline{a}$, noting that $|Y|=k\leq n$. + \2 By \cref{thm:VCbasic1}(1), $\C$ shatters $Y\subseteq X$ so $\C|_Y = \Ytwo$. For any fixed concept $g\in \Ytwo$, it can be extended to a function in $\C$ in $2^{d-k}$ ways. + % By assigning either $0$ or $1$ to the remaining $d-k$ elements +\marginnote{$1 \leq k \leq n < d \leq \VCdim{\C}$} + \2 For a fixed $x\in(X\setminus Y)$, by symmetry, exactly half of $f\in\C$ which extend $g$ will disagree with $H(g)$ on $x$. + % $$\Bigl|\Bigl\{ f \in \C : f|_Y=g \text{ and } H(g)(x)\neq f(x)\Bigr\}\Bigr| = \frac{1}{2}\Bigl(2^{d-k}\Bigr).$$ + % error over one point + Summing over all possible elements $x\in X \setminus Y$, we have: + \setlength\delimitershortfall{-1pt} + $$\sum_{x\in X\setminus Y} + \left| + \left\{ + \left|H(g) (b)-f(b) + \right| + : b\in X, f\in\Xtwo + \right\} + \right| + \geq + % \sum_{i=k+1}^d + % \frac{1}{2} + % \left(2^{d-k} + % \right) + % = + \frac{1}{2} + \left(2^{d-k} + \right) + \left(d-k + \right).$$ + % error over all of X\Y + \2 Since $|\Ytwo|=2^k$, over all possible concepts $g\in \Ytwo$ we get: + \setlength\delimitershortfall{-1pt} + $$ + \sum_{i=1}^{2^k} + \left\{ + \left| + H(f|_Y)(b) - f(b) + \right| + : b\in X, f\in \Xtwo + \right\} + \geq + \frac{1}{2}2^d + \left(d-k + \right) + \geq + \frac{1}{2}2^d + \left(d-n + \right). + $$ + \2 Thus, we arrive at the lower bound: + $$ + \EX(\err)\geq \frac{1}{d\cdot 2^d}\cdot + \frac{1}{2}2^d + \left(d-n + \right) + = + \frac{d-n}{2d}. + $$ + \1 We can now leverage this lower bound to obtain a lower bound on $\samplecomp$. + \2 By \cref{fact:expValue}, there exists $f\in\C$ with + $ + \EX(\overline{a}\mapsto\err)\geq\frac{d-n}{2d}. + $ + \2 By \cref{lemma:expectedValueOfError}, + $ + \EX(a\mapsto \err) \leq \eps(1-\delta)+\delta. + $ + \2 Since $\samplecomp$ must hold for any probability measure, it must hold specifically for $\mu$. Therefore, we conclude that $\samplecomp \geq d(1-2(\eps(1-\delta)+\delta))$. +\end{outline} +\end{proof} + +Now we prove the other direction, i.e. \cref{thm:VC_ub} using $\eps$-nets and the VC Theorem \labelcref{thm:VCtheorem}. + +\begin{proof}[\cref{thm:VC_ub}] +\begin{outline} +\contribution{1 --- Improved proof structure and clarity; added minor explanatory details.} +\0 The key idea of the proof is to use $\eps$-nets to show that a consistent hypothesis function $H$ can PAC learn a concept class $\C$ with finite VC dimension. This approach is somewhat consistent with the principle of Occam's Razor --- a short explanation (i.e. a hypothesis function that is as simple as possible) tends to be more valid than a long explanation. + +\1 Fix a target concept $f\in\C$ and a sample $\overline{a}\in X^n$. + \2 For any prediction $h=H(f|_{\overline{a}})\in\C$, the error function $|h-f|$ belongs to concept class $(\C\symmdiff f)$. + %As as set system, $\cF \symmdiff f$ represents all elements that are counterexamples to a hypothesis $h\in\C$ for a target concept $f$. + %If $\overline{a}\in X^n$ is an $\eps$-net for $\C \symmdiff f$, then it contains counterexamples to every hypothesis $h$ with error greater than $\eps$. + Therefore we can describe the error in terms of the $\mu$-measure of $|f-h|$, namely + $ + \err = \mu\left(\left| + f-h + \right|\right). + $ + \2 By \cref{thm:VCbasic2}(4), $(\C\symmdiff f)$ has VC dimension $d$. +\1 By the VC Theorem \labelcref{thm:VCtheorem}, we can estimate the probability of $\overline{a}$ failing to be an $\eps$-net, independent of $\mu$: + \setlength\delimitershortfall{-1pt} + $$ + \mu\left(\left\{ + \overline{a} \in X^n : \left\{a_1, \ldots, a_n\right\} + \text{ not an $\eps$-net for } + \left(\C\symmdiff f\right) + \right\}\right) + \leq + 2\left(2\frac{\exp n}{d}\right)^d 2^{-\frac{\eps n}{2}}, + $$ +Here we use a sharper bound $(\frac{\exp n}{d})^d$ on the shatter function's growth rate, as shown in \cref{cor:shatterfuncGrowth}. +\1 We need to choose $n$ large enough so that: + \begin{align*} + & &2\left(2\frac{\exp n}{d}\right)^d2^{-\frac{\eps n}{2}} & \leq \delta \\ + \iff& &\log(2)+d \log\left(2\frac{\exp n}{d}\right) & \leq \log(\delta)+\frac{\eps n}{2}\\ + \iff& &\frac{\eps n}{2} & \geq d\log\left(2\frac{\exp n}{d}\right) + \log(\frac{2}{\delta}). + \end{align*} + We choose + $ + n \geq \max \left\{ + \frac{4}{\eps} \log\left(\frac{2}{\delta}\right), + \frac{8d}{\eps} \log \left(\frac{13}{\eps}\right) + \right\} + $ + and split the inequality in two parts: + $$ + \frac{\eps n }{4}\geq \log(\frac{2}{\delta}) + \text{~~~and~~~} + \frac{\eps n}{4} \geq d\log\left(2\frac{\exp n}{d}\right). + $$ + \2 The first inequality holds trivially by our choice of $n\geq \frac{4}{\eps}\log (\frac{2}{\delta})$. + \2 The second inequality holds for all $m>n$ if we can prove it for the lower bound $n\geq\frac{8d}{\eps} \log \left(\frac{13}{\eps}\right)$, implying $\frac{\eps n}{4}\geq 2d\log\left(\frac{13}{\eps}\right)$. + so the inequality holds if we can prove + \begin{align*} + 2\log\left( + \frac{13}{\eps} + \right) + & \geq + \log\left( + 16\left(\frac{\exp}{\eps}\right) + \log\left( + \frac{13}{\eps} + \right) + \right)\\ + \iff \left(\frac{13}{\eps}\right)^2 & \geq \frac{16\exp}{\eps}\log\left(\frac{13}{\eps}\right) \\ + \iff \frac{13^2}{16\exp\eps} & \geq \log\left(\frac{13}{\eps}\right). + \end{align*} + This inequality holds for $\eps = 1$ and all smaller values, completing the proof. + %3.88 > 3.7 +\1 Conclusion: + \2 We have proven that for $n \geq \max \{ + \frac{4}{\eps} \log\left(\frac{2}{\delta}\right), \frac{8d}{\eps} \log \left(\frac{13}{\eps}\right) + \}$, $\overline{a}\in X^n$ is an $\eps$-net for $(\C\symmdiff f)$ with probability greater than $1-\delta$. + \2 If $\err\geq \eps$, then by definition of an $\eps$-net, $\overline{a}$ \enquote{catches} some $a_i\in X$ such that $f(a_i)\neq h(a_i)$. + \2 This contradicts consistency of $H$, therefore + $$ + \mu\left(\left\{ + \overline{a} \in X^n : \err > \eps + \right\}\right) + < 2(2n)^d 2^{-\frac{\eps n}{2}} \leq \delta. + $$ +\end{outline} +\end{proof} + +\begin{proof}[\cref{thm:fundamentalThmPacLearning}] +\begin{outline} +\contribution{1 --- Improved proof structure and clarity.} +\0 We prove both directions of the equivalence: + \1[$\implies:$] Suppose $\C$ is a VC class. By definition, there exists $d<\omega$ such that $\VCdim{\C}=d$. By \cref{thm:VC_ub}, any consistent hypothesis function $H$ is a PAC learning function for $\C$. Therefore, $\C$ is PAC learnable. + + \1[$\impliedby:$] Suppose $\C$ is not a VC class. Then $\C$ has infinite VC dimension. By \cref{thm:VC_lb}, for any hypothesis function $H$ and VC dimension $d\in \N$, the sample complexity satisfies $\samplecomp\geq d(1-2(\eps(1-\delta)+\delta))$. Since the VC dimension of $\C$ is infinite, no finite sample size is sufficient for PAC learning $\C$. Therefore, $\C$ is not PAC learnable. +\end{outline} +\end{proof} + +\newpage + +\subsection{NIP theories} +\label{section:NIPtheories} +Now we move into the realm of model theory. + +\begin{remark}[Notation] +\begin{outline} +\contribution{3.} +\0 We will work in a fixed signature $L$. + \1 $\cM$ denotes an $L$-structure with universe $M$. + \1 $x,y,z$ represent tuples of variables, + \1 $|x|$ denotes the length of tuple $x$. + \1 For $A\subseteq M$, $A_x$ represents all tuples from $A$ of length $|x|$. +\0 In a partitioned $L$-formula $\phi(x;y)$ + \1 $x$ represents object variables, + \1 $y$ represents parameter variables, + \1 for $b\in M_y$, $A\subseteq M_x$ define $\phi(A,b)=\{x\in A : \cM\models \phi(x,b)\}$, + \1 for $A\subseteq M_x$ and $B\subseteq M_y$ define $\phi(A;B)=\{\phi(a;B) : a\in A\}$. +\end{outline} +\end{remark} + +% I've tried to incorporate page 16 of Laskowski Johnson paper, but alas... I think its an important definition though, to say that something is "uniformly" definable. +\begin{definition}[Uniformly definable family] +\begin{outline} +\contribution{2 --- Synthesized from multiple sources, independently worded.} +\0 Let $\cM$ be an $L$-structure and $\phi(x;y)$ any fixed $L$-formula. The formula $\phi(x;y)$ generates a \emph{uniformly definable family} on $M_x$ as a collection of definable sets: +$$\C_\phi = \{\phi(M_x;b) : b \in M_y\}.$$ + % \1 As a concept class of indicator functions: $\C = \{\mathds{1}_{\phi(M_x;b)} : b \in M_y\}$, + % where $\mathds{1}_{\phi(M_x;b)}(a)=1$ if and only if $M\models \phi(a;b)$. +\0 The VC dimension of $\phi(x;y)$ is defined to be the VC dimension of the induced concept class $\C_\phi$. +\end{outline} +\end{definition} + +The term \enquote{uniformly definable} emphasizes that a single formula $\phi$ simultaneously defines all sets within the family, instead of using multiple formulas to define different sets. This uniformity allows us to study properties of the entire family by analyzing the single formula $\phi$. + +\begin{example} +\label{example:circle} +\begin{outline} +\contribution{3.} +\0 Consider $RCF$, the theory of ordered real closed fields. Let $\phi(x_1,x_2;y_1,y_2,y_3)$ be the formula: + $$(x_1-y_1)^2+(x_2-y_2)^2 < y_3$$ +\0 This formula defines the interior of a circle in $\R^2$. Specifically, $\phi(x_1,x_2;y_1,y_2,y_3)$ generates the family of sets +$$\C_\phi = \{\{(x_1,x_2) \in \R^2 : (x_1-a)^2+(x_2-b)^2 < r\} : a,b,r \in \R\}$$ +Each set in this family is the interior of a circle with center $(a,b)$ and radius $\sqrt{r}$. +The corresponding concept class consists of indicator functions: +$$\C = \{f_{a,b,r} : \R^2 \to {0,1} \mid a,b,r \in \R, r > 0\}$$ +where +$$f_{a,b,r}(x_1,x_2) = \begin{cases} +1 & \text{if } (x_1-a)^2+(x_2-b)^2 < r \\ +0 & \text{otherwise} +\end{cases}$$ +Thus, $\phi$ uniformly defines all open circles in $\R^2$, allowing us to study properties of this entire family through the single formula $\phi$. +\end{outline} +\end{example} + +\begin{definition}[Independence property] + \label{def:indFormula} + ~ + \begin{outline} + \contribution{1 --- Minor structure improvements.} + \1 A formula $\phi(x;y)$ has the \emph{independence property} with respect to $\cM$, if: + \2 For every $n\in\N$, there exists a sequence $(b_0,\ldots,b_{n-1})$ of elements from $M_y$ such that + \2 For every $k\subseteq n$, there exists is an $a_k\in M_x$ such that \marginnote[2cm]{$i < k < n$} + $$\cM\models \phi(a_k; b_i) \iff i\in k$$ + \1 The \emph{independence dimension} $I(\phi)$ is defined as: + \2 If $\phi$ does not have the independence property (\emph{is NIP}), then $I(\phi)$ is the greatest $n$ for which the above condition holds. + \2 If $\phi$ has the independence property \emph{(is not NIP)}, then $I(\phi)=\infty$. + \1 The \emph{dual formula} $\psi(y;x)$ represents a dual formula; $\phi$ and $\psi$ are identical as formulas but the roles of $x$ and $y$ are reversed. + \end{outline} +\end{definition} + +Our main theorem is Proposition 1.3 from \cite{Laskowski1992} establishing the equivalence between the independence property and VC dimension. + +From now on, fix a structure $\cM$ and a formula $\phi(x;y)$. Let $\C_\phi$ be the concept class associated with $\phi$ in $\cM$. + +\begin{theorem}[Prop. 1.3, \cite{Laskowski1992}] + \label{thm:NIPfiniteVC} + If VC dimension of $\C_\phi$ is $d$ and the independence dimension of $\phi$ is $n$ then $n\leq 2^d$ and $d \leq 2^n$, and the following are equivalent: + \begin{enumerate} + \item $\C_\phi$ is a VC class. + \item $\phi$ is NIP. + \end{enumerate} +\end{theorem} + +This theorem will immediately follow from two lemmas below. + +\begin{lemma}[Lemma 1.4, \cite{Laskowski1992}] + \label{lem:14} + Let $\psi(y;x)$ be the dual formula of $\phi(x;y)$. Then $\VCdim{\C_\phi}\leq d \iff I(\psi)\leq d$ +\end{lemma} + +\begin{proof} +\begin{outline} +\0 We will show that $\VCdim{\C_\phi} > d \iff I(\psi) > d$, which is equivalent to the statement of the lemma. + \1 By definition, $\VCdim{\C_\phi} > d$ if and only if there exists a set $A = \{a_0, \ldots, a_d\} \subseteq M_x$ that is shattered by $\C_\phi$. This holds if and only if for every $S \subseteq d$, there exists $b_S \in M_y$ such that: + $$\cM\models\phi(a_i;b_S) \iff i\in S.$$ + \1 By the definition of the dual formula $\psi$, this condition is equivalent to: + $$\cM \models \psi(b_S;a_i) \iff i\in S$$ +\0 This last statement is precisely the definition of $I(\psi) > d$. Therefore, $\VCdim{\C_\phi} > d \iff I(\psi) > d$, which completes the proof. +\end{outline} +\end{proof} + +\begin{lemma}[Lemma 1.5, \cite{Laskowski1992}] + \label{lem:15} + Let $\psi(y;x)$ be the dual formula of $\phi(x;y)$. If $I(\phi)\leq n$ then $I(\psi)\leq 2^n$. +\end{lemma} + +The idea of the proof rests on the observation that a shattered set of size $n$ corresponds to $2^n$ parameters that shatter it. Each element in this set implicitly defines a subset of these parameters --- those corresponding to sets containing that element. + +\begin{proof} + \begin{outline} + \contribution{1 --- Improved proof structure and clarity.} + \0 We prove the contrapositive: $I(\psi) > 2^n \implies I(\phi) > n$. + \1 Since $I(\psi) > 2^n$, there exict sequences $\{b_i : i \in 2^n\}$ and $\{a_k : k \subseteq 2^n\}$ such that for all $i \in 2^n$ and $k \subseteq 2^n$: + $\cM \models \psi(a_k, b_i) \iff i \in k$ + \1 Dualizing $\psi$ to $\phi$, we obtain: + $\cM \models \phi(b_i, a_k) \iff i \in k$. + Note that $i\in 2^n$ is a number and $k\subseteq 2^n$ a subset. + \1 To obtain $I(\phi) > n$, we need to reverse these roles: + \2 For each $i \in n$, define $k_i = \{l \subseteq n : i \in l\}$, the set of all subsets of $n$ containing $i$. + \2 For each $i \in n$, define $c_i = a_{k_i}$. + \1 Now we can show that for all $i \in n$ and $k \subseteq n$: + $$\cM \models \phi(b_i; c_k) \iff \cM \models \phi(b_i; a_{k_i}) \iff k_i \in i$$ + \2 Now $b_i$ encodes a subset of $n$ and $k_i\in n$ a number. + \2 The first equivalence holds by definition of $c_k$. + \2 The second equivalence holds because $i \in k_i \iff i \in k$. + \1 Therefore, the sequence $(c_k : k \subseteq n)$ demonstrates that $I(\phi) > n$, as it satisfies the independence property for $\phi$ with respect to the sequence $(b_i : i \in n)$. + \0 By contraposition, we conclude that if $I(\phi) \leq n$, then $I(\psi) \leq 2^n$, proving the lemma. + \end{outline} +\end{proof} + +\begin{proof}[\cref{thm:NIPfiniteVC}] +We will prove both directions of the equivalence. +\begin{outline} +\contribution{1 --- Improved proof structure and clarity.} +\1[$a) \implies b)$] Assume $\C_\phi$ is a VC class, so $\VCdim{\C_\phi} = d < \infty$. + \2 By \cref{lem:14}, $\VCdim{\C_\phi} = d \iff I(\psi) \leq d$. + \2 Applying \cref{lem:15} to $\psi$, we get $I(\phi) \leq 2^d < \infty$. + \2 Thus, $I(\phi) \leq 2^d$, implying $\phi$ has finite independence dimension and is NIP. +\1[$b) \impliedby a)$] Assume $\phi$ is NIP, so $I(\phi) = n < \infty$. + \2 By \cref{lem:15}, $I(\phi) = n \implies I(\psi) \leq 2^n$. + \2 Applying \cref{lem:14}, we get $\VCdim{\C_\phi} \leq 2^n < \infty$. + \2 Thus, $\VCdim{C_\phi} \leq 2^n$, implying $\C_\phi$ has finite VC dimension and is a VC class. +\end{outline} +\end{proof} + +% \begin{definition}[Independence property for structures] +% A structure $M$ has the \emph{independence property} if there is a formula $\phi(x;y)$ with only a single $x$-variable having the independence property with respect to $M$. +% \end{definition} + +\begin{definition}[Independence property for theories] +\contribution{0.} + A theory \emph{is NIP} if and only if every formula is NIP. +\end{definition} + +This implication establishes that any formula in a NIP theory, as well as finite boolean combinations of such formulas, has a finite VC dimension. As a direct consequence, these formulas (uniformly) define PAC learnable concept classes, significantly expanding our understanding of learnable concept classes. Model theory provides us with lots of interesting NIP theories, all of which are now known to be PAC learnable. This also recovers many standard computer science results, including halfspaces, threshold functions, circles, and convex n-gons, albeit without explicit bounds. We give more examples at the end of the \cref{subsection:stability}. + +\newpage + +\section{Littlestone dimension and stable theories} + +\subsection{Online learning framework} + +Unlike the previously discussed PAC learning model, which relies on a set of training examples to develop a hypothesis before applying it to new data, online learning operates in a dynamic, sequential manner. The online learning process can be thought of as a game between two players: the learner and the environment. This game proceeds over a series of rounds, each of which follows a particular pattern: + +\begin{outline} + \1[1)] The environment selects an instance $x_i$. + \1[2)] The learner predicts a label $h(x_i)\in 2$. + \1[3)] The environment reveals the true label $f(x_i)\in 2$. +\end{outline} + +In this framework, the goal of the environment is to challenge the learner by selecting instances that lead to errors. To achieve this, the environment must select $y_i = 1 - h(x_i)$ for each round. However, the environment faces a constraint: it must select instances in a way that is consistent with the hypothesis class $\C$, ensuring that the target concept remains within that class. + +As noted in the \cref{remark:consistentRealizable} about consistent and realizable learning, we will focus our attention on scenarios where the online learning process is both consistent and realizable. The complexity of the online learning task varies significantly depending on the hypothesis class $\mathcal{C}$: + +\begin{outline} + \1 In the most challenging case, where $\mathcal{C} = \Xtwo$, the learner has no chance of consistently predicting the correct label. + \1 In the simplest case, where $\C = \{f\}$, the environment has no flexibility in choosing instances that would lead the learner to make errors. +\end{outline} + +Between these extremes lies a spectrum of hypothesis classes with varying degrees of complexity. The study of online learning aims to understand how the structure of the hypothesis class affects the learner's ability to make accurate predictions and the environment's ability to present challenging instances. + +The next several definitions formally describe the learning process and introduce the concepts of binary trees and their labelings. In these binary trees, which we will refer to as \emph{mistake trees} in the context of online learning, each internal node is associated with a sample $x_i$ from the input space, while the external nodes (leaves) correspond to functions $f$ from the concept class. +Each path through the tree represents a sequence of choices made by the environment. Branching left corresponds to choosing $1$, while branching right corresponds to choosing $0$. A labeling represents a valid assignment of $x_i \in X$ and $f \in \mathcal{C}$ to nodes in the tree. This tree structure provides a visual representation of the potential trajectories of the learning process. + +The notation and terminology in this section follows \cite{Bhaskar2021}. + +\begin{definition}[Trees for learning problems] +\label{def:tree} +\begin{outline} +\contribution{1 --- Minor structure improvements.} +\0 Given a learning problem $(X,\C)$, we define the following terms: + \1 A \emph{binary tree} is either a single leaf or a pair of subtrees. + \1 A \emph{binary element tree}, denoted by $T$, is a rooted binary tree with nodes partitioned into leaves $L \subseteq T$ and non-leaves $N \subseteq T$. The leaves $L$ are labeled with elements from $\C$, and the non-leaves $N$ are labeled with elements from $X$. + \1 A \emph{perfect binary element tree}, denoted by $B_n$, is a binary element tree $T$ in which every non-leaf has exactly two children, and all leaves are located at the same level $n$. +\end{outline} +\end{definition} +%T = {ε, 0, 1, 00, 01, 10, 11} + +Our definition of a binary tree allows for both finite trees and infinite trees of depth $\omega$ (and defines a coinductive datatype). In a traditional set-theoretic approach, a tree $T$ would typically be defined as a nonempty prefix-closed subset of $2^{<\omega}$ such that for every $u\in 2^{\omega}, u0 \in T\iff u1\in T$. + +Despite our formal definition, we can still intuitively imagine a tree as a set of nodes, one of which is a root, some of which are leaves, and the set is equipped with a partial order that defines the ancestry relationship. + +% Example of a complete tree of height 4 https://upload.wikimedia.org/wikipedia/commons/2/26/Waldburg_Ahnentafel.jpg + +\begin{definition}[Order relation on trees] +We define a partial order relation on nodes of an ordered tree $T$. For any nodes $u,v\in T$, we say + \marginnote[0cm]{At a casual glance, one might mistakenly interpret $u < v$ as $u$ being below $v$, whereas in this context, $v$ is actually lower than $u$. Rather, one should imagine $u<$ (literally) as a root of a subtree represented by the symbol $<$.} + \begin{outline} + \1 node $v$ is \emph{below} node $u$, denoted by $un$, then $\Lshatterfunc(m) \leq \Phi_n(m)$ and, in particular, $\rho_\C(m)\in O(m^n)$. +\end{lemma} +\begin{proof} + The proof is lengthy and inductive, offering limited insight, so we omit it and refer the reader to the proof of Theorem 4.2 in \cite{Bhaskar2021}. +\end{proof} + +\begin{definition}[Mistake bound] + \contribution{1 --- Synthesized from multiple sources, independently worded.} + Let $f\in\C$ be a target concept and $H$ a hypothesis function. We define the \emph{mistake bound} $\mis$, as the maximum number of mistakes $H$ makes predicting $f$ on the sequence $\overline{a}=\{a_0,\ldots,a_{n-1}\}$. +\end{definition} + +From now on fix a concept class $\C$ with Littlestone dimension $d$. + +\begin{theorem}[Lemma 1, \cite{littlestone1988learning}] + \label{thm:LdimMistakes} + \contribution{0.} + The number of mistakes of any deterministic algorithm $H$ is at least $d$. +\end{theorem} + +\begin{proof} +\begin{outline} +\contribution{1 --- Improved proof structure and clarity.} +\0 By \cref{def:Ldim}, $\C$ shatters a perfect mistake tree $B_d$. We will show that an adversarial environment can force any deterministic learning algorithm to make at least $d$ mistakes: + \1 Present the instances $x_i$ to the learner in the order they appear along a path from the root to a leaf in $B_d$. + \1 For each prediction $h(x_i)$ made by the learner, assign the opposite truth value $1-h(x_i)$ to the instance. +\0 This strategy ensures that the learner makes a mistake on every prediction and there always exists a hypothesis $f \in \C$ consistent with all the assigned labels, due to the tree being shattered. +Since the height of the tree is $d$, the adversary can force the learner to make at least $d$ mistakes before reaching a leaf. This holds true regardless of the specific algorithm used by the learner, as long as it is deterministic. Therefore, the number of mistakes of any deterministic algorithm on the concept class $\C$ is at least $d$, which is the Littlestone dimension of $\C$. +\end{outline} +\end{proof} + +\begin{theorem}[Algorithm 2 and Theorem 3, \cite{littlestone1988learning}] + \label{thm:SOA} + \contribution{1.} + \item There exists an algorithm $H$ that makes at most $d$ mistakes. The algorithm $\H$ is usually refered to as the Standard Optimal Algorithm (SOA). +\end{theorem} + +\begin{proof} +\begin{outline} +\contribution{2 --- Significantly reworked original material.} +\0 We provide a constructive proof by describing the Standard Optimal Algorithm (SOA) and demonstrating its optimality. + \1 \textbf{The algorithm:} The algorithm proceeds in rounds, maintaining a hypothesis class $V_i$ in each round $i$. + \2 Initialization: Set $V_0= \C$. + \2 For each round $i$: + \3 Receive $x_i\in X$. + \3 Partition $V_i$ into two subclasses: + $$V_i^0:=\{f\in V_i : f(x_i)=0\} \text{ and } V_i^1:=\{f\in V_i : f(x_i)=1\},$$ + $$V_i = V_i^0 \cup V_i^1$$ +\marginnote[0cm]{From a computational perspective, the computation of both VC dimension and Littlestone dimension is NP-hard. Furthermore, there is no polynomial-time algorithm that can approximate either of these dimensions to within a factor of $o(\log n)$, see \href{https://arxiv.org/abs/2211.01443}{arXiv:2211.01443}.} + \3 Choose prediction $p_i = \argmax_{j\in\{0,1\}} \Ldim{V_i^j}$. + \3 Receive true label $y_i$. + \3 Update $V_{i+1} = V_i^{y_i}$. + \1[] It should be noted that if $\Ldim{V_i^0} \neq \Ldim{V_i^1}$, then $y_i = 1-p_i$ unless the environment is adversarial and maximizing mistakes, hence the use of \enquote{at most} in the theorem statement. + \1 \textbf{The optimality:} We prove that the Littlestone dimension of $V_i$ strictly decreases in each round, implying that the algorithm makes at most $d$ mistakes. Proof by contradiction: + \2 Assume $\Ldim{V_{i+1}} \geq \Ldim{V_i}$ for some $i$. Then by construction, $V_{i+1}$ is either $V_i^0$ or $V_i^1$. + \2 Since we choose the subclass with greater Littlestone dimension, both $\Ldim{V_i^0}$ and $\Ldim{V_i^1}$ are greater than or equal to $\Ldim{V_i}$. However, $V_i$ is the union of $V_i^0$ and $V_i^1$, which leads to the following inequality: + $$\Ldim{V_i} \geq \min \{\Ldim{V_i^0}, \Ldim{V_i^1}\} + 1 > \Ldim{V_i},$$ + This inequality holds because $V_i$ is a mistake tree that is one level deeper than the smaller of the mistake trees $V_i^0$ and $V_i^1$. This contradiction proves our claim. + \1[] Since the Littlestone dimension strictly decreases in each round and is initially $d$, the algorithm makes at most $d$ mistakes. +\end{outline} +\end{proof} + +\begin{lemma}[Theorem 4, \cite{littlestone1988learning}] + \label{lemma:LdimboundsVC} + The Littlestone dimension of a concept class $\C$ is always greater than or equal to its VC dimension. + \marginnote[0cm]{The equivalent model-theoretic statement is: \enquote{If $\phi$ is stable, then $\phi$ is NIP.}} +\end{lemma} +\begin{proof} + Let $d$ be the VC dimension of $\C$. By definition, there exists a set $A=\{a_0,\ldots,a_{n-1}\}$ of size $d$ shattered by $\C$. Construct a perfect binary tree of height $d$ as follows: We use the elements $a_i \in A$ as labels for the internal nodes of the tree. All nodes at depth $i$ are labeled with $a_i\in A$. The leaves of this tree, which are at depth $d$, are then labeled with functions from $\C|_A$. + The resulting tree is shattered by $\C$ and has height $d$. This implies that the Littlestone dimension of $\C$ is at least $d$. +\end{proof} + +The lemma we proved demonstrates that the gap between the Littlestone dimension and the VC dimension of a concept class $\C$ is always non-negative. Moreover, it can be arbitrarily large, as the following example illustrates. + +\begin{example} +\begin{outline} +\contribution{1.} + \0 Let $X=[0,1]$ and $\C$ the class of threshold functions on $X$. The VC dimension of $\C$ is $2$ and the Littlestone dimension is $\infty$. + + \0 To demonstrate that $\C$ has infinite Littlestone dimension, we can construct an infinitely deep binary tree as follows: + \1 Consider leaves $v_1 = \frac{1}{2}, v_2=\frac{1}{4}, v_3=\frac{1}{8},\ldots,v_i=\frac{1}{2^i}$ + \1 Label each leaf with + $$ + h_i(x)= + \begin{cases} + 1,& x \geq \frac{1}{2^i} \\ + 0,& x < \frac{1}{2^i} + \end{cases} + $$ + \0 For the internal nodes, we can always find values in $[0,1]$ that are consistent with the labeling of the leaves. This is possible due to the density of real numbers. +\end{outline} +\end{example} + +\subsection{Stable theories} + +The next section is based on Chapter 5 from \cite{Bhaskar2021}. + +% We feel compelled to first describe what stable theories are about, particularly for computer scientists without a model-theoretic background. In machine learning, we are tasked with finding patterns in large datasets to make the best predictions possible. We develop models to capture these patterns, seeking a balance between simplicity and expressiveness. + +% Stability theory tackles similar questions but in a more abstract, foundational setting. Developed by Saharon Shelah in the late 1960s, stability theory provides a framework to systematically classify first-order theories based on how "well-behaved" they are. At its core, stability theory is concerned with understanding the complexity of all possible configurations or "types" that can arise in a given mathematical structure. + +% A stable theory, roughly speaking, is one where the number of possible types (or configurations) grows in a controlled manner as we increase the size of our domain. This is analogous to a learning problem where the number of meaningfully distinct hypotheses doesn't explode as we add more data. + +% On the other hand, unstable theories exhibit a kind of \enquote{chaos}, where the number of types grows very rapidly, making classification and analysis much more difficult. In machine learning, this might correspond to situations where the complexity of potential models grows so quickly that learning becomes intractable. + +% Stability theory identifies the main lines isolating stable and unstable theories and gives us tools to identify theories which are, in a sense, "mathematically learnable." In the following section, we will establish an equivalence between concept classes with finite Littlestone dimension and stable formulas. This connection will hopefully provide a different perspective on fundamental questions about structure, complexity, and learnability. + +\subsubsection{Littlestone dimension and Shelah 2-rank} + +\begin{remark}[Set systems and learning problems, revised] +\begin{outline} +\contribution{1.} +\0 The fundamental objects in this section are set systems. + \1 A set system $(X,\cF, \in)$ is a structure with universe $M=X\cup \cF$, sorts $M_X$ and $M_\cF$ and equipped with a binary relation symbol $\in\subseteq M_X\times M_\cF$. For brevity, we will write $(X,\cF)$, suppresing $\in$. + % \1 A set system $(X,\cF, \in)$ is a two-sorted structure with universe $M=X\cup \cF$, corresponding to sorts $M^X$ and $M^\cF$, equipped with a binary relation symbol $\in\subseteq M^X\times M^\cF$. For brevity, we will write $(X,\cF)$, suppresing $\in$. + \1 Any such set system corresponds to a learning problem $(X,\C)$, where $X$ is the input space, $\C=\{\mathds{1}_A (x) : A \in\cF\}$ is the concept class. Each concept or hypothesis function is in correspondence with a set $A\in \cF$. +\end{outline} +\end{remark} + +\begin{remark}[Model-theoretic setup] +\contribution{1.} +We discuss model-theoretic assumptions and preparations we need to make in order to prove the results. We use \texttt{typewriter} script to distinguish syntactic variables $\tx, \ty$ from values $x, y$. +\begin{outline} + % \1 Given a partitioned first-order formula $\phi(x;y)$ and for any model $\cM$ of a complete theory $T$, define a set system $(M^\tx,M^\ty,\in)$, by $a\in b \iff \cM \models \phi(a;b)$. + \1 In this section, we fix a partitioned first-order formula $\phi(\tx;\ty)$ and the induced set system $(X,\cF)$ with $\cF = \{\phi(M_\tx,b) : b \in M_\ty\}$. The relation $\in$ in our set system is interpreted as $a\in F \iff \cM\models\phi(a;b)$ for the $b$ that defines $F$. + \1 We fix a sufficiently saturated model $\cM$ of the theory $\Th(X,\cF)$ to ensure that all types are realized, which may affect later rank calculations if, for example, we work in a model which doesn't realize many types. Whenever we assert that some sentence holds, we always mean relative to the model $\cM$. + % \1 In this context, we focus on concept classes generated by a single fixed formula $\phi(x;F)$. This approach allows us to study a wide range of geometrically interesting concept classes, for example + % \2 circles in $\R^2$, given by $\phi(x;y) := (x_1-y_1)^2 + (x_2-y_2)^2 < y_3^2$, + % \2 half-spaces in $\R^n$, given by $\phi(x;w,b)) = \sum w_i \cdot x_i + b \geq 0$, + % \2 polynomials in $\R^2$ of degree at most $d$, given by $\phi(x;y)=\sum_{i=0}^d y_i x_1^i = x_2$, + % \2 elliptic curves in $\bC$, given by $\phi(x,y;a,b)=y^2=x^3+ax+b$. +\end{outline} +\end{remark} + +In our previous discussion (\cref{remark:consistentRealizable}), we focused on consistent and realizable cases. To extend this concept into model-theoretic terms, we will now introduce the notion of partial $\phi$-types. + +\begin{definition} +\begin{outline} +\contribution{1.} +\0 Let $\phi$ be the formula $\tx\in \tF$. We define: + \1 A \emph{$\phi$-formula} is either $\phi(x;\tF)$ or $\lnot\phi(x;\tF)$ for some $x\in M_x$. For brevity, we denote $\phi(x;\tF)^1=\phi(x;\tF)$ and $\phi(x;\tF)^0 = \lnot \phi(x;\tF)$. + \1 A \emph{finite $\phi$-type} $p$ is a conjunction of $\phi$-formulas, including the \emph{empty conjunction} $\top$. We denote by $p(\cF)$ the subfamily of $\cF$ satisfying the type $p$. + \1 Two finite $\phi$-types $p$ and $q$ are \emph{contradictory}, if there exists $x\in X$ and $t\in\{0,1\}$ such that: + \2 $\phi(x;\tF)^t\in p$, + \2 $\phi(x;\tF)^{1-t}\in q$ + \1[] In this case, we say $p$ and $q$ disagree on $\phi(x;\tF)$. +\end{outline} +\end{definition} + +How does the notion of a partial $\phi$-type relate to online learning? As we receive observed data in the form of pairs $(x_i, y_i)$, where $x_i \in X$ represents an instance and $y_i \in {0,1}$ represents its label, we can enforce consistency in our structure $(X, \cF)$ by requiring either $\phi(x_i;\tF)$ or $\lnot\phi(x_i;\tF)$ to hold in $(X, \cF)$, depending on the value of $y_i$. +This process effectively restricts our concept class to only those concepts that agree with the observed data and the collection of these restrictions is what we now defined as a finite $\phi$-type. The subfamily of $\cF$ that satisfies these constraints is written as $p(\cF)$. This represents the set of concepts in our class that are consistent with the observed data so far. + +Now, we formalize \cref{def:labeling} describing conditions under which a tree $T$ admits $(X,\cF)$ consistent with a finite $\phi$-type $p$. + +\begin{definition}[Definition 5.1, \cite{Bhaskar2021}] +\label{def:adm} +\contribution{1 --- Improved structure and clarity.} +Let $T$ be an unordered tree with non-leaves $N$ and leaves $L$. We define + \begin{outline} + \1 a signature $\cL_T = \{\in\} \cup \{a_u : u\in N\} \cup \{b_v : v\in L\}$, where + \2 $\in$ is a binary relation symbol $\subseteq X \times \cF$ + \2 ${a_u : u \in N}$ are constant symbols of sort $X$ + \2 ${b_v : v \in L}$ are constant symbols of sort $\cF$ + \1 a first-order $\cL_T$-theory $\Adm{T}{p}$ with the following axioms: + \marginnote[0cm]{For simplicity, we will occasionally denote the constants $a_u$ or $b_v$ as the image $\alpha(u)$ or $\alpha(v)$ of the respective node under a valid labeling $\alpha$.} + \2[(1)] $p(b_v)$ for any $v\in L$, + \2[(2)] $\phi(a_u;b_v)\not\leftrightarrow \phi(a_u;b_w)$ if $v\bot_u w$, + \2[(3)] $\phi(a_u;b_v)\leftrightarrow \phi(a_u;b_w)$ if $v\sim_u w$. + \end{outline} +\end{definition} + +If $(X,p(\cF))$ admits $T$, then $\Th(X,p(\cF))\cup \Adm{T}{p}$ is consistent. This means there exists a model which simultaneously satisfies both $\Th(X,\cF)$ and $\Adm{T}{p}$. +Since $\cM$ is sufficiently saturated, the consistency of $\Th(X,\cF)\cup \Adm{T}{p}$ is equivalent to the admissibility of $T$ in $\cM=(M_X, p(M_\cF))$. + +\begin{example} +\label{example:Discussion} +\begin{outline} +\contribution{3 --- This is original.} + \0 Let $X=\{1,2,3,4\}$ and $\cF = \{\{1,2\},\{3,4\},\{1,3\}\}$. We consider the structure $(X,\cF)$ with the signature $\cL = \{\in\}$. + The theory of $(X,\cF)$ is the set of all first-order $L$-sentences true in $(X,\cF)$. For example, the sentence \enquote{there are exactly 3 sets in $\cF$} can be expressed as: + $$\exists x_1,x_2,x_3: + \left(\bigwedge_{i=1}^3 x_i \in M_\cF\right) + \land + \left(\bigwedge_{i=1}^2 x_i\neq x_{i+1}\right) + \land + \left(\forall y: y\in M_\cF \land \bigvee_{i=1}^3 y=x_i\right). + \footnote{Here $x\in M_\cF$ means \enquote{$x$ is of sort $M_\cF$}.}$$ + + Define a partial $\phi$-type $p(\tF) = \{\lnot\phi(4;\tF)\}$. + This implies $p(\cF)=\{\{1,2\},\{1,3\}\}$. + + Now consider a tree $T$ with one root $u$ and two leaves $v,w$. We expand the signature to $\cL_T=\{\in, a_u,b_v,b_w\}$, where $a_u$ is a constant symbol of sort $X$ and $b_v,b_w$ are constant symbols of sort $\cF$. + The theory $\Adm{T}{p}$ consists of the following $\cL_T$-sentences: + $$\{4\not\in b_v, 4\not\in b_w, a_u\in b_v + \not\leftrightarrow a_u\in b_w\}.$$ + We will now verify the equivalence between the consistency of $\Th(X,\cF)\cup \Adm{T}{p}$ and $T$ admitting $(X,\cF)$: + + \1[$\impliedby$:] If $T$ admits $(X,p(\cF))$, then there exists a valid labeling $\alpha$. In our example, $\alpha$ is given by $\alpha(u)=3, \alpha(v)=\{1,3\}, \alpha(w)=\{1,2\}$. + \2 The property (1) holds by construction, since $4\not\in\{1,3\}$ and $4\not\in\{1,2\}$ is both in $\Th(X,\cF)$ and $\Adm{T}{p}$. + \2 The properties (2) and (3) hold since $3\in \{1,3\}$ and $3\not\in \{1,2\}$, so $\Th(X,\cF)$ and $\Adm{T}{p}$ are consistent. + \1[$\implies$:] If $\Th(X,\cF)\cup \Adm{T}{p}$ is consistent, then there exists an interpretation in $\cM$ of the constants $a_u, b_v, b_w$ that satisfies property $(1),(2),(3)$. This interpretation provides a valid labeling $\alpha$ of $T$. + \2 This equivalence doesn't necessarily hold for infinite trees. To see why, suppose $\Th(X,\mathcal{F}) \cup \Adm{T}{p}$ is consistent. By the Löwenheim-Skolem theorem, it has a countable model $(X',\cF')$. Since $T$ is infinite, it has $2^\omega$ leaves. For $T$ to be admissible in $(X',\cF')$, we would need an injective map from the leaves $L$ to $F'$. This is equivalent to having an injection from $2^\omega$ to $\omega$, wihch is impossible. + \0 The moral of the story is that, at least in the finite case, the consistency of $\Th(X,\cF)\cup \Adm{T}{p}$ hinges on the existence of a valid labeling $\alpha: T\rightarrow X\cup p(\cF)$. This labeling exists only in a sufficiently saturated model where every leaf type is realized. +\end{outline} +\end{example} + +In essence, $\Adm{T}{p}$ is a formal way of saying that $T$ can be properly labelled by elements of $X$ and $\cF$ that satisfy $p$, in a way that respects the branching structure of $T$. This is probably one of the reasons why \cite{hodges} describes Shelah $2$-rank as the branching index. + +\begin{example} +\contribution{3.} + Imagine you are a network engineer working for a large university campus. The IT department wants to optimize WiFi coverage across the campus grounds. They need to understand the actual coverage area of each WiFi access point, which is theoretically circular and has uniform signal strength. At point $(x,y)=(1,1)$ there is signal and at point $(x,y)=(3,3)$ there is no signal. Then we can translate the concepts in online learning and model theory as in \cref{tab:translation}. + \begin{table}[h] + \centering + \begin{tabular}{p{0.45\textwidth}|p{0.45\textwidth}} + \textbf{Online learning} & \textbf{Model theory} \\ + \hline + Input space: 2D real plane & $X = \mathbb{R}^2$ \\ + Concept: Interior of a circle with center $(y_1,y_2)$ and radius $y_3$ & $\phi(x_1,x_2;y_1,y_2,y_3) := (x_1-y_1)^2 + (x_2-y_2)^2 < y_3^2$ \\ + Hypothesis class: Circles in $\mathbb{R}^2$ & $\cF = \{\mathds{1}_{\phi(M_x;b)} : b \in \R^3\}$ \\ + Labeled examples: $(1,1)$ is positive, $(3,3)$ is negative & $p(\tF) = \{\phi(1,1;\tF), \neg\phi(3,3;\tF)\}$ \\ + Hypothesis class consistent with observed data & $(X, p(\mathcal{F}))$ \\ + Mistake tree $T$ & $T$ \\ + Conditions for a mistake tree $T$ to admit $\C$ & $\text{Adm}_p^T$ \\ + Littlestone dimension & Shelah 2-rank + \end{tabular} + \caption{Dictionary of terms between online learning and model theory} + \label{tab:translation} + \end{table} +\end{example} + +Now we are ready to define a local version of Morley rank, the Shelah 2-rank. + +\begin{definition}[Shelah 2-rank] +\label{def:shelah2rank} +\begin{outline} +\contribution{1.} +%\marginnote[0cm]{We use a slightly simplified version of the Shelah 2-rank. Usually it is defined for $p$ over some set of formulas $\Delta$, here $\Delta = \{\phi\}$.} +\0 For any finite $\phi$-type $p(\tF)$, define the \emph{Shelah 2-rank} $\shelahrank$ + \1[1)] $\shelahrank \geq 0$ if $p$ is consistent, i.e. there exists some $b\in M_\cF$ such that $p(b)$ holds. + \1[2)] For any finite $k$, $\shelahrank \geq k + 1$ if there exists a pairwise contradictory family of types $\{p_i : i<\omega\}$ such that $\shelah{p_i} \geq k$ for all $i<\omega$. + \marginnote[0cm]{Some definitions require only two contradicting types. The definitions are equivalent and we will implicitly prove this later.} + \1[3)] $\shelahrank=\infty$ if $\shelahrank\geq k$ for all $k < \omega$. + \1[4)] $\shelahrank = -\infty$ if $p$ is inconsistent. +\end{outline} +%\marginnote[0cm]{This requirement trivially excludes finite $\cF$ since finitely many functions cant realize infinite number of different types. Finite $X$ is okay.} +\end{definition} +% Note that this excludes finite $\cF$ since the chain becomes stationary after some N. This is fine, because this means that \cF has finite variation so its rank is 0. <= Corollary or Lemma + +The second condition in \cref{def:shelah2rank} allows us to infer the existence of an additional order structure on types $\{p_i : i<\omega\}$, which can be extracted as an infinite sequence. + +\begin{lemma}[Lemma 5.6, \cite{Bhaskar2021}] +\label{lem:infSet} +\contribution{0.} + Suppose $\{p_i : i<\omega\}$ is a sequence of pairwise contradictory finite $\phi$-types. Then there exists an infinite set $S\subseteq \omega$ such that for any $r\in S$, there exists $a\in M_X$, such that for any $s>r$ in $S$, $p_r$ and $p_s$ disagree on $\phi(a,\tF)$. +\end{lemma} +\begin{proof} + \begin{outline} + \contribution{1 --- Improved proof structure and clarity.} + \0 We will construct $S$ inductively as follows: + \1 Let $S_0 = \omega$. + \1 For any $S_i\subseteq \omega$ let $m_i$ be its least element. + \2 Consider finite $\phi$-type $p_{m_i}$ consisting of finitely many formulas $\{\phi(x_i;\tF)^t : i<\omega, t\in 2\}$. + \2 Since any two types are pairwise contradictory, there exists set $S_{i+1}\subseteq S_i\setminus \{m_i\}$ such that $\phi(x_i;\tF)^t$ occurs in $p$ and $\phi(x_i;\tF)^{1-t}$ occurs in infinitely many $(p_j)_{j\in S_{i+1}}$. + \1 This construction gives us + \2 A descending chain of index sets $S_0 \supset S_1 \supset S_2 \supset \ldots$, + \2 An increasing sequence of indices $m_0 < m_1 < m_2 < \ldots$, + \2 A sequence of elements $x_0,x_1,x_2,\ldots$ + \1[] such that + \2 For all $j>i$, $p_{m_j}$ and $p_{m_i}$ disagree (uniformly) on $\phi(x_i,\tF)$, + \2 For each $k r : p_r \text{ and } + p_s \text { disagree on } a(r).$$ + We can assume without loss of generality that our original family already has this property. This is because we can relabel the types $p_i$ using only indices from $S$ and discard the unwanted types, resulting in a subfamily that still witnesses $\shelahrank\geq k+1$ and has this additional structure. + \2 Consider the infinite $k+1$-branching tree $T_{k+1}$. It can be visualized as consisting of a single infinite spine with countably many copies of $T_k$ branching off from it. We partition the nodes of $T_{k+1}$ as follows: + \3 The set of non-leaves $N$ is partitioned as + $$N=\left(\bigcup_{i<\omega} N_i \right) \cup N_s,$$ + where $N_i$ is the set of non-leaves in the $i$-th copy of $T_k$ and $N_s$ is the set of vertices along the spine. + \3 The set of leaves $L$ is partitioned as + $$L=\bigcup_{i<\omega} L_i,$$ + where $L_i$ is the set of leaves in the $i$-th copy of $T_k$. + \2 By assumption, we have $\shelah{p_{i}}\geq k$ for each $i<\omega$. Therefore by inductive hypothesis, $\Th(X,\cF)\cup\Adm{T_k}{p\land p_i}$ is consistent for each $i$. This implies that each copy of $T_k$ admits a valid labeling $\alpha_i: N_i \rightarrow M_X, L_i \rightarrow M_\cF$. + \2 We now construct a labeling $\alpha$ of $T_{k+1}$ by combining all valid labelings $\alpha_i$. Define $\alpha: N\cup L \rightarrow M_X \cup M_\cF$ as follows: + \3 For each $i<\omega$ and $v\in N_i \cup L_i$ let $\alpha(v)=\alpha_i(v)$ + \3 For each $r<\omega$ and $v$ the $r$-th node on the spine $N_s$ let $\alpha(v)=a(r)$ + \2 We will now verify that $\alpha$ is a valid labeling by checking axioms (1), (2), and (3) from \cref{def:adm}: + \3 For any leaf $v\in L$, $\alpha(v)$ satisfies $p\land p_i$ for some $i$, which implies $\alpha(v)$ satisfies $p$, + \3 For any two leaves $v,w\in L$ and their common ancestor $u\in N$ there are four possible combinations: +% \marginnote[0cm]{Explained in plain language, we observe four possible situations: +\marginnote[0cm]{ +\begin{tikzpicture}[remember picture,overlay] + \node[anchor=west] at (0,0) {\includegraphics[width=\marginparwidth]{marginTree2.png}}; + \node[anchor=center] at (0.39,2.5) {$u$}; + \node[anchor=center] at (0.34,1.45) {$v$}; + \node[anchor=center] at (0.51,0.40) {$w$}; +\end{tikzpicture}} + \4 If $v,w\in L_i$ and $u\in N_i$ for some $i$, the conditions are inherited from $\alpha_i$. + \4 If $v,w\in L_i$ and $u\in N_s$, then $v$ and $w$ always will be in the same subtree relative to $u$ and $u$ must be the $r$-th node on the spine, $r \leq i$.\\ + Both $\alpha(v),\alpha(w)$ satisfy the type $p\land p_i$. By properties, established in \cref{lem:infSet}, all realizations of $p_i$ agree on all previous nodes $a(r)$ for all $r\leq i$. Therefore, $$\phi(a(r);\alpha(v))\leftrightarrow\phi(a(r);\alpha(w)).$$ +\marginnote[0cm]{ +\begin{tikzpicture}[remember picture,overlay] + \node[anchor=west] at (0,0) {\includegraphics[width=\marginparwidth]{marginTree2.png}}; + \node[anchor=center] at (2,2.7) {$u$}; + \node[anchor=center] at (1.3,0.35) {$v$}; + \node[anchor=center] at (1.5,-0.8) {$w$}; +\end{tikzpicture}} + % If I expand Lemma 3.3 or even make a new lemma stating properties explicitly, I can cut back here and add before that. +% \marginnote[0cm]{$v,w$ in different $T_k$ and $u$ on the spine, but before $v$ branch.} + \4 If $v\in L_i$ and $w\in L_j$ for $i n_2$ there is an $x$ such that $f(x)=0$ and $g(x)\neq 0$. + \0 This last axiom is particularly important as it ensures that every consistent system of differential equations has a solution in the field. $\DCF_0$ admits quantifier elimination, allowing any formula $\phi$ in this theory to be expressed as a quantifier-free formula, equivalent to a Boolean combination of differential polynomial equations and inequations. + + A concrete example of a concept class in this theory is the family of solutions to linear differential equations, defined by the formula $\phi(y; a, b) = D(y) = ay + b$, where $a$ and $b$ are parameters and $y$ is a variable. Given a set of points in a differential field (e.g., the field of germs of meromorphic functions), where each point is labeled based on whether it satisfies a target linear differential equation, we can learn an approximation of that equation with high probability. +\end{outline} +\end{example} + +\begin{example} +\begin{outline} +\contribution{2 --- Worked out example with new additional details and connection to PAC learning.} + \0 The third example comes from group theory. The elementary theory of a non-abelian free group $T_{fg}$, is formulated in the group signature $\cL_g = \{\cdot, ~^{-1}, 1\}$ and was shown to be stable by Zlil Sela in 2006. This theory cannot be axiomatized by first-order axioms, since the ultraproduct of free groups is not free. While this theory does not admit quantifier elimination, any formula in the language of groups is, modulo the theory of the free group, equivalent to a $\forall \exists$-formula. + + A concrete example of a concept class in this theory could be the set of elements satisfying a certain word equation. For instance, we might consider $\phi(x;a,b)=x=aba^{-1}b^{-1}$, where $a$ and $b$ are parameters and $x$ is a variable. Given a set of elements in a free group, the stability of the theory guarantees that we can PAC learn the parameters $a$ and $b$ in this formula. +\end{outline} +\end{example} + +\newpage + +\section{Further Research} +\contribution{3 --- This section is completely original.} +In this thesis, we've proven the equivalence between finite VC dimension and NIP theories, finite Littlestone dimension and stable theories. This road opens up multiple ways to build upon these equivalences. + +\begin{outline} + \1 The reliance of both the Littlestone dimension and the VC dimension on shatter functions, which are themselves based on different forms of the Sauer-Shelah lemma, raises a question: Is there a unifying principle that encompasses both concepts? + \marginnote[0cm]{\href{https://arxiv.org/abs/2203.12211}{arXiv:2203.12211v2, 2022}} This question is partially answered by Roland Walker in paper \enquote{Tree Dimension and the Sauer-Shelah Dichotomy} by defining a new tree dimension invariant called \emph{leveled tree dimension} to measure the complexity of leaf sets in binary trees. + + \1 The generalization to higher-arity trees has been explored by Hunter Chase and James Freitag in their paper \enquote{Model theory and combinatorics of banned sequences}. + \marginnote[0cm]{\href{https://arxiv.org/abs/1801.07640}{arXiv:1801.07640, 2018}} In this work, they study $2^s$-ary trees and apply it to the notion of model-theoretic $\ops$-rank introduced by Guingona and Hill. When $s=1$, this generalization recovers the original Shelah's 2-rank. + + \1 In the same paper, they address a question arising from the relationship between Littlestone dimension and VC dimension. Given that finite Littlestone dimension implies finite VC dimension, they investigate whether this stronger condition can lead to strengthening of the fundamental theorem of PAC learning. The authors provide a partial answer to this question by adapting the VC theorem to the context of finite Littlestone dimension. Their key contribution is showing that under these stronger assumptions, the VC theorem can be modified to allow for sampled elements to depend on the results of previous samples, in contrast to the independent sampling required in the standard VC theorem. + + \1 A connection to o-minimality comes from the fact that o-minimal theories are NIP. This can be used to show that if the activation functions of a neural network are definable in an o-minimal expansion of the real numbers (such as $\R_{\text{an,exp}}$, which includes analytic and exponential functions), then the hypothesis class computed by the network has finite VC dimension. This theoretical result has practical implications: it ensures that, given enough training samples, such neural networks can learn to approximate any concept to the best possible representation within their hypothesis class. A comprehensive reference on this topic is the textbook \enquote{Neural Network Learning: Theoretical Foundations} by Anthony and Bartlett. + + \1 A more recent application of this concept was done by D'Inverno et al. in their paper \enquote{VC dimension of Graph Neural Networks with Pfaffian activation functions}. Their work extends this analysis to common GNN architectures. The authors derive upper bounds on the VC dimension in terms of key architectural parameters like the number of layers, hidden feature size, and input dimension. \marginnote[0cm]{\href{https://arxiv.org/abs/2401.12362}{arXiv:2401.12362v2, 2024}} They show that for GNNs with Pfaffian activations, the VC dimension grows as $O(p^4)$, where $p$ is the number of parameters. Theoretical results are supported by experiments measuring the gap between training and test accuracy as network size increases. + + \1 The VC dimension is closely related to the concept of compression schemes. A classic example is compressing rectangles in $\R^2$ to just four points -- from an arbitrarily large set of labeled samples, one can select the four outermost positively labeled points and discard the rest. This compression retains all necessary information to recreate a labeling consistent with the full original sample, akin to the notion of sufficient statistics in probability and statistical theory. Just as sufficient statistics capture all relevant information about a parameter in a probabilistic model, these compression schemes encapsulate the essential information needed for learning. + The now disproven Warmuth conjecture stated that every concept class of VC dimension at most $d$ admits a compression scheme of size at most $d$. \marginnote[0cm]{\href{https://arxiv.org/abs/1503.06960}{arXiv:1503.06960v2}, 2015\\~ \\ + \href{https://arxiv.org/abs/1811.12471}{arXiv:1811.12471v2, 2018}} Moran and Yehudayoff in \enquote{Sample compression schemes for VC classes} proved that there exists a compression scheme whose size is exponential in the VC dimension, and Pálvölgyi and Tardos in their paper \enquote{Unlabeled Compression Schemes Exceeding the VC-dimension} disproved this conjecture by constructing an explicit counterexample. + + \1 The uniform definability of types over finite sets (UDTFS) conjecture is another important model-theoretic conjecture that was recently proven by Eshel and Kaplan in their paper \enquote{On uniform definability of types over finite sets for NIP formulas}. \marginnote[0cm]{\href{https://arxiv.org/abs/1904.10336}{arXiv:1904.10336v2, 2020}} This conjecture states that a formula $\phi$ has the non-independence property (NIP) in a theory $T$ if and only if it has UDTFS in $T$. More specifically, UDTFS means that for any NIP formula $\phi$, there exists another formula $\phi$ that can uniformly define all possible $\phi$-types over any finite set of parameters. + What's particularly interesting about the proof of this conjecture is that it combined two previously known results from machine learning theory. This is somewhat unusual, as typically model theory techniques are applied to machine learning problems rather than the reverse. + + \1 Last but certainly not least, the model theorists strike again. In paper \enquote{The Unstable Formula Theorem revisited via algorithms} Malliaris and Moran focused on developing a complete algorithmic analog of the Unstable Formula Theorem.\marginnote[0cm]{\href{https://arxiv.org/abs/2212.05050}{arXiv:2212.05050v2, 2023}} It summarizes all previous work on the subject and unifies it into one common framework. This provides a much clearer picture of the connections between model theory and machine learning. Furthermore, they also propose a new approach to online learning called \emph{probably eventually correct} learning (PEC) where the main difference between PEC and PAC learning is + \2 Error rate: + \3 PAC learning: The output hypothesis has low (but potentially non-zero) error with high probability. + \3 PEC learning: The output hypothesis eventually has zero error (up to measure zero) with probability 1. + \2 Sample complexity: + \3 PAC learning: Requires a finite sample size to achieve the desired error/confidence. + \3 PEC learning: Allows the sample size to be unbounded, only requiring the learner to eventually converge to the correct hypothesis. + \2 Stability: + \3 PAC learning: No explicit stability requirement on the output hypotheses. + \3 PEC learning: Requires \emph{stable} learning in the sense that the algorithm changes its output hypothesis only a bounded number of times. + \2 Algorithm: + \3 PAC learning: No specific canonical algorithm. + \3 PEC learning: The Standard Optimal Algorithm (SOA) is shown to be a PEC learner for Littlestone classes. +\end{outline} + +\newpage +\addcontentsline{toc}{section}{\protect\numberline{}References} +\printbibliography + +\newpage +\addcontentsline{toc}{section}{\protect\numberline{}Deutsche Zusammenfassung / German summary} +\section*{Deutsche Zusammenfassung / German summary} + +\begin{outline} +\0 Die vorliegende Arbeit verfolgt das Ziel, die Zusammenhänge zwischen Modelltheorie und maschinellem Lernen an der Schnittstelle zwischen mathematischer Logik und Informatik zu beschreiben. Als Grundlage wurde der Artikel \enquote{Model Theory and Machine Learning} von Hunter und Chase verwendet, \cite{chase2019model}. + +\begin{center} +\begin{tabular}{ c c c } +$\{$Mathematische Logik$\}$ & & ~$\{$Informatik$\}$ \\ +$\bigcup$ & & ~$\bigcup$ \\ +$\{$Modelltheorie$\}$ & $\bigcap$ & \quad~ $\{$Maschinelles Lernen$\}$ +\end{tabular} +\end{center} + +Wir konzentrieren uns dabei auf zwei zentrale Themenbereiche: Zum einen untersuchen wir die Verbindung zwischen PAC-Lernbarkeit und der NIP-Eigenschaft, zum anderen betrachten wir den Zusammenhang zwischen Online-Lernbarkeit und Stabilität. Beide Themen haben ihre Wurzeln in der Kombinatorik, ein Thema, das uns in den Beweisen immer wieder begleiten wird. Die Arbeit besteht aus zwei Hauptteilen: + +Im ersten Teil beweisen wir das fundamentale Theorem der PAC-Lernbarkeit. Dieses besagt, dass eine Konzeptklasse genau dann PAC-lernbar ist, wenn sie eine endliche VC-Dimension hat. Auf der modelltheoretischen Seite wird anschließend die NIP-Eigenschaft eingeführt und gezeigt, dass Formeln in NIP-Theorien den Konzeptklassen mit endlicher VC-Dimension entsprechen. + +Der zweite Teil widmet sich der Online-Lernbarkeit und der Littlestone-Dimension als Maß für die Komplexität einer Konzeptklasse. Wir stellen den Standard-Optimal-Algorithm als optimale Strategie für das Online-Lernen vor. Auf der modelltheoretischen Seite wird die Äquivalenz von endlicher Littlestone-Dimension und Shelahs 2-Rang, einem wichtigen Konzept aus der Modelltheorie, bewiesen. In Folge demonstrieren wir, dass Formeln in stabilen Theorien den Konzeptklassen mit endlicher Littlestone-Dimension entsprechen. + +\begin{center} +\begin{tabular}{ c c c } +endliche VC-Dimension & $\longleftrightarrow$ & NIP Theorie \\ +$\bigcup$ & & $\bigcup$\\ +endliche Littlestone-Dimension & $\longleftrightarrow$ & Stabile Theorie +\end{tabular} +\end{center} + +Abschließend befassen wir uns mit der Stabilitätstheorie und zeigen, dass stabile Theorien eine Untermenge von NIP-Theorien bilden. Zur Veranschaulichung präsentieren wir mehrere Beispiele für stabile Theorien. Dazu gehören die Theorie algebraisch geschlossener Felder, die Theorie differenziell geschlossener Felder und die elementare Theorie nicht-abelscher freier Gruppen. Diese Beispiele demonstrieren, wie die Modelltheorie eine Vielzahl konkreter, PAC-lernbarer Konzeptklassen zum Vorschein bringt. +\end{outline} + +\end{document} diff --git a/marginTree2.png b/marginTree2.png new file mode 100644 index 0000000000000000000000000000000000000000..7fc551267550d031019d277349ea083b6f20dc34 GIT binary patch literal 40612 zcmce;c|4Ts8$UiO3aO+qrI0pRhf1U@scEw%%`o;PSweQnb{s0E;-rv0WyuV(?^_v5 z_Pt0%wh^+G-S4`m^Z9(fzt{Kw?;q!N&N0tCb3gaBy|4H6zMp`r8W*`Z_&6{a4A`UVcHsOYwS5O(KYa9$ zo9(s21pSCsxmqFagO{r>Va0WyUZV#((~>{M#oxZZi*J-=aJQu|HxHj>Lo!ry4YqQHmog*6uvU1lo+Kd&(m+!}p+`}(2 ztl2RbpU{QKmHV(%J>{AW7>tFG5GMu`=kF&DAMx(YL?2xGfAWFvwo{%E*OdHndh(guujw82bAmjhRJ%ir4-!`H&rhrDYwMI`jHkFG8@d23{uH+)oL z!NhIz6CVvOTZ}Bbd~8xN_)+{7Q~iq#>B0& zlbbIXdoA8_|B+EWqkUz4c6~(&=cs#=U(rLZ*R{`cksagXm1wx5+oCN|eJn|7)l#eJ z<#A!prLiQ-s>gfAPWLTpaMP*+5APoIm%?C{9tN}8I1JanbQ*f0lgJ~iv8xGR{8OcH zeQlW{zk#$VHABL8I18?ebvbJhay#ap`3aMTSS6)i$0h{=|AF%*D>HSAV|)Kx0=JSn zcI=sv`&h!t^Hyz5g%{?HQ7>Z~19O#U!ENUcnw{NyX7PInp_v0V#<~05jdNN-*d+2` z4qKrTCnnDOWvwsoX_p_mg^Uzx;7i)iUp;n7GS;2D=H2RVvtZgOA>tMpx}S~MXn+0n z7bhFdL=nDZg$1kj>}J!%ET7^oT9Y9}_Y=%c(F^bCAwjd7~qRXnFVUyJX?_ z9=sT3g>d+p&v|yn()vVsx1T0@#cuXq5xdd1R+}#KW?zajeGxxzm&qa)-n0QT>aD_? zT|U`c)Yja5RjVmn`k=zn=xc%kmif$)!K@Nj73hV(zus?q@6S2g*3SHnv3aIR#DTdl z&RvEC{w(c_PxoD(9c~bdN&0{m;O+2?wQWb_CRy7r;j!1;e^zYP-}%mWQ5-CP$gJW- z@ytgtOE|wj!m%C>Crr4uZgmnj@ei+apKXw>woyM3%Zh2<3#;!s>}9XZ$EBcf605X&Nxsz z!B!gGHZsbrViR4QB$CVSa@>R!ZE4Bn8ejHL88mfcgcT$?Ocs7=cjDTw$ZVxe$?fuva;m+{~)t}-EUTL@A2cuZ*IqW zo&+=e{IDH2;agIVcKizr=$4LfS=Ip47;jKO3_goy9Hn9Ux_B4!>v zF!RmJA!Cu2@r@JX(+O67tm`!WQ7rv?(sKdtmFW{Vs~)ekD>cf-Vv`KEpZTfm1s>Cp z&G~+}y)fxi(Fr-Z@U@>0m3BER6*jMu%T_1sn9ipLTZgs($n)yWE*3Fgl2TE#M`y*~ zo2w06P!^bvxz2?Y^=uu{8Po6mO+!nHM{L?+OPw#Oo z36iGY=$)zhvu(1bF5_KgYtFC?lR`i78r$OOs%+P(uklZvCo*zNG|=ulJqTts?g4`q z4u$Fmx~H)suNkRo-La zE;C~?qufwu5**6{FGRUO35f)kJqFgvid_|Nh(0Z=)X`<XCNj{i%|?w?NgH=zU zK6DR9@V!&XzErw697$g_xw-mXSZR-}2Mgw|mkRF_o>xM-qc39I8E*|_!jPwdl`W!l zUAS>O9#<WLtHl#M{cF)urAzLb(u7zGL=c!gj@l{ScSmh0%tp#lmk5{c};EmUzXw zlg9n7N(y30$`fub4VH45`f7+GO^V_yfSxAtVokhsN|Ns0lXosrcqKk+KE4HpHDT17 zwQPaRekt#ZgR0g=u`ktv-ch{bx>wH}XNHyb;2}ykMcsG1!rWCa`TJK6nixi*<-X<4 zOfHeo&wb41d&+V64ScIOxj+uBH$>P>%bI&bN|r8)u)sKay_9G(#*qUG%4<>;cuE5_cd z^8>cxiFnet>MJW52P)T=y2=_gF_?zKW?HIBt7Do_lOqG=HB928pL9NIs|asGDRZq> z7VY#Fa{E>B+xaMnmowf^d9N>Lo6-a06J-=vets}jq^`(FqNk7wA#f@D`gHR(e*N#i z|K32_`{nKjuCaoVm^#fqWSag%l!yQ>x0a8jrPK$I*hL>MrxM24!xEe?A^ML@CADSOuM#x#T6kd<}2n z{FRzs8UbbxjxFW>{lccV5P_q1@UW$?O6#*qNwF*6g$W9`8>5ijc*~MzQSMpytn}z~ z6WWT2vyC!q=`#H)JV_T_{c&4~=Uw5b$1FL+U#k05^#eS{M}BAKsP%tSWfR2T>Hx0n zs8!*}+VT{>a|E!40n@`aV3P3@zH_N^`~^^JDSZ!h({{}2I`#QaHU$>dRdGTIb%tmy zo&S;5^puU3PZ^smnv%3C#Os~x^O$WID9y~6EF4d>|A50N8*U-bC0KAjCRHHBBQwdV z(0dbH-a=G}Qo2j5r%u%thc}9XQfb^i#|wL@%mWE%YU}pxN!Dov=5vR>m;C;!S{H`L zTe$~;%g0&5L%I%Zdb3rRY2KjYVAB&%f(ga}C$soZyL?YNFf@-Cm7#=BIzbPG6YMzWLz+*9MZ{ zG4zGM;Le{4ovr1aMgiS`6%|(J+6e0FsA9H92NRkoVUs9dD`9yM=Uz)~vAoXNkqBebr^f6c5BL;9U}&Cp99DCmsTGDY2stIrhseYH2&`n; zbY@nKSU@}+-Z>mQwp zI`?oJb{=6ZC^UV$WExO59lfZ+t8fGGWPL(*>tzW&uBYVtJHW6 zarmaavbOb_xAiMFiC;lG?{(0u#W}rr<_e#HfFwgM+HK+6Lkiy&?&4}|uE*MG4+Y$h zLOjl~P53%>jI|}T5p@h-Kn2n|qXa%NhAUejXq|h3p3+#ZHl7;ey|&omgO%{LH)ROgDE^)6K|~%bLQp$+5w_?iO=kw-Mfz}3g1Kz=^hYF=&H=5 zxSiStcq!WTE4lryP>V((q`g1+RXH89oz8jdE}1TakjAJ}+GomOt1KtFa|m2Go}@VG zSmz&~GFC$D5a=#!xXf!f{XIkzB38FW!bEzH<4B`Af+Y>GB?^~o;s>`0Dn{kr`TQ)l zHQ#lA1s#3M{Y5aL`cFPBhbYv9pd)aFFt?ci9+&*;)hnkqb=je$=i3C%g!4iu$C}Kb zJua!b%*&6>(oL8j@8Z-|>+v7X@|p>WeY_W*y&Hb)rpu2{T2W^HZbAZfF>Hwgkg4oH z&c7C1tw9c?w^!GGmkG-H0T2K**DX2up*!FHrq`9R5vBD4AA-Jth2r?r(~~IT zo&16cJvQChB3#?Ie_VnPd0q-K*qR+RVSl83yM*BH+3V92-VefArXuMR(H3+U?DjvV9(o-QfSsn4+_b zVU)$#$=QT20a(|Y{(Eing;s~~-Xd0`Y$#fU;iE6mDF@=ZTLl4kBKR2_ciJ?oAJG2X ze=B!{lD8LB?((_t+W4UqvCJ^Mv7|{04_Zj{z#&Q~s(l)qSL{{ZxlIqOZ0fy@a;~c*64;4W=ANYkHR__;++b= zzZ^7a$zuK$a@bDjT`oV|E-1;2&WnPc*~zbT=vzD8Qvb65NL&Rr#w0VF^Oy~kIuS_$ zMF0WQE2#Gpj&X}meiep-qr2iVZ(FWqTVjik3|!{4zWN&{Ggla1u{2@ltzW<6sdF{I zE7RK~FVvXoUASWdfqcri=U;p1er&jCEb ztuJ(p$n|Fah^6SgHxf!#%n zxxU)-l)slL+9g&Yib%jM+z{tT=B>Kc2pQ`@zNKhL6eflBX3~}qxABXb>sCp74>s_zum=`y-+gX-D8SnjYe*`OKv<$nXS<)R?`G;QJ8xA`t( zS$H6W;9xrIYMaukHh1=WUsldm@E?eX>j(#w-r0@X?yIemHTMXr?f;jJ)OpV`h9m7X z?*IBxtF#E!sNl_BOoV#PKrt%B05DHt=i>>KR@8IZg!mo_#0w3q(WZy9U;|19D#2Vw zgedm(!e0n~WY3RH16UjpCVSMOkUW|EzmW7vfeeKz_ZZ}l8cmF{_7=DbV)Qw5=7H`& z#f-U@EgNcW96a6UL8_OkS|!82$C3TS8@a!Us*ps6uQ0Q$&n$u<&+ERQ^tW*2oAT$DD>Gi32^-91s}ku-_nN1!Yy#}!a+YIS;y&$8 zP{+hKz<-*E*V5X^gM9DqGXkoguUX)^$z#xrNm`jWnEqmbb=EuSz0-sX*<4S#j4{fq zTgY#~8Fu|PeIelS^X$1LDK50w&wk>q6nv@N(uBJo)dIUI5y7z&VJ~S9_WrlM*x{%P z#L<8DiRkd*w_7y@<;hs}gz|R7K{J_85F6LT zOSagL{d~Z+H;~Ul0-Uf}+&q&{lnH)@@<#2-R$cV6%+<9vrlQA+_;8tYPGPS396Z?F zyI0G7PcnZ)$V{gBp`ced6r_KEZd#eHc4W;CK?YJ4b_GSuPTjp*L#TqLgL_^LIB#cIx&yrLK(eZ!Kk=L+Nyz^7;p*UIeq5Iuu#GBPm`NepRp2zcFF8BS4 zia+CQO$tzr0;+fw19=aia(QK%nQL3;$+TiXqP_fouu~h{QL-DgGl!2t^=&UhPCCkf z_ImE2(#oskzt#}8TnY;&o?HGkq1w0D=nBNGAh;9X?%g$-%4Ls2sF8N1i~3M#i=2P< zpZ(p-q8!vJse2A}PHES`z)yTwJwJkr%?S&WWwHPz3`9=tupvy_{DwdeydAfGJ~(h) zz4~pZF2H>^_kjT686Hftm>(@7V9!$oA)W8=cmO#_;TttZ{#&+%ERzZF!l}#96+2)5 z@;HU^5Qn<)jjIjlXSN?F%W&h3nD9{qk%t?2+aIAv6jULp|Bs%8FHY9&ZtjEhlK+8JI|i+s+@4iJSGKDdOEf0E3xa2T487@x8-UXJpZLFe}8cd@?m`(7+QYJ#2-q^5Cd`iamT?B+<3JQ zA3pqP(*d*KWRyRZdfo>=E%mt9qVZ!5He;I*b^HH8X98hH+oFd_u<6Mi5>0R(@5Gk5 zdc(6kd`VOMS;?dMSh6@A2vme}DKEu+b|ifP?;&bcf9aSWtZw^K;7GZRd}{=3VlS)_ zb?IL}U{+Nh$4cnD`}_MX$~l0m^J(PCbT`OmzffeN3mi_y&kb>m)V!}BJ7iORiDD!g z+G74UhVLE{IGe%n+8%@Z26{$!n{Pf!)Mp)hep-*UI`Z>l@1QRL`bX~U7pEr-qdAF* zRg~HMyZ^O|<$2fP@=At>s=X=Ocpfwvr&9eApijQ@iFWzl9;|Ho`Gj$%6AF3^m4edq z#H}Kep#Q;FBR@r`%cjn!m5JFLRfj(aX}nWhUzxq!_X;PhgTOcwi1VLuyZdDa8^$0i zgeEWp#7AQ6+Fa722)1VvtGLOT4u72efWiyakI+>q-v_7RmVP*|v=+2}bE(UFwQFFp zZ>`5Wa;*s_Q)ucWi{N&#@76U#`zT9@CNPJKmKZdyQ)H0zG^VJp7IiBhW+r zj9qK<{)jCv08|h|eGUaFj5>xYR_Z~sc^^hz>-uotO60(A`-)LC#Mt=U)GO-__Azf+ zKCPJe1zjg(=1hh?>HgK)x7ynWUbg2N@1b5sja+$aS zIZl!R)Irje=hS@y|A4?gpKJA(h-J?$iLgA#2;quC)Vh?uE7hEBFa-*Wz1Cgk?VW~c z%;g9b5`KSGOrMnsVOKu4g=`4*S9<(vVBJHe5x*beldlU%F47rBZZ?dcFCJUlToH zVsW(to8H2WzKUp5k^2FyT6oAvBPG?hWl38v_YOJj&hAZ(DPAJltG@|F=!#mN%)&R_ zqPstgPd~A@tbKO4;L2F}UmFWHL|EOS_A@=K5i$3Wz++=EKF@+X4tKEp%D}62xSSOx zEBn2iNqGoZCnjru5|8AG*c|)8s+RR0j8B#yP4W?`LYKa8VCb;quGGLG986C|85XtD zzcCG@)obRfOY;Q`+HAvZx`P0xJEq@2g@n7)S6Z@r-}V-Gg1ir*#uy=u0QmyqPnD|3 zra*i^%0wf^C%6N96Te>|XgSm8YIGm4aSWVP?@!1mNqy^UzX|;a_OzvYua2)=WG?qc z%bLztJkReN(dqNmGo1Uc=W)2Wf1@v+FAt2Hhn(~VFbest)< zZ?}l*mN0GrgH{0K!OP%|8-s?*X9Vi-K2}r{kLjHgzA!N3$&|Nnb6bcaRb=S1R%fnk zh=2rOR7Z5h83A*B(9F3RT-5PJYYLIt*dwZ&B3agaY)iwn5{8hIwex9=)IAl_W_1^z z)uO&t+cfbqpTq!C1#IZTdjfSoRA(XTIarbbT|ihjV{X7Sn^VP+h~Gc?BGngDUb%(L z4^3F8L3By+aq~>cBc%lhUuj(&zbamiVc3E7z^fctF>@Q?HYvCrn&v*e2D~RUJw&u~ zIks)x`et!<1Sf-O7WAWSdvvnG0=E@t6p2tHwd*;zn&H9^=hNL`h6k09r305}fsK;B zdBLkNKS4EYm~lsUBSWIww~i_>(1+DyWr$+K%BUICT` zeY~BWY{OfT41R`J54o|(dO~&n`~6Jgk1&`!TVs{Q;2XABeyK(^sh#1pc(9<72p3M! zo$oHqjUi4Zp=`CMOda7mAoXj#H(?l;;Y(KIP1mOiGhokOb?fa*`f9&qxEX+qIH|R| zsuE}HA>HdX_=NCtgHPek%w70UcBx1CzOXqbU3XQo6~lPFG)2LRk=~HA%!iWJe#87BXgO9`BWvI~0L}|FRw3a^ zk8FH|PHxi3A-=n=(BNRq+upR-uJ|A7lA&_3MN9kviziq|veHsZ5QO^G(<-D$C_`N^ zg{8iwN|t>>3C2hM5ncmuOGx}vQbpk%EUj?1@ie8c3fgF8e%S6EslI?NYBW<9N$x1D zVHEAGZRnN(lOVku4iepx6lL`Un?>$$xr`ZgRUz&D(Va66j?55gzg{55$)NH{G2n4& zTY}Qd*4*v&WIHvzW_V^3G3}5U*(P*9KuT)Yj#3L-zyEZ{PE|ZZywu74n?G&_#&?qA zxjnY3&|B9kvG}YVHp|g1-VYBTd*@Rybu4RT10zYkY)_W%VDwCT12n|PCuvqI_b2|^ zEC6j}bD1BFx2NR(@6klsLe9gX$Ge@H9USF~;QERgVwZnA6 zfVrBwuO;`}GHzA}xLki^2+Sd^34 z$r3w-RWs(|ccm&#T#c@izuT{z=HoTnZJj>E_(7_Gk<9m`;ebUN8qFc5hMs;dn_Ce; z+G5ZK<#p~%y+gS-ApAFO-1yqYGnLdUHG0i-R10BNo?AU~r1RJIh+OfYZmIHpp?)Wgy?bi)~I%<4VpEc5nMH+??!5teqI3Jys)<<7T z&sR-{06rdtQ7+j+ZrddmPEGaAI85t>1h*#hYlA5>#4J;cjvxX!H;;p@4j-pPXKS^h z_6K>d3>v_A;DDLBwy@-W0qY+#oM$`|Z6;d&9bkD`&bm;7) zoRUwZvoIinn-xNYr{wOLVEROQAek0k%YpLNS3jBvaOeWj{((F+4R8d8A=zHY{+=eT zIWoogqpq8@=fQ&q$51bbW{t>wF5K?L#NoD(wX*^L8YCPrp{tRE8(tnyS~z*8GH;MO z+vn>pmi?hd&+Bih_hmIH>PKx8P;ft?0Qd|PNwzb$crXg*Y9ithhEBPkg`KSPUAt<7 zeZ1ZqY8))(%uP!f==;k)o)uG~Tod7I!6UBuG@d9GYUK1cWL?3pkn;@4ZY`qVAq7iS zz+JdCDwtuKB~&_hUB4~XnP%8CO{#bXmo6j99+XNUvDqBCAEEUNGp`T-C$`icwTcpc zm}YhKm5~hFvejP(&N1j417-;;edbZ67T7ya7JeIpX2?{i3P$?FeGf5CFM?$*w}|eJ zWc>g*zO5f-DXwTm%kDS4veHohZZBH|;*Gc-KiXv`Om=pm_Pb4pM!&hW!(AtvV;dLO zP*T=FiJ(g+k@tn*5r1^D>`D{Fi4 zngGJ7Y&3Cq_YamiD_!h0P#J(S^0egpAH3k#zprbS-iIwkgc-2sG z7_4`eWxl+YcPjodlPg{0iZjBXMdKLA>RXpLA!!**^n z_f#lwhF;b*i9Henmxq6gwE>k_hyT%PMx1fz%W(BC$6JLdwH@5 zk7kx*uO14tI&hUgXD8pRth@GEboZ=!%Tk+WN*x}gHOqgx89lz?Nykqlt$3$QKXLLn-m5v#`rSbQ=4y%}r7u~#53U(%*a3+zP73~@P6bF@hTPy4jJA1=wT^P*| zYeo0{2$Ogd)dw>wIoqNUP*}ZqDxeS%i|HTm zqXnkw=M9Tue}Ab*X?s45F+*8h{yoBBkzj$P#oW#J$zP|tbOO;RspNUEJI$_W;v^6- zYT>~|Eq;@!5h%cXuEOMIfg;x_#U#LMq~l9XtH1k{Cf^@K*F6Y+0W-27wr3XDA9<+I zg%Bmn9<3Wd*o*@;fG~;}qaXMdbn{5(6EoI{k_Kq|{+7ON6wvs#zS`DpwW z{O4GMY#->^kTJ+*cG!J&fMR1Uu;Ta>L!c(?oj1(G@Wf|qM`kH6PBZlEA&qyYV}vqr zi0-7N1hq0-p`iiD4pKyw&aRX!?DYE8x_gOU=8LS^7o$u*i+g8AwwSE`52_?svzX%iG*ruJg zs4h9FGD`-Y%gk$okKGAHvnMv#eN#Ojy%KKi&=X@WsP+uWG0INS8iq1Dn4eFo9@73` zuD&aHa^@i&5q`P5`*q5%1BFeq+YaNuNLI_IFlEq9}UJzI3aSCVS(MZZ=X1$ zFu5@>UyL&`-F?R98(|id9h(I`q}&&sR!;x&#~B^9!Xy`dr=|}T+6%b#|7CjadOlKC z*5S(x+MSQV#G^%M6`ZwrOGx?m=ri|@83Mw2{rezN9t_$>Z^T&4UG9XA*OA!A@{3{F zS?am$z^X=qP-3w*F;OnxfN7*=2w6A9D7;SfogHby8$~c`z$#p*b2=|`(u`;v4z)0n zx&-}0B3_S`s{fs_GPMwB}3`A+?UR!Bl>a1CkRe+-nfO~evFb&2NC@i8ZIn0^&LY$i00g~Yq4eND-e z%ZNm+Vf6rI#!IUIJt7RL&!H@)5qDt1gD?2gw&;R8MNOVxun1%%RFVolRGygrz84c- z3ZF4pE7f5TNVM6Ly|O{l*3He$>481y?EoM7uv@Fu05Z~b*Rty7Gq1y&ION*)Mo^!V zXu8twefu!w^b<$Sz++(c2uj`yIVgJINmG5*PcO1z5|gBbsI|;$6rTU#;dX1teu*@0 zAu$yKlyw;X7g#|FH8BOGRau6I?2id)c@&II^+md9t&7zDmBm>~p=FB1-^;(Jny^wN zX8~2nuu|kFTgV-D30;UC8fGE}F_3C1GJW=?vXC6YN*nVH#Kk9+^#>8Z!pLNrTReBM$$ zYXJRE_=_YU&iA7yS*jBO5MZ4t@}0J1UK zT0Oy7RsN4VxO*zHIbv=tvOc!^!CHyz^ESn%25>gthjIHpuG^3~MgqCsba>zX;h zv_^Pw_XBZ#)~2QzPB|Tb*sctJxe0#IZCHUKFZotYAaDMR-w_QcyfM_mmG=g`9!20W zCh}H$GL4`J8AKa?03Dvk>u$-TW-U%FqWLfZSTVc24P=8kTge@tIq+(I;B3Y5hee|l zJ>@~Vo}c_G06^z!xQ)fzZhso!SJ`235b=`!o)qdAiL$ub6di>x(D|U{6_#!%+vhc) z*%DHUIyK02y+JCU#h^DQAV&-Y(PMce&U(C-4|7HU<7^gih!?;EnjOMC=5q{wKXH@p z&bHKc2jxQ>jKOC#@#2#YmOeLmg?a(fiELTwhTgALY2^cGTeB~EfE*T4T@?_f%Mei!v6z~DyC6Gru8?QgZ|vaQou3pb}no*xMB zwXfzU^jl>v$YiYe9%%!Y$yV+2qd~!+iZa=?cgD!=oBtdrI1>6+hGi|$bQNTK8qocS z@EV;T*IW@_(_J|=JyK~aBfqRFPWP;!pQ2LrhKrL`Z0gBAF zNTzxyIy!P;b;{c~ilk0jkwN20q>P`{yygy5msY@qv)WnL%L-gYq+w{T3#GVGb2tN3 zsf@7+-wYRpP=n{cji3eFM1ziZSCcl@yRXN#$i_+FVE2}rF=BdLk%vP6GI05Pi@?uv zV)%37vNh-G{?NY4JLZq@dqJP0+YUn3<~Ct+Mq~)|vpfd>y3t z5!`&?juTmo%d#tU|(r^K!cMSvP=oIxr+WKVXhD5j&9BpqVl=v75p@%F;q!1pJW2S zq;w{Hea`IdKwU&?dLS+jhH(tMGg;OfSk8!*||VDMmEg9M$=`l%=LSJL~Wk zzR)9&h$a9cHMJJOD4(9YQic37r~baKg|w&W4eBxqz;&=3l`vBm0lVS9&aV!+9QX_ka7PN8<(Jg8f|lBXB->ALM$Ac)s2R+ z+nwJrTWJt6i$eWY)}Oyq6BxEOLpVB_`x(MpE3XwK9vAXo*cb2h)z?`n8LU4+ab@xO+JmCWLTjfnLj578o~rkH$DaJ~TC0oq zk2swJsHj2hxi=+%Q63!&hAg0j2%NDWcRJ5)S2!^dH($PS`>s^qgrpevlr4Jdy!aR( z`9&EE^EoTNg~^h6EfD-pDw+>zJ5m+UoEOGIbeyqTUaw2fbG^+6&s19Kt|(k-IpPLF z&EX_-M`K>+*;?UPs8m%rcFFy082MKt=SXfa9d3nAcBbt!PwIGjnWD|t;(IDddebA7 zvG*a9MmhRo@do&^6$h{PV2{MYp9f0cSv5abtjEuy=uyXz!;6T*K7k}4M*PXVpghX_~xB)!es1;njJb(oXkA48x6vl)X> z;)blK5@m|cF7jp&p~=rr&%bmQneEgCqCw;s|7iAM}Tv3zGmq53gTz}&DeQ-}Z9v5)~Vm=hOkU{A-suCqsioNSN9nRqs6kcG)n2ZuX94&f>+ zc~_6ynPNIxMaWoJC|w}1gr$3urA~gQNi>)1J_>Xex?X3?K=^hAX7J(+;P;aNb)g?UBt)?bcuC8oi%trjhQn`K=h7*s zXPKQT7NdNdo$Nsw!p*(5z*DGV4`gRR}K6nhx%#u35u?k;SgecOuGk1rNaOUVOnC-xNLAW#vr1+}I9cmosBNn7!luQ3lBj~QW ziIz!}>fS^Zeuu&I?l-eH>X4b#$Q&gC2PshuGmDDD#-0*gcc12eaYn9nngj(8-wNO$ zkk9>Wl!+k}me;W@sJK(`AYiS%%sT?8sYLQ$V{Cw8$LS|72_1tw+4;{DObp{Qxid3= ze;t05h<10fT9n+ojrok6Xsjc72@j;p|HdlHdF*6^tMz8g{vb#|K`%-`8UGHsC{cwM zx2q0s`bycduhg@^cQW9e5*)CIy{1>>Vv`2T(X1JW{}M(>hgnd*>He+Twpjr#b`K1u z6PS7JPb1c>z|3ukFmMm5dsL7N_&Eu(dT#PyWk1l0VpgLMpduuQrRB#bzmA??m>#s8 z{8B(aj#0+neMTn$1769QHiUC(Lv56EF7YZfP3}*E>3-lt>B&aQ#edvtZkrH=9T17p z4&k>*waU~vqUp5^+=x3fd z3YtM0UuONS7Ry}7%d09irtd=~4I{+%vW?N8-&S(8_q~PSUmaXnZ%B4hb^b=!#6)d+>qK4Ug}OJrHk3M#5Ge*TdP{{j z-oFTKW_VX6dg#7p(P` zExXdEE`q))uk0+fvisLybx;yhJTm=b7bwz&VH-)n3V~f66K(}}_7phYPHUXmvk|it zfGn@idb=Uw1(R{TvA(ui;5$ZX`uyqS^;l_4TrBL`C8&*)VtR#6mR=4Ym93u`rtS2o z0>SzLGijj?T%W#OiA*mXb6JG>f*zG`bp4mzdhUW}{VIJ$5FQRmHi4-F`tcHK>L(>R zLXDe6r%zFu^v9;wCZ`+@*KfqEo`d*-oD4?EN)D6IC#@)2jKpJ+D31D^jg74pSu7U) z>Y9+5y%x;)KX!ZuX$c5U9dAjqq-ynw?vBkFPb-pCT6_!=d$^tNz+BuNR_K&eAxi-l zU58a`s0|TD2SvTEAeH(^{n{z$8JGM)?HQd;l(N9Rc@aHRwc)&IlSTd2r+3f14X?8~gd~1A$9B1FDvR=PWrAdQ$G}D=>z}tSW=zQ?gxD zx3!TVR>@9;Tny;Hz`>LQ&8aA}g;)P=82=3JeQN`TM4_7(zfK17N$VkGO>`g$+Nn`P z72Xl&SEPz-&L84Pl8GsNqt#xWDZ*sMo3OX}h>hX9K+x|5ainp3i|E4QNNmvkXV|^p zB#VAz#y?e>g8EG0;=#^(Oz)8g&Uo76d(A(N8kz5Ze9odM;VW-v6mQuJvyW4?rUpEg z*sY<)Qid7CcUyH~PNdqwqumAP)JrsKm>-Ihy(*lpZ(L<`P#v8m|Md16I~RO{O{BxJ*%}j~BPI`mL25oHx$6%ZiE9VJAo3%uMyY0Uq+Yjw5~* zO5BkHiefO9bIMS*TLi3v2a&2YIK?v;$s^W(eiWP(+~sL4$U0EYp*~jx9lb%tVhMB# z1y@i*Rv@ob2Zxj3GHELSs)thz)GpLds3#Jox)M71d?R zIsO%!VB9Iegd6gIcIOccPoL&4!7&j#6+oGc+w~71XTekNN^Ao!`baE znS1xQYUz?*nq{&aH#($Fk=J8Yf?6^Jt zgt=Fcv$?ubz(gd;M&S)DOsZwWsu}P&KyzT`Kt=Nnu#=chT75@5(b#8DWgxu4w>d>w zFwCfW#rP5N=g?y~)Rn#?laGdE3B@6XNeVG?uXM95w6v-dvbeMNXIuYjLK|=GM`NSL zh*ye}HoYOCXGx7&1@abE2h!ifupMf@&0fI}p(@3zQ%`#NHu9f3KiY#pZU4*{cq6w# zdLA*`LAtXs`m|%m(r2Zl1o&C*OuiI(!M2a23X?@vBKK%rTOz4pjXp!kua~Qwp=4sY znL|V_Vsy0?1oQ5q6_wLESvg|Oc>P>)9X&P{pRWf%?fWUjAI8(6z<_lZM5G%2RqAe9 z=)Jy%;9zWUhw{W7tT+_o)83rf3C*pzywAkD`Er&AeLw% z%l}sq|6gCx#!>#g<}xhZrms{%M}%wJwx==jIWT`@+Me%?HaI9swa~4d(1LhHJ!2|h zG3J-q#;#LME{o|n(pf8p7;7#-AEM0zr{Q}Of@nj^FgmGa&+QChZ=s6f2CPB=L9$aJ zQA*dV#Q+sn;uWe+dL!|^oHQ!}I2}8pZBYP$cv!8G-QQ6S*n z7KZnOWLY~cIScAdOKX=#N0aWU&1`5YO4{i3n)vR`3+g?W$uBRdjhmLXI2=Y942Hg3 z&8eh{9mmPsKUDlmbTyPc=?)+R)gua!fwqle217d zQVD_Dk51Fen)W?&FsVnk?odtj z71G%AG0qi^c{$B|uZ3|J7fO%E0R%Gwt_d?^nnQ^CfH_d~Ty%*b3NnrRTaQ&$Lyg79 zXuny<)$|;W&^z8#n7z@kL(qviba<+UNj5+Y#3;MM*0k0!vpQ&s?u{pCYoh=_Uu_*v^*t-5 zqj26$1O%!(`%zk*gxN1NL`Tdz&MPq!Fn1lh%1WO>X>yx!O4p{!+cxlGkj1yl2!r!S?JhunBV|hs-*Z5gCFVaC#MXk7d#hjgbxC z9dlVE)SH7b0)vSgJ3{=8qJs8_h3|B(Kcq;zUbL=`)!EGj}Cat)k|WN5E`L9tx_qpwU!XD*)c z))KU*B3eq!LGR`yb!ImL0;2kBZYcs$+G(nE;b^vF1XSk%r-fb{yem5rr0oo*8^z1Q$aOOtTcGln^r&!PD-W5?|5FGiPH`l|iIG?bLf-s1$UX{~ zsSagmFW7^($kHO`rciEJ)n$&?y&d$xZCjar|J*y>1kc5xFx-TGi>TYm!gP0(8QnX# zPO^xWJUH`7J4pj8)0+jvy%QX)1LB{<3laal>8Oi?4ppIhZFg+O0u6Z4ze8w>S`Ufc zBRuQmkN0Bb&IWMZb?Q1jRUATn?gdANhf}=&<14}`)a-Ep=_$Ee-B~8n8%AiOp(q<@E__mCw&Mw!Y^R!C!Kmd39; zVsnmp7{Kd5asZ3p3^PXcuN&@duMSa9_G2;&ox(n=T|Uv0of?~Kh^sQ0(vp-CQm%Zc)m@D{QH?Q*K` ztL~3*j&#V|MgFzBm0prR4uU@+>!OEn(Zt_SJB8n) z5STb(HlLgbe()u%gTEz)49sR|wLH{8103+`;6JY;z<*F1nRX3ec#s33sKb+L(t!ln zV#wEjA>Dl&@^v0`N_!~Kg{iM#0Om!>%Oa17dB?b0a-ET<2$TPKN)>p@0beHOy?M6c zt#(qN@y2dpJyzgas+bgo;xa9HTy)J<2F6dOlXwpp)XcTQt8p!5+9vi7!iX3#rnYVn+> zY900n31RWY>Q+pHo$5&SS_Zy+$ajOD9c1tVE0VR< zzqHffq4eT|TQPB1_@QgCHg#PUsTe5kl1CnCE7ak;Z$hsnPPPn`%WyIF(zig79zCi!ky_3z5BaK+guKppmnsZaK*Vk)vQK4Wm2 z!H-noNYvazv$rcj@-#csla};AETQ*M8V8)11`p)cV{IaOvOIk$UWeDC0`IKH3are_ z*ofDKD+2%{kq1aXBHEJbI}#XX3@c3nP0;tI$j?fcIDUATIO1IoBcGmw8a5GM|261l zA?juTbg@IYiHtu2O%S?X0FOZ-)eWhb1x|e2UL@Q<0e-?PuBVx=`clWC$t05zr0^>) z|2Qs8Ca-kY$0!sf4{l3>Tp_d6o`8j3K2R*}C}SZ9kepP>Xw!P8k`eq#!x%VGa>}u`Jz>KfE+$+XyQF$jm0JmQhzp{p8EcABo!1s zm}VUxEl%5F#L6VNSW>)jFX3e?$B^0D-8nC-L?V zUe#3J+eA$`XS@NEy5G$CA5sN{@)Cyf+yg2D4rf_Hbb3t-5Sy3rAO7oUTdD3gc*6+4 z3MmYP-QgD2VqwOclE~WHAT(@FA^tQ-gLkv(U9Ms5O!eg%VRc(_ndp{*a|Lp87V3+; zJGlNfUk6+7%q%=l?XM(zNqe4loveQWs<-QqX8?O9*4?T!gh99D{+N8ZlBMOc^<{WR zMFo1>2%(|!@oF)@lGhpZ9)sjl){qs@i>_dB;9)N!jVZqlr++r2`i9(Gq|d>X?7DqS zf4>5o1Z&+_hfk~?u`#WOa+G?&%sD*OS9?(M_1gd*@z}foP;+1`u%P76=Fm`gmabS^ zU3R3?&zH~Ki`2%6dbI|=>KcB2xf(C=y1t$pD;#>sF5juiQ3;zcd3AiOJSG% z!yzY~*w9ITxw;Xf2cEYdj!kBPjLg7tPt=y!yjrSP6?(7aw%$GPemo!A7?WdB zW;riO6`k<@H_*vror|}I+1N+rzk~=`S|e_bRbCVm6ts8Tjy%54yO7}Xc?;AMY;g)ztAC|COwbga6aS( zWA7H?{SREF*Albu(Dzj%Mey3Z@p{g}&GlaI-+c)nqk4d)j&yokfQ? zh8gF_`Y}SQP{fQF_<{IHsGBtj4ekF3jp5LO@UC|%EBDY_aL`-yT8}rK3Gx1DcEWy< zj$R9c4m*N$pp<aH&v=`} zJloBDlhPV*)ATGON^Qk?dggwQO`f`3oIR<{$mig5^je$|8cz^UiX8W9@06ELRQB`O zoaDjV)72@$9@AZ49qJ^Q2f~%UsW81f!SF7}0h87K%}STfojbQEe0$0c9TRAs8LFGr zY{Z*eApO@IjO2%7qYNKUFZZo`&22j>c?S+(jKQe&=>OhdG=9|ABPu);#06mjUJKux zniPH;WUu0fH@zY^;iJ^E7AmvaMQNs~Y=_LkK6bpEaC<4;q&b5zu-|yZ# z#vS($NPfr|a@yX{Ue9_~nRBkVV_!E_Yst<&@Uynxos^Hjzs$ZEF}q}Ae6-7y3t=@g zhuSvk?w?1@cY_?&S&b@cY| zs_iv;YI3giq2o_@Tm3e3k$Ls(DaTiqm4ZBlh!Y>Mm$$@tm82pSAmeG%RS6^nDF&dogWicG=D*>X=qa`Emo@%~XsPQ` z?WwWm6paZEJ)Y3B70;kkKfVTo_gYob1BH;V*!+DeC7iGMm-Bz*Aj+(i?%bVrcfDrggg1V9 zo-ZG@x(Zk3^)LGZ+1xCV6tu!er)J=s0yl$-=pL)9zb>U_&-sYg3)Q=B3-&B{pKK|Y zvG$ms?@LwHwQdDl=Pq45gCI#FjOzMFQSq8K^U|yf7Mi7X|1on|-K^}%bMbnQKHcu@ zT%T@%bOtRzKpZ|QRLpCQT`0;#UjTaiov-e7xlZ%z zHvY|8+*n7JjWCoZ6_@j>bE!uC!TV0!)Zrd6MtuhTc5{E;$E;U^meT_53!T$%54N;b zL({PG@yN>SF|x)3cl5Um_87fXmf^OS-x6VD=Q!$b_4Z4&QTtjSzCf)=YMHwFMXrxZ zanQMgi3d+_kl)t=WGAjz8?8V2%1V!=V5AE6uj%kJa6awljb4)G)KW zce3)Uf2ubwX9;l!n_P{ZADM{%{dx!9szP0hpK68u*+2OTLEHW+^IKy%4&hzanZqiKz@ z!Kj3DT<5;8@Ah^J>iM4?h+oO=Dy3c|qERptjARCuM4teBc87Ee0!`5zy9fy`~X;{2oy&tkhSBZ+vLsYj(A~7=W zY;ij&-ep++VlZ_xxK1;@OlE3GPKmo3SsV2h^?`Nbo1le^`c$0F&L>+k@^KepD$~nLW4t8C7Hb!~`+5(n! z=%^-^QBP0HAl{+x6eG!mCfZ!I462QWM1bapo2%C;m)z_kK?<$i3w_Z??SP`;T9=yX zT-Bak)mG$30Q}cou>JFIN^DuFN~=EP)&fL|51~ue(^A5@bGwbm<5q*Kk3qhpAh6-4 zt!6vgc%cxL{EUi_!%>G#w`YA4Qgd!T|7|o=ckQBXGZ(BD!;#vN#f3Apm)^J7qQfNz zK)+=d!WToEFSCqFa~stZvq6$t|SK$b~hNe!e|Yfq~5 zHxl@PTW+5Ow0N#vDH+Ar#+iDv9pT=14k(F^; z-b&?>8aED~Hia>x6Sl=PsM4Ir6=eYQ=}HrrQY91m8Hx+6^D|N$I&68OGnnUkzFL3yf0Zhe{+E3!QdTdn~pDv{$$9D=8 z!^nrM?tVDk{jC7#?`Kz)m2>yz2?C`*0Sa)1FWVJkzH~q88_7`qm8k?;%$Bqpi~u2y ze_{X99oQI(3!2feyDLT6D>Su+^DHH>c08+-hbUCWqwR_T0vtuQRiDQqZ{}U2g*}Y5 z+sxbj=~?C+ZC@{zofHpxpYREr0psIqzftbr!yv|kM^6A;@11P&giGDny(m}M4b#W>$||7v1JJ>3lRYEU{oh|^ zX7^-CS1OL#WPnf8u+U$CFw^zbsJ7L_`IB&7LL%89M(Mp%yovowwbc&q?5`l&PRRdZ zI;cu`xTjb|wiF7rKq0tIe91-LkE%8_`_v3>fZ?(CMWJ^=6!K1|Wj(t@7$8tqsqM~u zY??Y|OTF=lvuN@j#36we4sK$WWA$i`m4ss9mjtvD8`JuydR>xW%#W=x1Yr%8OP8)+ zpj%VY5>ggaTnf=dODx~u78Qjciv>>7^q`b*LBwJT8*jc7oJqy;yeKLnLG;cLNbNs8 zm*k-69loZKtvr$V;(z%`z_UK8e`_Ku^)oR%s4`sHe=;p>1YVM85y3z^J|hevj%2^Rkami z^x-_hSbn2^F;yugK7AV*E*^1DudtP4h`FU(xg0J2#@mP7jW$X)z!XA!3dz!kdyuPv zi#|e96>rBePSbEvuy+EnE(SV%aPcZUKm!sSiSz5<3;3Je@H@NUzt%GGM{rpc6z2S+ zHGx12F!(gyp2}EjUkAc(i84{^A0;HitgT6)DQ~k%^*kup)gXt98tTTFjQ9IkN91S&H^8gWM@fnCi^7n2#83URgI@YwCln}U2 zEn2zavZBRxAA13ghH{7wdP93t5V72uMS(i@e`SMkT81&(T*lZ<>wIvD;_^whMj`#gq_?oEzrQP4mp z2QDn&JsuawjjgOJEt~Ri8_A~2EZMSMWy{Ue$?u*-vaB+$Q72B`>G`(jF-Xor73Vwtc+XwUqlboYF3(}QoMshWH}-AUv2b5HyM?^n}k*t z3ojWF~4YWH?cc3dhbNqE)*&p}Frci!{)=8)GiJ&%0iA49TBW8-3@E zTo%gav}Z&HlyNE?V%)utnnX7|^o*cU12Fm!5Wk_%eLmRqzGsMC9xz2%>y+M0@r4#& zjzvtkV6sYM2@ch6MSLY1x8_-q0cV3J_(4M=A$FPj%jIz~k~fEspl}&Kd{RXVeri#x zwa)W$)Zf{Y)p(SuOHccYg2G;y4USNB^i!Y}e*Ua%UF4>*8j?$@jROvHhns;Dko{V! zJ*;6Sb*)s1U3sieB+f{-``!a&&-(S(UQzs9Thf{tNJ|Whl$)3qSOh%<6~*z^Tf|d= z`yy5B!KG8-QFXk=SR7c7){3N<&rR@Uhl&xPJT!)!2C`af{b>3MSeaZk8m)jo2NJov%9dSU%OR2fF}Wu*46rZ(#jhD&!y zkcU`)Ql$|a>DfL>HI9nHt7AzkE|`$C*_Dr?PzlD1N(LDm+5B%Uuv>f4iamv3@d~WN zC6q}ePR14IN#@;EUDOM)7k%i})mGh-r;gMN0-xq}#zy16qCXJO4@3|bF%hdg^YU%F z%0uH-XU~P#jIlIMoGZ;lL2TC5KEK!wQ3_u?v=s*HfEEyRQX!3Tw$kia#adpCFsTpl zfdu+BobDIU)41o~=lRzY7{6(ENFZ%uX8}hsX|)5h)eu*fO{ZD+H`Dt{Pt;O^CrnO` z+6leDR`K6&QnN^4_$XmP%hv{Q#c*Jes7iek&K2js=Qo5-UG%lKj-pU9JDJSykUu{b z{kFCK@sZR^;oDg|%1y}~_pKkMh3){mb(4WD3!u*)FrHjC z-1$4}Nw8MKK}5Nnl)dMjq<~h{+i2+c#_Q(=C(^bJg_Z+k*&CW;?gl3x<>VjArOhT>?zzE_-p(t^UDv%x=3|RUK>vg+r>ih3R+np-$JXLyU82ZCo~uA? zuAO6=Gk3}EtjAN;8JfJpEBW%}i_?@3Xh`np)AjPUpP{_|FhRZ`Jd-fDMYM$kefkSY zyJc_H!e>9%4`enjxnNQgK91=oQCQpySP!erhCY24_Hhc1OU_D~|@|NP}-+uco;rtil zq0e_?=yCW#>@~6Qi#=eh=oG71Y^nM=W;I{QMB70o6*E)-+SNnjPZcs&cn;@TK2yxq zQYDjRQ~KdIRtcR?7#c-jOZXa>ZKmL9oxCJ=<>6@ z^MyaT7bvHcTu=U;Ez57OTLrD!mg0{%{of^5bW9Z^pA*T0rGc4R%eHc_;CsG7m9&+! z0^6J(neHR|8a9lLDGJCRtD=x{%dOJk3O$L{g!{g`3$6E;J|EKxILkuD3O=B$$Iggx zNYA*IoJ9|n(BG4K#)1}|m2$0$4!Zc*mQL&7N>AP=?-1JcXP~0%LK*_|NkgW9qfK7~ z;thI;?72}d_x*dM(6nS#g395sWTfhhyMN(Y0r%yg?LcC_&e#oj{^o!jWB;}u>wGDW zH|d>>r1?SK;?V+Mrxz^-OPQ3>APKN(hW9tomZZ$ccw2;`a0P1CDZbR+Qc4sX{Ubu} zwq?MNPwJFMryPd1RSl7dTe{mVPORfzS@D2jZ#E^1HWN>^aw|woxrL~XI6ku8Ve6}+ zR~uOP7CN7+qSz7S`O zmu*SR;;vhfhm^z`ps(#Sdxr!$KU{YR0>Nh`o=m|j?nQyMSQJRn&rfmXW@ zIs9SkBIBZjWqb`Ofl8ClPlZnmzQVeWSl`^;gm{aLAK}Z6s_$;gw8)6)#qJo%?hTX- zmaQS|iPO{{sNCJPDV#4pq-L-iN}%r(+WB);@hqxFq8&ZfXoQ%IN{y7>>v?aSj8s># zK=93W1%Dj-GOU^VhYGxM{qq;>FkZHka63d&&4Bt={~nfWaLfzFHm0% z!F#|$a9DniLs z_>IC{jArsU59-Wb>E93bf11ptLR^=ke25o|_nV()nS&4Jd|^Yt`9qkC^VH-soell) z=*wy2f};`XqY0y1-s8|+yD6N)w>Y+%l=S)^AiK!Bf-7{5rqB5M z?961~K09XCVormXqP0WG`$CYs(ju>(z0$+Bv1VRxvUeTW6=Acqf9`!!>?Ec7LOYk2 zca~$5V*pmu>ShqjK{)e?2unTv7sN^n!KJJHPMW5Q18LhFs5dc_R`WeJ$4@Q~8vP`* zO6U>)&1yl$sS9`LHrW(Qq;9qGdri;t1OU4o2}hcJdlISf)_Rg_F1{a~zuzg-_yC>1 zeVLPI`Jv-{5W4BfNX*`A54gk!x!1qR^PE!rffS~d)$SL)XSeNUs9jZ>_@CWx9y_Dd zGphH27}Mt3C^3DOXakMW@Y-!WTa#+=dr=qX?;qlqYzrkCG@25valbD{$HZ@Bpn2cS zK}(kawqR9ix}hhe`!w{m6?~Df>&n?pD|z8Q)CTKP**#~S_DCxekObvdM!T=fuwtzF z#8mrCKJ;~#Uk{L`tcXg(2hbR9Me8#P{O?2N!5ul@3&UuOGQ;| zB~Afa2JfP$azGtbDgs*HSj#t9ww@^AAE2u7NPE*>9CRP9?ujikEPppQzo%sFrEP;f zwUvtLtl-eXp3#i24zRz^Qe{5=rKfSUKDhjlMsjzE-QaBPL>|N&4E|JD#{6(zsA_zPrA@*d6_;zEp+INzYdx$eEa7IV7=eS>%8iF?Z_ggmoFyTedOW z2JUdtAwpyC{z~udaqz{1!joQv`vrlAb2GEY0xaf}sbDcDe4VRlppOdAaAL}bJDMhG zv5wsz=ax8JrSE;cuqBFYcH^>Pc9I@gkGe0Mt1nHF?KmCjyBsVCqh&@<8QrQ-sWiZ~ z-^bPLt>*N_d_I<((u%$`D5AD?-mhx*F>OB?WI1yRw-v>7&a1zD=5a)EQm|~l=90-7 zgx&O{$Blh4;d*i5Uzw`NuGsR1r!-4N&^OtW0l^{9dY}66L}+MfnN`Vk90^^~ zvUbot-X=TfMN1SIZ9f614S^k1v-w4k7ASBoBESfzh}*JrHYr9Swg!{$EoZe1B$bgP z8`pWf_FiFl6H*e;!&b6Yf08)4~QbD3t#I7qV zm@a^WlkCUxN%a64-LH<1_N>=}p*Oc}I|uS0MmBI!Ags7*%-Pp=EB6OWBv6>p#>s?w z`C(qpyt^HKZ-3huTqsQ{3g=>x&h$d>Cp`tK(t-B7A8uOLinwcb(B-%x(tl)p;x3vv zc(@yjr?DsqTcGj=7kkrWh6}5{nWLUZqSG464=f1Ks(S96qz4V;^WO~2;0&RAhlJ~U zzm5>Q-*fi;`93+@^+f&BVpLic9@NVndj6Zg=Rw_XH03aE%tXy6c6N#uF|{X;q*55) zg-?pu0%S=^1+qisTX!xE4}TuHtLbqy1-aH_e|^kgv)?s4I&bCZe z5IE_Q{&x-F4sq~ZGou%cObk&a8TZiBV=EF9x!Emx0o#sUpRk5oK^35vP;g&=@;ZX_ zRcudBMZ6bMPr%;L-WXhf7~!J?ou3*+E9O7sc6l&o35wYBCdB&t5~q< z#5?g%Jrv6#f%G34DB!43RRC!8@m@4Ch-T9eDk7}$uFP=(O=22uG(T|v6w6vQn1)iD zoz>H^4K_HDQeL-Lu`eSwJ?gzaK3>*P2v~bzSJt}Fc z%-1c)S>$R|IIzQfcFPT%|12C4-*=W#?N+fJv_7!yk4& zf6*|x{jn%fK-XL=(c5pm<>#I-l5`lkYzhEq=sOktNs=aymlq=sTTF<0cJyDBf(Pg8 zpT)yD`Eh>(8~9W^@rn@H&{g!=SIw+^qO4j3rN^HqWCh%v>>60Vv>++QkuA$C8*8Cs zhbRy=rItGN-C0qDJ!sQkD^nH0;Wk|Z*qF5}_77i@~VcioL92}48zEU7Sd$v#spa;jp? z3k(gtc4Vwu8YBmPvGFQj!b&@KLHJ;Dv3nM1%(K~U*c;KmNrDf$wQ?A>T5dmJ<#Jro z9i@r=*J&BCat95W}A>alpCtb&v-(I=a2G|S|xg4x=47KEn36H zn%70|YX6Dx!Ejc&mbr(05T_et-Yx&1Z{HqadyEb<>A7@9uAs@YhsP3@C}wr_1JD|4U~K`i(ZuITG?qXWn82%Yj+lnQUp60#0ZHl z9>Vt|JgDDO_8?8*SuMPaZa`>y?gj52sz@G!?HF=n?XT{+t!XB~+Bg1<@;__K(GZnk zsxVlvs+P=ASx-#?0u)T!T^4~L;EV~pQsp~t~uh`tEqL*+ZBqx*rXj()quuxX;3(QJGlNFax=B~Xfb*^6cTXu)jL(FG^9!SJcG|>Ftm510_f3=3%3n*Nc@mCp+-Zq#+ z@2Z6>s(XcqWjP%yMZ%8x@KeLoHMP;DHRU1V8p+Y8K0tXF>y zw6WO{4vK4Cc2jn4RQf{`AoDykQJpiIWujUD&T&MPb4Sfs?&gQdt4#gQljk>OzTxm*@f%@a`C~FlqmC9G<=v3(o*| zQxn=SrTvL$Ks(%EZb;Z=Qmp5HhNzeB(dGlDnWc6E4(|x*wKYzP&dtq?##*;Zn7i20CFzeBjIwJ?T!~-FGS)C?UZ7xKqrEC6sj^$ny zUWEhLXfh>AqgG$PEFllMBHB^JRft!WR(|FXvV#j0Fo|k+10LK_36UEjCP_MR*_zqS z$T;WHO`D@@Qb9LFtW70n;v61`y(qym>E2F27ldO7YL}Rmoz;g(HJ{MS5)3bl-oX2O zg&JMl2IVG+b=?UqNz+kyH`$CT4LM{37_Mpk#U)o(WGX1-%7mXxbuZasT2Q88&}%;x zbT!+xGCJq@KUhN=NVA-sIS`N=d_|CWFg9Vk;Vn+GWxkpuqow~yw2?C{i@HnPhLDgT zy|oPmm^@c#op^xN?_@sB#vPm3$lv`h{)?OK_3JSQ+APq>B!UpVA?+^m=K}~I2kW#v zs@u`m1u~1MxYAVUZd0K}(bT;PtwN(Xi2D&rHpOZ$5T7@o4t1aMT-|aDawJeD(Xrx> zeN5B15l4bzY~^!l5~hyQyu0}?Q0>-Dc?Ic4MyC}nr%Cq<%Xu%AxwoP{|Hhb&Y5O5& zn+Wldg!89l>vc+5W2l(Onoc6CAQ=-=PNKa@axA<{D@USfgxzHC=wSkTp`1gLX5*FZXM7}$otv!2&d=5V)z}I9 zUS4S|#SM8^%S>5t9F-zH3L6^kl)B3sq_*TmDq0qJ?((S4IGT~9u)EQ|Pj}Gg3;+`k zmTq92#N;L8*HB>W*R`;v=jBl~5*|wt323NR9aA-nb~GFSGwm(Ln1HY=Bsx@K{FBZJ zLb`q0qkxaoPW}d1MAa;hyv$-Pcan_NBRHtC%OiLs_tiEs_DJ zsjpjzvmJAn>7G7dLR8gO7Qnd~HLNn?%BbUD)L93Qg^Du7TD?KX$ER_SI>n>@nhd=G z01&C5LEI}E*&Hw`7@QQ$ykjS4u%cXq5x~%3e1vs}R7X<+CTjly)sJt>!l=v*Gu#4a zSfvi`F)-=yggL!KzA$1qWhx7EMwMK6oEOA9unlEpFdB}=WNa= zK%u~BS?*;{G9!L6G;Zq4m;Eps%ybZ0{0Ne~tWtY6=ei#7S{MTZqZBR~an0+OJ)S#- zJYD28*ra@mBgaJ~8j&swzA~e3VXY#*W_`C?YJR|BxXHc`)1hEQNdpFUFw^V-62Rp{ zuc|Y3QSUQcG8-rpfQBsP-K9+>uZ_k;|iagMA);$vvDoxWYuW&=W%w&l4BC*w2$Ux6~>9a3g z)eX``bkCE=S};rK$elgw6ol`hYeh9D(%)1#iHeUI(g=7&gvd zX~STG3gfI`5KRyTt;RuC`^GqvjjnmZ+)) zxpj}=!hmB$$4Mh>i4D2aGI~tE7Z&=mAhcMhzzBP$!mpedF}ieaNus$=^|<;lu<%HD zStTF}bfkCo!C+Ydxng9LeQ5V+ZY--h5QV-ui!nJ%3o%R7 zGJXdtGrsd=jI80(co=~s#essHn43#%NZFDp1qS5Hm6=S;i6afP_Kv64NL+{u7g9} zFOQ3kYeHI|zO4`r!K>cqJ0wu}(o8xSywQz6*1_BJ3u)sy@X#83-D zwZd(v#({OZ%}*>9c1v4h(U6~`=mc3D?ANaA=r|(x+bGJ~sH(vu(KeyTfv`2I^#^=W zzB+tSWi-Mq2rEEoAJ``X7YYB2*&ke|dddIvi00F#I)%;Vn}ja+3)u-56xW(!L?Nwv zIEH37V^jA(LIIQ|Eq<3cZ!KAR9~AGPcnRj%I$Xk>i5atOTT)|b`)g?+K>-it08V+ET6F?|@vsSbVID$fmFRf=s* z4p9{iIU{kzK!(TM=qNz4GOBBU-&ewSa^fQ>L&o zTmoANI`FAtsZ1LFlJOf^m1;o@4v0=r#GrpV^wY>6BNxBFJUV8%mjXRVWI^~c>+V=j z`Hh2j3&)5tQ39dy`>c17zVj~JDp>1%>@ccGGTv&zI?t44e-R_~I*Fka zd6+Bf5VRrCKUsF(2)G=ZX=tRjM8JCrZ|C4-pb^_9b(ny)nPO187i+pJ5r%(I)b874 zq-J+_CDQ$)2tf4T;KbR8;x+`ds}DsCzC?&qptZtk6r)e>CkQQJzvoK%VB}Qqn38tF zW8r8<{};RvKvI7Q!(_ZwZU-gG4k-+OJ|AyFquyZ)7IeoMs6|;P64VNV3U3IFg$2Vi zQM$MZ5rp#yyjcm55uw_Gs${_XESm}OPY^oC5R9V>AVHZ*D!;ji0fn5AS~0B%R7o3FcMF7;!0LK=K+S0(7xv%XAaD-M3pW?9|tulAXY2{Y9_vhiRuxQPC(Yd8aMP6ppu8qR@Ngvos1A=}`r}|$KSF&R ztW#ZAu?Ct~iODMA=}=JYIx%x_7VZW(G|{#Un1GhMbm;PI!mZO2paFL5tG8$AjE=#? zZmM4B%E`aQ@Rxa(qdp1%`I}y}zYm$+UP57wXS^w{Il+-s8#Q|LKDmqsh_OAr54x^m z79YoguK6FP;Jd)~j;7gsp#%g$&UDUDDER5c?Pc0AHaHjTRCN;SssRHWvn@~_$(G= zH$XuY)=M*6%^D>{8t0jY)8uenO#66_`m2Z6CT1&S@R-IFNExtNuv-Bg(V6~HTcV zJc!PV(B`Wluv!3B^X`-MAiD6Tb(w!d*OVUewZG}mK}%K*5(S!UL0#ts-OCAts`&5W z=u~we-Pzo6HB`Nbscj^t^8!ody7h$+cHu#~vx2|n?3t|_arq(q`T9@guGoK&*uyq( zgtDW|RyFoD)B7|nx%=L|drl!g&lg&WFL8M=XBWHN@^3mfuV9n2Ds{N(t#+uO^0q>K zA8-{G3ByLQ&J~4-acXF2S3foLElGY&Ovi?<{W|H`jY=K!lW0R8xrrBe;tSZiSt6BT ztc@t&_C`p-+p1DD?*&1oh&;gvDz@PA|B3Q5jlKZlpzK`XjibTdZ9&Q0a$%~IB8j76 z!M37+!$7_j*poQj`ShF%eM``Et)q-?Hq}>6SoJXJH}fOxh{c2bm5?G5uS(BBC;Fi^ z*@2wmlK(*7`f>@_QoLH#c~ty)gl0S)NRYa~C8)Zfl?)Nn9QbkGz3;7S$XvsIN*)yG8cTtuth_xuL{JE-yWXr?vaeIi&eHbH^{}VCH(|^J6 zGyjq1k)99Q!=)qUF0!FZ+C^oFR3V`*QZ3U9l5`^E8j^8QZ{uR^REo`u{d{REEYxQaX;PBwt6aSgkLCkrvDB{}!;FW24xJ-JYAgoI(f?8nO+S}Z zyR-EqH{|R^Qq}&Qb%wtrLiU)-$F^0X0a4jD6L$PO@ghg$Blwh?piLdU_1?INDKw!s zu2x~n{f}UXJ~3o;Y@pyd#Q`VahmG3(M(7%2lJI60_fq?ozs2liZVe3d<7^(VzBqEX zm%P7+lH5Wvh{G>4cCPao>i#ptN2^8rBS`x51yn0WLzLIMirK0Suc5TmwQ=#Z4C?tr zYvrtc>WQxmT5!svkf5OO{lUoijxBcNFTICsI6K8^C*e5QIRu(~Ex*CT9&wlyuLduZ zWxmB|R4S5RD2S)gJ~+UtEJp7>XVdv3Q+MK`#6|v)DRuFGXKNG%;OfhaNF0N?UATstCbA(NPOrJt;%eqs(p;07_6Mx{Jv zMPAAoL{Rm*yBh-BsV0LX8$nsep&H+!H2^@Rn^d-dExAGnp@l~#@=iE?8e^z zo61`bKfOWB^f1g`0;9?`lgfofWD4wQy zigXZ%%PfFzGQ?4(>Nit%%0{PP?H-y+^$%rMZ&6F7@4%-#T$vLiFZoJz_PkY{PZzO0 zDfqU&WGUI{k}Tg9^+kF@kpbk)yevEpHLU-$uynAVro<62#9x#R71YO)5_aQgoP!qD z=07h8#QZnc0G#d0@6!{msH;vpZz|+aF-(9=)&sD#$Uf*FNPM6#^Xnr~hH;XIJ^cH^ z|Id;Pk9_+WiG^c!UK}#EvRC9`8m^-V!i2t|=a28}^UZzkbDwjaYkgnuGvRu==NRZX=};&X13^>mA__%`N1^ud z(NMu(?uD3h!++4O7tftR6?SpYz&|i{cpVr~e1HGe)qU`9T4zlYR}_k|1^FL3UWAbg zg{rqDsNoH~EPo6$ys@09Ix*cZ?bxP#E!i#X!I``A&(hp@m1m#v3q|*8ibW?`D`l%m z#T@t%Wg~K~SeH%Y@{3$zPxMJPQ^}?3xqBGR{Guc zp&Dm$F?dSfg*zi!`T_dbx+})lH zo5N${_f^G{aH3f>yOJMFZ=s@$FcFT== zuP~K17Q$|MV%OaJR}=MSVVf+h&e^BD8PA}+z1-XCP%)fP7%}$QE?rFa)~5%Bx)JZ* z^Cz0$KEFThcQ6W-EkGNTvcA0#aK(52<`oe;-!oX%hZr4xVO1k@7xn7XH%4EDv<^8n z410!Cpm2#dLW4OKJboA}P#f^$*15Y4I;hd8jwmdR{rButM`1=@74x?3Nm9183JuC? z19pG#g39{!V!zElZibK8$hjDua~&x4SKqf_-_p_tF{dPZ70Az%m?%*4((!y8C7(Oc zI<3CUsK#VMkX47RBDD2VfO(BcSfS{BuG>@7Sj}__VNJX9LMB80j2TL1|0~)9*>QFCpq<3INvbR zc**PIDU>M@pabMNgCMK0Hif_2#SOsb!(f5lzbDxw8n%`+|GhMQlE6$)Sm5q1d9Pw7 zYFc{2B03RyyS)R`#Egi*e{=qtQ}Ent*k`x8FkaH?Tnu-z4E1t+k#CmQkK)(wDjksn zv%t~@p(9#yJQ+`PQAYeJsg77DPqZiIS1ry z?L9@_4gWs%H1x=MBf&}1#}_7Xg|lKTWtyLS)NMpeH?8~SP&hN=C=?~LD-INmus#L< z2XuSEewb?DJ&)%XeWms9aWk{el6ZVp`i*+oP`Hxkm?myRSDYb5-(Ap$7K%{KZ$8PO z6@zLl7}vfQ_?z0;A=)%#vz=JHB(=_ye}bEbt&6U7p$m+QGrWFx%5iJKsYRj=nS=OJkes$vFM9WdZ^5@2bA8sFhW;I<19+Sp5wovt5-ntVs1CW}oEo-0<_5oQgzpYD{3$D9 zYuMdh=)IupGZrrRuD}b0(s|0mnEl+7F+187cS&K`x7)&VxL;0z0+lO5VAejnpiwIO z9<4Ls_8UL4{nIn@+UuCCbQG#D)k9uBxUdVYW0SW|mdE~?NW7wJghH*r>GV!7{acI< z7=~_UJ4`GE+mLyTrOEDAq;}igUiEbRtB)jsUPfv^P!0?K^@#~@d5g#YBo~gwcV~Js z5}ShdO>paNCBH@Fqw|c1(dWA>PJcaIfsa-%02G=e5R1XvZvL5%1N*C6{rZwE<~edS zDH@90*ia^3@hMVXsD~>~`Wo0gk&eLZo9$T+?yO^P&>2N;UxD;1Qq(ev$XwYEFg@N< z)Q>7$k||S^!Ax-niJ_Uj9cYG7Jx2D!Vv5QjC3V^N#)+gf}*q5Y0`=T|85VD0Y%MeYLj{!n4`NopBOWPPV$*Y=a7 zS;Q_S9S28=Vy?IqTM!oqJAt{NPm!9nKeXbjj~17CG%`V(I*Xc!-|pr}Ix#p>;Sr)0 ztw!}r@k=Qi^1f@%CIxd2fxj2%Q5*u&_)=XE$F=*)lUJ*=k=2fqS=91D6v+}ds6f1p zCkR2rXiZ=1w(pNUzX}y)zGI$3ub92ou0uYgL10n4`NgeQr?oAbtNoKU;rHHOTeX=B znBQKAN9}XPbt0$A!4}WQDKR*b5&w=`PZ1e&PlrVOpH&l^@ku`&ecQt)8_=Qa~gA~X=5gnwDz=mm5{;Zyh5Hl-(R1AMb0tJ0g zGM~MKDLD^wB8hTV{NJwhZ}x1kis|*xv2~yiWT!CQ4nU!LkJ4t8cc7)>dpoJOf7q#t zI95$0Kw^M|nlc;4u-;^Ql{a-1kbJ<5;3B3W=r8HDV=r}5tH+<14EBjTjv~Pt2Ez~K z{L3KjF>pnsI@K#!G!djI`-)b?^3+B)zpj2@Lp5F>9L?aFV)ZFFH%} z(`H~3Hqr0bs2VrP*PP+fbBQSI3-m8e@X<<#jHb-`M9x0I5D6`uUWwjU_ z<*1RLP&G|PLc3)urFA(XN!XY5kHY$mS!?hMHn$kVst~!Pg?q@i&At^(Ptzm?Dez6c zgBhF!V)@zxz;jg36}rKWn-H<4#lXN<+|1304J5(-iY2LAP9S=<(Zl%q4Y>2xt$UcT ztB7k}K2B@>4E%ToztE(dl`-=5y3%H;lW?{@5v*c_o)k>;b(rQ2A&4V+!FNirHHJs= zo%|%}D+I%r7PJ~ounIkxR#R!|&GCb@dSMC-w9J{vE4i9M9M#Hq{;(n`TQ$gQ&wPVC zij%NHgk0v32baHk|k*awbV;r6q&S)+#2Qhx*cE&kJU zFG}9s%vD6b!V}9k`2$IAr$`?2gNCsDjOVa?oE$OqT9^M)T)H+E*Tl`NV*>)H#osRx^UbBYAvad>w_j;eWBX6WwEqY{n0Z*EWOAY_0!pS0F>wO&I9Dj6ARa z@i@RizE@sN!-VOEt&?+}_y}7(Mh+*1z|v9*lMVZ=4!7nR=6_%-9Rb~cr;6kSq)8CO zVLwQCZA7|zGS9W&bj7(D8u(hPOoN*vs4BdLwaJ8H!+IkW$nD}aFFuvnUGR2b3@ePp zoM1VM$jN+gRK5UmYo}vqx=GS>H5g4J@=_W$OlbZ~Rf*U4hvz=TEAZtaJG1R&Ja=W1 z^lcdthASaRK16{p=?F57HcW&3;|W;!uyZp5vaM{`?}xupIF&M}H_2Y*M4np3u!k8W z@3U%(+y_CO#UZU5>o>Y`iW+0*T)j@VOZO{xip8L!?qkD{2p6<(|2r^4X=hvT1&>|3 z6efK2O1sdg6*5oEMHOn+`1B-*UQNq7r+8TjJ?;Y*b|5o*H5N4_*Cx2)R=?hH`b)x0y0=i0APaHyY(uT7M}dbwcndI7Oy#z+OSm+>Z20D!6lH6bdzlFd`tj2LV< z<_$M9eGE*ID@V{f2SFVaE4i=(-9$zXVdDei0Dh8WC4)#snGkfkjhi_t0U6B;9|R}9 z{A$01Cdn!cdA_X~bov=6ITSLYmkZ643rSZISFn=7Q+OQYak;?MunUdOL_E>#S(ZLD zsKtJEanZjCoF(Po2Y5wuYPA}j1?~qJ8jbgGTz$dV+==pApD!x??vS3DZQ<^YU=#Vk zCTS1nV6|1+T=wbd*-#MV?EFhON^01&q-88QVPkFletYN()vZw`L>js5$ODzZQPbHN z#h*!I$Tg0G*G+)vS~^?oHA`2;$6GJxW|0YlVEVg9GdmPetaAW4h{@WW6;5CEn$*ZIMK5LnYSGc$(59XvYMSOmhBn72L zbN?BzUnY@aT3rfEN8ik3a6QyUPhz>zI3q$(+mD%?bQK%MH?o3O<&Z^02=_q6^so>` z9x82)?pX-f-F)djf%x~LPBc0gaUHobt6H%rvKAJ9?e>pP#Y;ygevLLGYHjrZIs86& z@2!s9u*^eLG9?97C!Dvo4vP%c{}$#pj5HjKu*vRpkIDnm)R-s)m5`6e67P1P(c@Nd zz)(WSoq>(JAZHLq2+}|dc}jJ+3chh2`37NdRD%rFt6W{g=MYHzBXjB z7CAhQnty(LzGUw4*#;J23aJJzkq~t68wBZz=GK2fnqn3y+AOko9BHf>bI*ebqus$o zNQJQ&2ICGixO8a?*#GR_l+Sn^kpVgoXh?+*F$`e}d}O5l>E<6CrNaJ=(TGiIkw|T@ zXI!FY5EbkXiO^z)#7rL*qEZmMv3Sbk7z3v5*s%Sl-suuL1+jMvKH8MvnuWZj6 z2@ZaP#J%Vd7{_Dx%iav#YM^mM#d+rv@ZgZD$uof|%OGKOP?tqUOLhJ2g$Rop4Ecq~mHLnw4s?;zn75ol48iwIcA)pLMs9YMB%tZ*Y zZRBR|Mr?x!#@-9YK7A67xilP0f zm2TB(r!#yc!}F_m&JTBLtCvYkK7fyW=qG@2XwTeeVC~(J za_Z*40morL(!RW|eMp_SxKb2Q7uAfICM&vo?tgVe7f_XRynZqk=*Bfdkk9u5XSuIl z*Iatk*|S9251@4IzSep}RBsr^jQuxrWp`r$HqxfW@+iDKI&VVkp6|7lxuuEr_Bk>S zE?1tX-?;qZEmhJW zC6kh#fWpzd=^ooJ3tQwh(Nnyb#!Af~mEJqD-D9nh?UgJ!PmQbo>3Md=KcRe?oZI5F11hH`B-#Cb*5FHzl#a+ zIy`QtX(QzBZ+B76zP^ni?TopWZkR_!Y&0{e0_=&XE92?Mn8!bFku4LBqtb*`_Ak^d z)Vmq7s;)ILMeN&u=vn?H#7h4EQNr?uV=QmqL*i=EmII!Ub}(YgB(!+%{;rfYQPp0+_Zh zRiSy+OXE5p_rvcWfu^-RjU#lsy{DRGa}vuhulf{rU4f!o{m!2sLgfxa2(lb5_(Zek z2W;M|?{p%j)vR^q35fVBiybn~+nOcy)Fw~V=}X8bv%2{4(h9I_oA!jP+!Ku4@(+%Y z905RYZ_&P9dQcUxHX9|Q|92#B`vFqntf!=Xtu`mX3#h1fQ!3lq5oQv?xGP&@?1J^0 zBX<_+ZWOe2wI(jI*Z&GR8B;;#^;_ardrH784IyKt%mpC|Vh*1B-xjk0!YTo&rhDx-)u*Kxbkw8H?0N)9J4b@9s79E? zf^nE$L7V^f%79%hry~1q8Z-hbqK+p=fWkSjQfFHF%w)~voj{7$z_k4`7W(T|-($5l z${XvpmfHQ|uqgRBU4tO&2Oi?Et`yaPofgwiswrxHDEH*_ zKN$q~ZD5Jaf0d})wwOV@{8flN$4Zytg6O!*ZGUD|@CO*62Lnv&eZ3<}o6++u4z@1h zdNxV0@w=cvR9XE5Jp*E1);?E|OX36#&P;i^`|LsLOpO&^WDufdR8RW}-F%>BU{_>^ zHc(b=Fchmo(^L!sv9$s=_o3g)Y*ZNR%E5KSZ#6zW{V1bG!JL8;s7q4hM*%$K4II;- zaogY94;TcIvLoF;t+!|TJJ`8HNkOV2ICC`oU>-2YU+uiz6=!Kl30au7VBuDuOE(HN1Gp=`I?qIWWH6zAKsmjD@n?au*kdslYVP9_Gf-5 z@fd0H4U$p^)6?D%V(W`s%@qFYPvp)Z%AYht^Vb}yMUH|5cwLPv=vr_rrc`2Rl8DGh5C=sf?J z>978z5pKqk<++H^Mw_u;GaJ1PN21eP3i<-=kIO}t;9?M8NrW8p9SD3Po{zw+=jr0n z^>Y{+S>;3oQMdUb>*B9hsL`NM zjdf%KP={n(IYf09nOTryu`m}g2x-6dfCd@3Q7z}Ywfc7dt%J##rVlaE8@I^*O9_?R zo2xlAWRFPJxy-j6^?KjMA;!$lrc_0vT{cO`^^c%z`P`D3`pEn8ZmnA{e+ z8UK=#4(^bcb2(Nvi3;Lg%c#(D4t&PdjTPjB0=EHq&u(^oGiDTkU-A~arkpqseW$L=Y^GvoFB&1DeYY5=o z5!arjm6-kJp1hUPSkpF?S{I;`2Kk}qENB*}MYnRaR?w^moVKq*P)QKU1+fC^t)$fN z2(;p+H6BZ@h6pWU8j-8 zyEQ_t)XQcE$thWpGal2w_*Z0YM-$qJ`kW%|HH4n zaS)j6T>~fi>TimJuZG}KRKH6N>KwHgV%P2Kv-s{d3KrWt)8} zwC~hk1|>U);o=D56lOFc<(OYUMf$(f2C&;%PWx z;(b#=e9u%pVk7-&kihL+zO2P9c|za4a_Y&Q5ApC70NrqkeWz*dKm65Y`m-HqLx)!Y zV?f);tc@PvMUqFZJ4;_n2#o?vjaT&FT6^|UggP_k2|SwI{F0MSa4Bf{jN3bb#J8IZ z4I^RwpQ_e&H=){G4__(c^niFYTbQ%s}b7u;i<9!v*^fxm} zauw4*%@ciXr}d)M))&r5#z-uVoDJ{4Z`iKbl~q?S4%ppcMR#a-uxW(Uj#>5jfT!%% zF4GQ5@d2m(@j7L&^MHk?j*{N%DQhL)OH5rLv?qgN8ey03{|)*`d$Ixv`l~Is@6L`+ zz=G`EE>cHXb|khi`-gqZhiYn|3U}(@hzZg+9XV8Kbj7a>P{GEvzCxD1W#mk{Z`X6< zPthcWdj+x>k|Tok=Mbrv^oi5jx1YId?r-^k!KG1q`A8J!6ovi;(Cd`U%LKg_0i6R8 zj-UQJs@~~=D9jrW$%YS;2As>C$EPkMFi6T%7{~R`C}fWWY%MNL=!G4sB!*<}r14_( z0?JIIoJT|0bxZw}pl4q290N|K!vL!~l@3Wr6;8@&%$z(K_U=9OMLo_Vaj|au&k&Na zXynMolV!oGk%P$QjvBlLpPMa^CFrI8`&{){$b(@0Q~>mFe*MR2BPt&6VL0=j=@Q!$ zk8{gA^Qoh9ZcEzV0rk(#F~#B?6v5L#btkVrI7)gxKUj8iY*fB0&3kP$v^~idf(lL< z=CL0Kr@MqbVQP_Q89+L35CGp+LB4JGgP>=Iq_ony{kQL~y~s~-b6!b+ws1yi>DHznO}(S8Grl=e?ex$~=;yxY0j_k3Dy8`HPG3(nAy zu5KXqvZ$#};r!KmO6NtJKPZ@4733{Q)YspJ+PXr(FqHH&{CzM){p%SN-SO{V6-Lfp z*}Ajf5Eyy6>VMShTT}r{UkKt+xzTSXs51*qN;D|?4gm7pS_j#S)mmEu#{I_8GhL9J zA;|~y8!xxHH5>fK1E$18!BJR@#k-vGV29%rEW#L01)_!zGF7fa{P}V_GFV>`keNoW zD1O>ma13=miO0QqsfWK?8JsadWr`J!tmB!Km-UkA(UM-*2tn0@bnIhSb9{!l+K=Y( z)8afqmp7Vucm7LK4e+ndxCy5d_4N&eYbxho-UnXs_hQBGuSiG!Iy?b$6>7aAHtd;x;7u%998n_Vspl7$ za}nH8?~?bV|BxSVIx2uncntz2qlQfz7_6kyaY9fUgInGwI>YDwPNYBKRSi%CNmwXw z#3uvZBgy^mxffTh^XRLSD*juQF!e=fwR$NWJPecH0&C-_eJY6WqDnEfWXLnMA^i!f zSV2mjUU2uxNW=)1TgDQh2Y8U0vdv6S{BYg`o*H`_4Zo3DlL4RRb3_ zKW=4k4~RdFR`jQ6KhSyFf*x$jbHrbTY(&!YtQN>fMj8HAqqgr0EH@RFTXoo!<@+u2 z3|PZpCL~vi3$?xQC>p9bTc;C{Y~#O0!X8@eKgo^w_S*jtg7kTQ5y38DwHFS*u0?9n zDRaJi!osTH$lnTyIrj*!&gK{W(TPQIT;zZA8Q0716rPVBFpkkHW2We2k&rn8HLKf% zm4OC?>c$`R{IoBbui7q6(8#vnrNJUKQs};lxQPL0+-kxAHj5qrtcrD zaJmvf%0{C3A^_me@-w`kD!+(9dL~x3R8KGpT*S#G2A7Z5&;I@bDe}SeJNZUMA1ONC zK(4Si;6_MlRV`1~J$WJ|Hm4@}&MJkS=7@Je)WnZc2N98Cv3j0qCYSWS9#cx0vj%~} zuyt1i>2uqc39Tn9AF34OGk+2!t~@y==F-jDvtwrH#1nPi0<=iJB#C^?`DyeQu29v!m>c1_cyFaA_B4R-KGV_{h8UjoOCZ9emKYWvT>> zNtmP@9F;2^p8y13$+Gu;8_BHiO+n3f)~7D`lIy`PFJF8A3JNzf74r~?Zbb-%>oDcY z?IDK>whOA;Ziml_%mJUxqD@b3vCj9O?i?;ha)=o^vKiGy+S{_-R!~HOPkqdab|14c zNCA8j7eGk}Dt*PEQE%$GS18YZe{$z%veyi#7Xte>KA%iO1mFyNOgPqlfE?zCzHBaKmvRE2g*i*EFuRDi9(4usHm> zDR-fMv(Pn=n3lVRbWn0i8`W)oL$7f@6^kzIDUBnqHAY#kc`=8brFf71*lKxazRYHQ zIH6=_^J7K*DXH8Iq#N}XD`~ly>1H(o`YQDK4#yJJ-@FL8heMl zzv~ktJ8!Iuu+NLeuaz$2r7UFT262BsC3&^|;r`<@Q0B*wNGB6)40M=uT%WxMdyk_wO>ERVAJ)~FOSsQN!wuaC7^~aaM zmRDHjpBJC61i1}@$h+Myl{c$Xu!d`ut&6EG9UOX)UBV(uwVCPXxcYN=M)3T6?*XUO zhUF}Y_(fnQkhnaaoykkJ9rGPzUWy$~7oV)Kchz`pzD;Jny^Se&xy9mJgKN3^BdJ#nUJ1 z7w)vK>SDJRPco9DH_Drpe>GCZv5=A4;W7{pzOH|gzr?Sse>6faUt3JrF&?-Ut3nhS zVgZ3A_Wi=N%moKmSD-+J3OYhqAMB#EUx=XBF|W3g&B8{mIzr-PVw4gw0NC43;9iu1 zVLf+~IdfEKu>MR$lIz^S#v#KDC{D2!=+bt0uXg=K0-u_?bvYZ^5~%}Q%=)}aICmA7 z|CJ1T=$q9eKo;e0ebO@r40(obFl%;g8YUXLIv#?;4QZ#)Mg;3Y-TNgRdxGkCP6_5} zbw=KSvq?u)+;*1|8>Z!cjzg^^WE2@X-5yiLXXOU7jdxFh-Mv4l>Nq+HkHH?|Ck8c$ayNu|ZZ98L`)2pA7E0I+Pgx6iQC@kW*e zeSLHHenTP77w&T(vxrN(N8%=2@x|H{9MM}=eVYCo%B*M1AO==jUu1bCA;R(T(6g;( zNa>zWa3PA8$=y5J4wl^# zW zjIu}Qs4N&xd;R+M?7W`ue<#aod35<{s3gAHj=(l&-ZkY)0@W7I{Cv=u*feC+y@paV zqgKor6WAlC&tT1)2XO<3dSWl}XBAiFnGWx#zZa~3)d!T+L0X8GZWV$yAd$I)2(=S1 zT%;$xm%c2%zrV|)E8(BM^cj=?@~ZP#)+<2#9~8o_kXoG>cPWHgb{QxMs=%1;lp9fc-XHl~>`J|oy6KqJ19(#!A`USU-eh)C%MV@fYIX%b zu6RRW?1>{(mXLLaqenIG zI@ZjWpG;16JasIA56D9!LP&2T9CKpFd-1)y=IpXb97FJwl|fRSmj;}m%v zJivb&k4zqUSs6o@qxkm3yOU4DzYF*TW|mk!RwyI2nm@_C?X}dGjBR^b7idj?M z+L}^TU2OaV8hPmVWT(hAt4Zs*iGlh*WhY}ot3U!nRXEB0K)uv`Xep)0x@)llecjoy zQi5Js=mOvznQN^Q{!&8ElMB7xgdHXm<@C`hkBj_Q@(+ej&lNTNEI8HCgmBvyvrns} z`a@hul#+BURxiJ@-`v3X${v+nPt|W|^meh>jGgMH$s$0R2{#MuKFIMl>=aad72fry z?fwCp8H|ufKnN;BAZ%Aap@@0X0{Hk(ob2JCNlgohwLOem#=lBy$uPXAq$E}(dTfah8-6VxO9_-9Tk*W?R5>T{aW5?%Lq4lYWEwu0Ch6LL+-O^YE8%ti+dd+jSJmKwyCAJS4H&R3 zKn2igN_5#;{k_*ImGqqqCRN8_PK8a-NGgL~E`nb6C1Z2(Ah#LByGNW2WsG;hsv>Qp zcN`pIV3!uazG%6Pk(Z{)V?RyPMEt+TAGHHSIc$5*!ADKFD-g z>f9>SLW=A(ZKD61hc1px0<85}jzGa75KpF>v4~+d8zaTRF|R=Jnaf4cYyK|c58*TQ z7@rzfTCo1pC&*SnR7nW1_pfKeH~C%G@r!Yr{Km-fi}~!=W8C%XK$Kv z^^5@hn0;k^_nw0Pme=C?`+)kW@%Hb4c)a8e>>4V*c5dF-4lNqJ#BLthQ|)09w>c(_NhFxs^0 zb{6n_egOLe$y=)_IJgOVXVvE}sB3Xs!~wwi1X6KUw2nb1b!V!a#P;`RpLVA2FmlMi zD4>)gRcW^}6v|T6kRB21p$iQ>iQaxf&*HD)1^){3yA+ZqK=ob)#G!Jre=<8(2?J(n}h|lBr6#1I5E-lOP)JH68;!K;Z zGI|hd7fI2*YA^e02G6(sSJuuPex2~*zRJd%;G+esPJa2WfnY3 z2m`ud4zgFcq@x#X5`$xJY03pV)HQ;0E(DFB2O8KYfc;*^cgw>a^!n+%Kq2HHYEnVB z-6j^SupzY&2R8Bm=TD%Ov?2vW+fEX*Pz#^7xUOYaFb@W0aF6v89Lt52w_yL@X5 zWW`IXtq9r%3K#Flc5R`i?dCof2nk0(-WH$E{$6GC*2Y_8(&r$AV@_NbX)|ufI(=1g z8PT{i1!S=1lT_30)7?+47rxfnaGQ-;{}Gf|r2$H^p4Rty=kvQVgj+%F`8Y<6eY$o) z`4Bo?j6Z3aW&jqfoe1>0F|mP>-R+S?mq**b~%muEM@QPsq%!lNxOY;tAZ+ zdYZwaHr(oc84@CGBf&fzDyQT|Z#Lwdrv}X9GIn6r9Ef9;NPq}!3)$Uh*ePmPrS^N@ zXY!?DFbJR9 zGLG-gHf$6{1gs|p^yDz5U9M+7YC75lm&DvoodO+%3uz38@uAHrp7S>b$z^Kjd6cS0-J=>q(?o|!js)H{jR8W~iaXFEmC~jf8qrk1?C8@5* zi{!5Q`Y()&kEzFcSlO?ixtsf=MY~%Y{5P~`IfXycISrMISvz64o z&ho*U?wmSen~%o^+l=>`ByWQOgqI(_h*AB->5?V>b95=(@Q6m{h*ol#loCn8On zE*!t(a5ZZuG&8`~IZu4NdpT6Q&C0u!ZDJ1`Pb~{XCHIFFrQhcqewVWn6d$ykHC%flm?s|$o35VUi~ce= zUwJ^^*KN43P$4)#Bv4Eq4OB_^j_yC`^m1&VMd6I3?p`m2Yj|X9Qtsef@p$LlUMoeN z7g{M-M`YQ^W@9Cz2%M$1Z+&IpiUdMTK6&KP+Q{1AK>f#xeLsQUF%7PFo(#bl@wxi? z<@=Vkkakudp?+A1WogTo51KjtOAfL9f!~6`tyXKnP}s)8<;pZbPfMUAYwAY_)y z@5~y;U9UYTa0cQIFyhHn;i1j5XsOG0|J+G>fhcm?47nMyGUSpZE82o>zIeNwzzCGv z=_8~1xWrnz@S2>{Y1=- zUtWK!7VGx?&BJhsgB)ejWv@as2lF>iu?Vb+xDC0f$RTt{w@7U6(WQ!+MRXll?@1M& z{Fl#zVW{DkBHXk?h+?l+19Crb7_2{R>&0C!kwemWyRj{{Hiy#%&TOk9%o%Jy*A~ZZ zxT!@}Z|ZYp0~36EIY(8;2-gd`$@djE;nX`&V3wHCyGOLR6?RR@_QQuU|9xlb*?tb* zEYj&A0*kv8__mNJK+;J1itd>?awxHaea6O?J9~(Z9Ts9h(x_r{6b49My@tD+5d=4_ zEOND)K2=&*`bNn9pGJHva>4w=x+_k? zwfcm1@+`NV=dG#e%TiNo~w0pIYF0jr2nVOpmem1-x$L#GwQfV9dTDSJ3@z(QKOOsg zN!J)!1J7b`7Bbf~&C6XXn?Dqo!rK1x-f}&oL^h3S{103NfP6w`3UU+%_ zprkI?vO2$a*_l)gn|`xLCCy-SWM+!3s%?F9mOohL&E-mvQMaYOLZN9%rq)v(v(d2^ znU;I}dF0Z8!9m`DEtkE^%BRxMJ-|>1Jx^uR4Mq-lZru{QV6Z%0hVB!e+2{4Ut7@k- z*{S+~I4=M=hg6R=_iyI)^KkhFm=1U>FD4~Ht~w9 z&G(k>!)-#c3Y-;l>LBE@$%Ry&IQyctmv0k~=Tb=-HQR^e=USfG{N6tfx?Pb6$xc6c zOR<8b1i#*X+)4>~QPB3aHnergUX&`LvW`-k$UEP~To~6wJl-56$vTA0vAsp=$AQ(_ zh6Nza<_$^Og8hD~cE1^M&uCwsaZDp0!=2>UAF{MAJ!8Q*JTSU{oDh~p<8VmgHd5=j zxnC^J3|OrhdF+Lzi+X}3c8oEX*3&o7l(9>lSme9pa5^G1+5hI%sq+&ogZu$A z?ET~ZhOy;9*Eief+Gz9qwMTg;>BnKBO-f%GA|c5dIH@!C@}PElO9=^Al{;Djm;mTY zdfcl*(OC``rCH0IM83=*5X-{Q><+X+l9+;|fCgmZkDHYo3s+C$~m&!@4U-z*GYU0nf= z-TZ?F`S67r@zPflx^ld3fVXFfAoh6eQN_NNv)5}6bA>?c+T+0X%0Y63s2ijA=IV*l zyt72O#_Ri*UXl|&@s3H8XM#QGs_Ue^L4kAAHeDyAa}49!#R4;Oyrpo3fEAs2jFvOb zD=FWHl=+zWNYHj_UcH#RDMHuQ`VqWw8$+!3-Errzi#SE_bwrS9Aq4l>QEBm9g6?d> zjy;2I1&R`>n9G&SY`w%xT9@p53bMp|5J$A_L)xzp zQBd6zTacPgr6t7pp+cbqru{(Da~Fu*OS4(_%ra*e(9cosM`<~WeMQV0D0?;D-p1Hk zn&~Curw9*@rSAgJHJ(TT_ea1ds99e=H}|V z;xu)3XGF5G5;$uoK3W@<$SvCZ2VJm}M-uaR#B(t&r^g*b_IJ?**}lD!7FF{bO-_Vq zkxv)}o>94WKpHQ_h1rg(0cuVRs`J2Z^yJhiT+`}{#uC+HxD_rwVKR8$Y*q~V94|(9 zRM_B%aPqsGMRf@o8I`kn`4?q;z;8;oi0bvPli3(^j}yAXT2hzuKCp0&=E)6?+ja#> zhX?zuLg%SXAI*6VA~7h+y;`=eGk2?iA8G6Y_wCuCg7J4jm?|Bn=n_F%&WBs1zSDk3 z_nPE?OSvY3x0V(bCv{LpJk}$(!3%dki-zqt&UJM<^L|2qS#u~8JJKe0`D~MT<7%iv zEG8O9A8!;%-31pBZ)azSFNL0OKQL|gWse+)+ny+JUgWt{W+8p&;oA2xem#S`q|b27 zI2D6>sA6w7)`*Lq`{w3jHrn>M5sYjlQ34I!Pst6Q7dzkMF6f>PrA<0a=%(pg-w%4P zo1+T{sN`Z)ch^S&3X)>To7}S49QBaR1c2YO}&n*(tkdCE?8ollc&AtP;PNaI|p)BM#7MkEL)x8t-^kWV_VSzuPlU*A%m%aLw+F^aBio{#QEo=BL{#rL&D~Vm|$4Y=zb_472A%z7WCB zHNgNv?b9x;UMRY?^pz)o4^gBy0R9IiOWbND)c!IT(n`yu{jsu7Pd3& zuedXJ9pSDBM<7JWu)@5XdrE`6_4Zx7$W8Ynme61cs)9>0gdOJ3cjc@HBXj%e_Vjlp zHejm1?)Ou;BH9F3%r6*m{-pxDTMWZ~CTR3{7yo-)@v48Zm0N$wwe0BUdUSII{eKit>O0ehP%aSoG|hk@{N**J%YP=*Vp%eZM`A*SH41 zm_i)OG8w*-R%%j8vkRb-NV-A>zmy8^X4zY`AR&nA#oN%<8xqF?GVk;o8fE1^0kVpL zSZ?EVi>GDQPYK;YNBFe_8}(_ZPRte|V@@1s?8D+I6L=4KLKiS6_b`-&wn5c`c}WO= zW85pQ5`k$7^Syq1H|=A8R1ARc5k}2@Dd$;aaCKa_KNeb;wdovae$kJ+c`G4Ymb&`* zAs++7j%<3lo8iHW;j)#p6Tz3|$v5B|kDT6wmy-k>-xLei)GWzW>nKbePrnAF4-FBg z^k`5@?rv->8ExNu)nz?(1@QZ6C>K$7y+PlE8VDo*#zr(^Acv(x*~s4lLSEOnr4F(wI&PM$cVLt7l6eQps17N ztQ+x`I*8f(=I2V6YY{2KhnPj`#Li78WS74(gtV}yz2Wz*5Xuxy78z9W0dd_yriVD0 zI96sOyKT;Kj0|XQhX0Gf{Q|~rLI$5OZby5N}bR_epmSx)*X{w z@oFES@Q8aEa}BnQs2Uk^tSPAc^=f}4{Q6J6JiyZ%BHawJWQBKT;Xn&d&#;}dh|%*K z?NQNj+RHLCd&>VThy#+h838xut9@OT;r1w!=6-I`lA5L>C_U6N}r4I1>_nq z*yqSX(z0}@Yma)&@$BoLg}sO(qrbDoGFGD^e5RWXJ{Kktoaf6uFYi6p?Y6!vc0_pS zIRg@!GM_%1ay9mCYSUioMU@#=!5gqy+n()g8KbHt{dXU@%Xt!1-wG zpFA-^Q^n=-=5G_}hru1{9MExxs{fCJUF}SEY6Q6J91)@fp`w=!VTW<4 zS*q#inHSRq3CA(viu9KaqJPr`QeI4zNZ?cc^XVD_ZtmLw8@Z_x_Aw6AdGYIcR{jZa zVeu|zqL#IlNpO!HJZs4W%{+@4!_Wt)y84;#$8QIu$(Dnu|TK^ zUt|-GmtN{Qowt*^BT07kA)Bvxd^ z=R)&zQ0R#5*i!*DEv?e>QhW!(SPW*D(8=3>b=);OkH z7Ydowd#PgQNTY95r3VMsN$Y&o=U8O+YBjIQh|t3FQWm%ma%OY6{8gDlXMut&$BVU& z|JVu@JE(j3;bxu>Fi|eKStpFaPgf9(<{uda*P1xhm;beirik}Zd2EFap+T;~ARNeu z?!o2d*bGPd(DOlqSp|E3&Fa5F-xKoN|LZBcePP)yvnt)Jr01!93J47^864meV&GP^v9ElKw%!nM@TCuRe*AN}vb%=6NqK)s zVt{RnC%z;61JCwk@RGeE{BR60#aj7#J!efP1notfNvCqF_1)PP=aigzP|7VWQx;4~ zqSKi&=BIbylD%BRdS}aM$e!Af9kQ+&50_sHFu1h22&$Pe%UAEy*aI1$|HSp!9LnInVONdj>gowG_xZR}^VMD`?>QUw1!YAT=aU1xlqg)5qr z+yj0C_QZ+QX2mx4&`pmUY_101V>@>d>a2NZXcGN^D{=MvUd*Q-#>o+avX83rmEANX zTPd6=aevNMI9AJ-R0jpJj(y17D?6%gI>om!SErY)2OkMhc@Lgo>XTT=+>26)5I;r0RC^hYwv`q0mDW`v-wM(1hT-Jc`d zHLTtxU$HeF^C_BRnd&b@9K?{NwL~_Y=iVn3u(Rd1uUkBp+#4omy~upHdPk!pb;b6b z*=S+y(mU3&bnwKA>vs3R|H029<@9W7yl4--3ll2U*W`T9cc+<@8W8UK32+CJxcHtmAd z)^u3gJQjaxdIJ(9uad9a7EU4idtS}>iX=Vxi>CmHG11D~?GsB@vHr^cH6jGbey`Ag zHDY0GzUG&!KEAdni{rGj$BQUhMfFy`jkqTqmkGXH8He0;%*goE5D*YS`T{h)Og2XF z1bX+8TIYlPttqUwt-_h@8zG89PN8w7X9L!sep?*70HJbUEcpl$qTipVajEuyK|Ap* zV0B@~BBIu$2u?t7qW!>F!_D>s-wf839>4}fuy|#kkuWI}Na4j;`yww_B6OrnkrDo< zD7hr)I~pl0j?%tsp}fAM@uQ8)N&7&&SILnQ{Lxr)-h6~lH=U<2gdltG33=PVe`CKh zJy`se)PSG7yB5>|jM&^4>;=v_pibEd>EU)%ho)HwdTqcHjB7BFyJg91I=TU&eq#vA z);(_A6V-rvSl1;io?t)%C4X2LVGVs8p^O294|2@uY@g;Hcz z5)oyVN`tWw%9tU9Qic=~ii{pkm23eS@-k)zHj@! zKc4Nm@7sBu!&=8$>lpTZKlTS8SO`FR$|P4_l}GFB#eEU0Twm@q-lnLk_dNOQ>6eQY zHjz(^4x*LsVZZDcd_}o&`HTY3Yh0wX`Caw3MNbH6#+Z|WTX>j#cVmMUfm`h-`r7u%m0xVGHN7#$dd(-! zop!5gAMBsVJ-MY^y6XE_pP+{d5hR=5Ge^56bNaO8uIvllrdxihW`#GrCGrPbxP^_K zRa-QWwc$QjySo~af|un~6Fiie!!O;&6$Q$;m@&ucn<~ z!LHQC&gLLuoa?c*GI9GYb#`Ot*N1+MF|N>_X&d`wFn%%LXzQXa*MDjoAQMZ?n*;kZ z+k5;%RmLVk^)>X*f58wWf2QR^N#!QjvJdhpdS`ppzI=ETWXI1suGe^t&!HeP)wFET zz54Mdo&Z9EU9LLeAzVsq+6%El@c>=p(8Q(_4CT@t@g~u9 zdXp4m;%FVczTy^_t}-`^B8m31=R#Kdml25i^!m!)gMVJ`mXYf7YMdkPs$3A)#8>%d z#l4Ea)AlEszFHo#dhW^mSUB-*!2%!@t=gTJ=rEua~>m-&J3jc2C=&m|nxjQc+Q0`$@^!U$x0yVD#Ua zMETon2Dky~bT;mQ=;29kWsw!mZUkUEO8ykFe|5Yt%Nu}!dh|JrzUh5qyv8m3ce7R~%A_OV3C0#5X&YLXz1fUXLyxi* z&aL7p-I>vMHPcxI)pMt(xw0m%plb4}`QlCOfO&^!ty!r`$1-iy?6A-{s(0xtjT=v| zclQL!Uax$fTXNrzK}cPU4pz?%S7+MD-J9GrdbIERvw6NZ);`YDT<^!t?`|3WGirV} z(SPwbd`Gix*B?|O-KN*8p1OCJowGglZL$eTfi-x?AtY3s{q!q+1!vrKIG)>QKh@4O zQpwHiebKUBt&gWb+Rn;NuW-Hb(j5n={?RHif8CjmNgqPM^FQ6Y=XUn7lS%zd9wyz3 zvlcV7JU&_G)zY|H@J8J?g8XrVGUm86y;CY2%=w;<1`(8r+6 z6W}T`HpN|>-&50=Afs<+_?1*wTdd`l7)#}cHGj9mGrd_W+M`Ya#!&_YdY8N>P4T%Y?xsjJYra%8n|FxRKm{UxA**l*v*F&(M5rQV; z$@%k>4s`(>ane0C7Fz}{Ci)QwOSyRX(v_PtK&`X5#8B6JHfJ$Wb-K&t5|f_d2$#c- zzddcTr|+Eaw>$kzMVET23wyW4d$U-~C=?RJ{m7USe>G$KiqT2G>>Sq?O(f>;y{&(l zIwTK0NZgSKqu_8g$u(V?5taQ084Q#pNbz*J_u8jvQ(r$#xQcYWdbdDf?`Y3CpUHE+ z(ptOuo#W?E9RQ{x*`k67SEe&gvjf?TG%eE1)QPxD`; zQ)5Aiwn7T(fD_o8V~pi$%PxPmJ!A%QCX9}{OzV?AmYMWhQr`*hogOZLa>Mma+H8Gx zTNmisZe8HaBV(GgxwG3_m1c37q2DBV%PJq$wA$#qzCCcy(?^)$Qm6 zUE*yBzf?^tsI2md84G!JFz=(w-5Is+o&8N1{9_*B>L*&#wBqwwOl7eHSPUNHm_ zQ5gI}$v1srq0`RDekRigueh64=6%EYV;0NCy%te39GiaqUj<`cRMO-M1#-m9B!Wq(-REWVg?EslNQZl^M=Rd1n7!_OnYaQ1qw?JLl@(1YUv# zL%1Jxln{Zvm_;bjBLiK**DEqaOONZ@eiI)!GWT&&;(XL~_g1h!fw3@QDi)Ln4I=b`< zG)hDfmynzsr%dzQVioIVSI$T36hC@Twzb9WyE{ZmPMA)(Rd9N!ia%@v-#QpdWI6kY z3Z!^AK-C$f8ov3PLZ#uOvafd=!wHjSHe($SkVcA_iNWw&jxxy)2#J75`~vY5-U5+b zqhsVuHn~oYg6f%m8T}ku9lha9=_Bo&gko(#Gpw@{|IjB|NL)fa<~Il;dMlWK1aTd0 zFYv!N2{67%$T-`LrHTf1F}= z&i0zv!08uY(cG<+dO-`@X>us;q=?e;C(XSDbp_8H0(Ug6tVG_Uf59SAOp(->w_x6J zTGqsUeU(eSuTh6b8LeXfG1)8bX1!7th_6_JL!JzVjlTfs$c1m$%Sm#S$`x^#q&W`W zHnnUvmRuaR^+v_r+QY5CElm9SswXIw-Rs(G&RpQ}5>oboq)BxS1Km|k2?@10t^Fe) zTldaR^rW_03{U>C&Hn+V23 z{qc*NpYp7645r^wWNLQyblpzx3iALkAsT*{W?R6|t&qCF*tAdI7b&|q8^QKRaZO!d zJ6O#rhY+OC@sU9FP4X7qB`)tRL=)V;n@Xj)u|8Q%b^=1Dh|hIXV$i*SweSP(%#rkk zn>!w@`m*%+=@gx_yitx)Ij_T?Y_9bECg0WyLWn}^iODA_bA@|Eudnaze+sm%Mg8c4 z@4yU3EL#*P@94Rmzc1D`RNhgK17L9`>G{gJzfDnZ#L zW#lz9ypDa>f zUH>v{kY8tsXH4m1k{}`L0AhItpN@u5fp&J5)AqxmQoh(c7-Da`A}L~ZB$%GaJMKJ) zy|=GIFxegm&;IZUHs`0%=U#V+dP4)e@T>n*1W@y&Y{<_muEhcP(#^A zcX``hZMc4^`*U<0Q1;;a5mVipz6v1P!Up z#5mA){f;_Ckg>>r#TTq_Kh|ba{8;0PeJIZ!lVMRBDh#$?6pdesc#m%YUp+*Rx71gn z3m6)Fq5V#LA%KdPkOkVxQ8Q4uioA%R_#h^05vIJQU!GfF-H`=F$J%rO8-hMLDRA1c zJVZHxw;UMN46W__&+ia=0`8*pb}^&uJ_t}sTSTPSt*f;?=Qtd=P5y~yO0B~HK}DDt z-X;heT2s78Xl#qMIvI=saqk2(L zv;G7_vWQJITUSw}1qGfH$BslV!fbmO4?9v^E2np5v$IYty%8ONoV8DXU8`L1m+`LE z`@)fA^V6rZVQW7`)FPW8e$ycHlg;J_;cgzv&L!A34C0M@V61bdAeQBBg!mjDDtf-@ zC*P898f{ix1*nT=TLW^DO-6V>{@8HEGg(AD0Wbw8qymitiyzamT*FtwWPXz@R<=yz za^8EsLOVoMO;*a$f`~dPZ0QIJ({0#LEkDxEW9qduj>ZBx8OE)rxqhT@@)!$5Xm&5B z@hW0ui2uVeG5lG1;{FEsD+e2?t&LXzfBO7dSMtwPQxYaWo5Br5uQkI{1vkg)w6R3q(C*kpxd$p>BnT&%X=! zof;QV(jIg0DTfOts0M~F$*-!-@yT@n-pLH-eFwe@#gEq2{*|yOp-T*MCq_$tnpIDm zl%Jrj9luyne?ubMMiqKlMGU7QZ5(BLG^FAF!akGvv|3z`Lsim@d`TX zVkMAI;bzVcR8P4Y9d5aLdeAvI;#1bC-0ME^YG0H>#J$!t$ok?n#ZUK05HQ_d_=)2v zTbr4aYL{a6243&Svjq3jpK9{=o=<@_KKgPiufltey?l(Um)kU|p)EosXry*GS#>$M zRhxj?Hz%Ya9!0BxZtUT)U?vhRPN|wZtDzoN{^bq9GM!QDsPglHV~Jupp~EHTciB+a ziztI2r=52kRX>T<(m(kkC~dEL2dseg$z24Tb0B6c@3>pRt&IyJqcN$WjEy-ji@ZjA z$MPJ&MWTR}^}^j%yH0SRKChe0{9^FRqOa72`_uPh6K+u47Ab6&dJYlK9ITy;?j-HGYX$ezbnT47gI z3hbWPNXd!~mQ#_3JqyfhmdS1-+grC+JzFhMXa{QetbaQV&|IWXWbI@km>!iX{3`)BKpQlX8Gmv z7fmGgi?mNgT>l@yP}UK55LaOowon@LPSe4ek+!vOLkg14KJoXTa*TBQNEI+(^jILv zdcA|xxx#Jx8{+DKGXqlryM)UtRI1+g)*Y*hZ}Qc=J5d*-BmB@2n|O}zq=F5hd7p8+ z;zE_X>?KlTzvAj_+>V?=VG5txBlQ)H>uc;(rg*CQnIdcUpdjPltkabgrueaniqMj9 zyB|1#l4p*kZDG3OH2MY0p>N|W)3P+Xuy>(6ipU&8hd(EJ_P^Uc>&Y*$ES1)nHPJTs zVV`1{3_zYnBfC6T5eoX80LWH{oFMjwMZB&TB_bhKZ00I`o#QjlKT}#_kA6Ha=E_gE z3rlL?81cWdLE^uwVV$FPtA`8qpICaz%&Pz#T25X2l)2alr} zmbf*P)RG+SEbkn6RE(#Qp~jJN0FmHTd^U1YQ^6{G@u9(LxH*AI0DT|Fsp~4SU+?Df z171WXx_d(TQZUo~|4rWq7L=GSs$?V0RzO@$$I}j({bcCjcc|6|*|p~{&(mnN-MDgh zyrgz)=@844G(6cNK2Zmc2x}xN&5Nh@5Tl1@cjn7`f8)H9DYtyt-qNqFkp+ehhIi|i zXqTMC*1hC)Aq6gowUboh`>EIY$kiLmLDq8Fx`2Mum%o>OvixZO=RVmI_#sU#x%qLw z)M|IXJ58M`zJu~wK`totnx~ujo+JdVNa2syo}tVDqd%^7Hn9jszb``RO8kW`3U4+W z^yt6R$MclHU7TgKgOuz+Rk^mf=gOJ%b`4f(&I1Aqw}=ho%5^G zx<%BQo*@lDIxNJwRTN%zZrla0?7UEb{A#HyMONLd7eb6rct3Vtx}B&QCte~h>lby2 zE7Zp31nwLt_70{VtQUl|6DS?1Np*SlM} zJD)Y;H|v0H8y3D&r0V=HyC*pKDXZ&v%GxFimRgN&zxb5_e4 z6HVvyLjYd=cgJEPF?Y#A`TV=ZX03CNjzyJY{Z!}mkg}3v5vU$KslH>{e7o2cBVp1o zOD3o(gG=4(22(DwX`oeYMYH!u~AcJ7nf62O4cP&4tYV+I|+7YvJ$@64GVfSVo;Z-?*6#x)&=n*vVna z-Nl%Di^s$bSZ1S#pP!x^*!zcZw(TZ4#csXV1X?Kzvv%sDpq|7(6Vq%y!SEtO`tOan zxYG888}QYcmRXZq!FqHGm**!}hbdebJ+M_eUii4ECq~}8(MUwC{Y>&k8$^K%Mb%e! zk&wgdGOTDolfCvbvA8b^uMb_=4WRNQy}0Mm;3cEIX~`U64QJwS{)RVUxSG$v5Z{BK z%CBxG@|vA5+r2P+R94bBDDgJDYcAHDZya2e6i#E*WED;(>T-<-PYMq`Y1qfXsQgkn+OJy_}=*@+u6+`57~Q-?$g*KLquiv5+>ey{;&O*Hu>|pam-Q z8)wuLh{cX`;!tS1EE2jG2t-e&1B$gKHShbthG?gEIhF@c=SQy1thmNF#;UNX=ES+* zs2vWui&?bRzZboY3Gl%L#QxjDj9IIGJ=55*|2-pyDL4B-$u4D|&CyV}B9Fixsoi^h zL-)z^`@*aeu!Z$AeHvSOo?MBluz=^^ttAmDkxTzydsvQuS6>E4a?R? znSLxMd-f`AHVzz(M7to{|8(`Q!E2ega4ddp(Xr>33JzZIk&3Tx3&vtW)W5DyvusA! zp_r$={V%1T@*%!lB)|A8sCX=02C|=mZ?Ao0t zmQ!Badl&?audGM0et1E2_g3vV%|Q7}3~o9S`#C^Qzj<3&A0bcCZ zErJ(2XCKxaH?(lK@9Vayw}E6cmnTgSUZ(@24rM3qO?Cq7U}H+UlwaZ$4PSyi4Fk3i z-;{)R+&8y&b)E*bpFRJfGIwGA(CCLCR&J8r6_e6QOF`IW)_S*%zo7EBMfeb6ChQLO zn(S={r%cN-A^7*+_viDv3;w@ukSakxJ?-1;PuMTxZ`wc2jW(on(rGt@1)_1&0{e;hRh6YcA-JFummwv0cv`F575b8sVu zh`InI?Zotff49i}^z*1i{7_cu(7p+*4}8zyB?eCe-$ze){6ZCmbf+(7`E(Hfn05L+ zIr*}Q98G4nx5+MuRcE5nfEvlg7#il+MKkWs&MhI9tP^vx43eh7SN3@pLs9uO-kamw za!O3v;$wF8X7H`N_S#f>g({3cxv*O1Q2lp8t|daCWw%V8fM5aJ2Y_-FN1ni_#%gXE z>;0ewrbk|n?s&bJ$9Cl*|CRzL1HalO>5jrnbn~_i#A%Xu5oI1qglFg&9JK8yf#q@+ zoQ7MNTnxU$x8qnG4!9s@azhs>(K!tOc0xoc>Yz(!3Syj1V)lxbWzN)AVxTfQwGZ#O z<=p)+%v0tr_BJ8#dXn}ft#D0;zW-84E33q@%3zWFG_BO=z#fXykw0o1jvUry#}D!; z#Nq?cs&1Qz>v$On2-o2Ia6aH&k)vcTU)u%Ht3*dy>=)5 zhl^2 zZ39MiBLhF?`h-I(dvdm~t+Yz^cbfOu(tJ}OeZghd=f`&E-obYb;=2R`(ju)Vki!(S zy0^<;XPQtO)H&{bY?~XzoQ@i;QD5nBOyTe^NCrFcL?oI2bT}yeKg47SFBTcO8L#|9+Nfan{KVZJeuUHZl1um1Jx~|sPdS;dxKQ?HEJ1y0|3OQ#cEL$EYW;jI)vvXL z-sni`UxXO%g^HoKuM^1T4jA*jHpH!>n=|SvR7FFXMm^vU12<@>P17#AfHFV<#~04L{#J6{TwpZoUr8^~`& zT_wV0CMomsd_uux26x+t&+mV(X=r0bA|k2X0!ASci1#Tt_IqMDaU$7v)W$ZVY%mb? zkZ~Em)^g7bu90(Or@0eqn&;%s7sSP^Y8}QPH)`LxdHho8 zW6ztLj))5whsg9?eRosG+xkePPNI%*ph)&6DkWDrVujNP5FZJ$r`3=CVGm;?KMR&- zxs|F{#ea~h{Td+WX3MXVMs^{sr@`Xggm5Yoz=j# zRr%y>%(le4{<}OD9zfo4tI}id?xIX!V1|r!C+qF2%Nm!Thof5#XMb>dzoKBaSLA&mHGRWUJl7TIv{!dG^5gLd-xYADOCU@0xc;IHPwvZ6 zfiEK8R*z?Jxj2oydlb?9G{2Ne1))*qrv2Rm%Oz|m+nWT5$^5o;W%*?51^g;r2vl?NRviXW#~U%T`D zU6GhZlj)n%$0YGV9<;CNzOmHO(UbCv{I9>Ty>xKyKmpf?u{ZlC=h-gxO?l-#zM453 z7knb5^=iWlAymkt3Ck)wMaAJ^DiwxLu`0pHiOU@8(PT^h*!ccNA*0J=q$@v>zs z%U?9@9QrVWzFa!7fARouc*smNHn=Z1Ixr!@_Wf7Aa56Z56m75gvF=*a2TxFd`=-+# z@VRMERj`3Xm$vs!H;Rf%sLnh4mn=v8di%-wZLbz9_)T@5rvF;>>H)cqd8+c}OC}Ep z#+>PmQ2OrqX7Mf#fcL5@*1kA#?%gv7Q9sRV8Q6r+;sOf)+Adbr(kms_mIUd&LjHp; zq&9!?Xz-OiHVCf7kbF7$R5>(R$J)A_mt2 z1Z%PG>?ibgb#%8JegihgNytFvVX{n$0u~?bH5*@c0h}ta{^jB~7pOJihSTBn4FL@Q zo!UVutMZK+-8mNk-+b44cjNZTiB4z+>{ZvGUSG&G<*HjIh$rKYP&rJ&S+5&N_1AOxTU0v3bx$EZgFWW#H zM+sUgzbFwYfpxpICAz-$$E9uIPm+&F;2$X+L{wI;$KEDLm79W@B3{ zZe1*C!qtR)5f_0K9m?cpj``z!+IYp8e8~5x7aupVF(!?>+-2<7*+i#}AMz*`eIB)V zpb5`LfSEQ7bBdKw59PiTPX}_pz`;Wq1iI>qnO>QmsY0Mte?%erg@1bBM3zH(I)&9Bw5|j?<6QN@Sb@ zPAE=J{>DAWV!TAkQtMZr{jc1gk%vF|Wrel@JpzP6?(MG+$-8?WZKd+Oax8@RRB*r| zTK3-C_43jgv8Mqwq&oO2)h(;naZPk4M34K{2aJ{IxY|c=j}!F^q-Ub)Y7Wo!j|3VgtAcWM z#C%&Nyz!iV@BT=6WR}XoD?S8>n9`p5pcv&-|GS2?-C1uWmAVw4l8aCIFKNaw4wl%K zVo6;o8-C%zYjA+6KXYZB+I3}DXx!WG<1ZP&$rW}rpZ?|=aAi#|%e~3l7$SROMR*(C zy3XgklS{z~mju|)px(d%S08$J*KYk-iE=`ZD-^Nxmdlfs87q>VNluP6OO`t>$~#`u zCv;CG?|2Z3?=2eO(h?1}+MpNc6XV=35tYW};+1Z7YkD^F@J}Lj)hCS|5>ceT>(%R< zeULE(HZ~{hi*xlqWazP%2~$0@?|ZnQgnBBRP*`R*nMCkMT8b#fPIjRKT^$h=>kXJ( zJs0xJEW8)ptlg)6D$3cqjM4p;R?Z$sjU_cUv3pF5Qe%s#CLNR{k9}=#<8+e4we_S2 zM(@*D;lZpd9@lf<(GsB-&{3IOby+7l#Z?o>x*izDZMg)4&LWVb2>3^*Y-v}L{*Z>j zqI5!Ye*#G3+p_1rn$a%^V#3h;4-xtz+&DXy7E^JxLw6Cij5!Yg&$#)U%miD=f^Gl- z>mXXZugWgO@bvUxRs;cy5|Ny&I9l+eCxzW1U{k6opMKIUUzZz8T!;NMqfOsPM5#_> zGeoH=vS|)$c9$%NxZv;4Il1}bz#$k{DY1^yys0!HyhTdW=( zudSS}{O(skT-E7k%%dMTCyo^#ulKVI^Vw{1iRfaEHQ(Qt_yZMdy{ zkfYjWv`0*}6HHXnRPXAqI$tnfnupY6=dKYz{%f>#t;44;Gw5iPGFiC|0!T0Q={k0^Z(Kv# zP-n<|0vGjUJs9;tIou}!q8NPbqxkVu2_t$N!l z>d|}5!r5NHq^`Y6@L4;@H=1^b)IGPozS2=umsaa%>D(XggO;p+%=wy46cbH{PYKh7 z3wdQaOpW!gcY3qasp}}U=cmT@U0R)79ze9;i$OSMAWFT^?;)Z^XI$#S15B@08%<>e zOpCd0;|rasit;&TFyXA2NZMQsHYjc9C=_xg&<=jfR-!1o!KHi)V|K6n3E%RP^Q*pW z)^3TZJN;qE`LyE0E;2`oTCJJJO1yPf#=GNcW%o|`tsD;R6IhwyXlQZwur}WV2M5uA zWbEht@^_UxERHaI0YB-mo1V^EftmAeXMv5nP-G@f;Y6GCAiZL7&q**(yRxgOsEGK9 zTy-RdYum3ZJbWV$zM4Pipz+mikvr$k_a`6C*EakZ5wW%Ld#6M}#RiR_acqU#HAdbg zJ++MQFk;Su@geF8%m?ArynSGK&d08U+1=g2GXWg-!qp+^t6X^ToJ%Sh^)*~Ilhz3~+J&&FKto^P-jL(#|`#6KK7?;;@XXM@o|0~x@Q2WRPv;J-c>nvdW>sKh+ z{9rNi?=fYZU1l+7^iXNLJo&-OXX50&o1YH4TeA_eh)`qo9;))Tw0pNq<>hqS-i`i= zc{5dh5Y~VkCuyY<>vJ-*qwVe|`Mdrdm|CbNwZ!xvH7|ATQNDbsp^wfH`QAY%FNvtZ z=$Web$W4SVk_hr#K`O;fOYoAS($n!zFU9-j*4)Zv5~ zs6QB%cpDQ!xAw68LFsg7vcc^^ClTlrrF-Fgcm;I%?DVD784G=CD7h_enPtQGXQzfdBPspd1R*`uBI?aC<`h)KQ;_ zxB}m`vz%#4B5J}Vh(i%c<@^ z--&wL>M9Jz`>+hrIsP|9v9qz-A7p@(u?elfMSakEN}Tko#JT=T|4OsNVWm&cK7q@b z;=j0MS!%@m=OWfEn#Tas>95b5X`4w3t@@q#rVJ?5SNaFaY?b?BcL}UlaDHw-CsGnv zcQ?4qRoH%n>fA^aUHF5(rYdE}yRF36R6|!YAAP@e^Qnxt?e&*AV~SH@4^gnF0J65< z{&o_}Q2m|Lidsa_yDEnFmezixOjpNEe7pC?dixD^Oyj2h9-bvYVFfK;**upuKNtWM z#0&Q$V<*mGS9n7F>F360odgB;_ePB%Mr)MPcgwaJ|1ED?UccJS%j)V0fsmQ4eP_3Y z21y-?c!S-}NIB+--^$MqYIizz6`?e~p17)G*Q}7|n|{E1`R!d|MK^OfAf=qA&1h8; z-28OZ(Vavs3@xfe=DpT?HvkbVMip(7P$99YH+(b;y#$d&)uWCf^p1&I{y7ZmTxHts z)(UEvOq^XJy{<2jIWm5CU`Y%E-Nq(rTS+G{!|de0H6Rlu^! zqeTbv@vO}k@ho+IZVUJf&uf#UMl-7{;#Rp1_4)Gfa^g^+{$5KGM;;KYQQu&EPjX?q z;38o7)1pMwXiM)vd#yK!Re4<>T1@IAeGJT$Wa~0BlNG{`O!2~GAZdvID!B4b{OfA- zy(e`|;sZ2jAs={dhj&RH7i-LhG!0tmE$@oz$ ztv>**6idoUB3$XzI!kksR1x$zRt?CT_q)jbXyAShC z-MtB(cxrkQMPfbhzyGR5p=0gdmwT>H25FEQiKS#D*#83=1q>@&{Tm|c4;Nj7uRPmv z?&`lGq9;QH3iWe)fovd+4kG?0^J~BXx?&-p3r-$t&{vW{wp3Sjb!T@@Z zSt4SDg&0&&A+U$*w|-S$I|#7t`aaOz6Xtz+IWakdWE9v*m|BpWB{fK_1`5&zFF@R_i zzj?W;Jl?XN&{Qs2d<6P!U%h)=X${dELOkaUXd3uzvKqAKg3Jqeizs6ZLS?x1uCdfE z_=v2)i=@p}L*0M3p`2SP-Ns-%IdaX`cc6Om?TTpKzf9{Jn&O@BPo1Ai1%m~mpg-rq zIpV{&9YXdm4ggANK}KPCgqy+K~@3vh!d-rOe0upp3kY6u;L zGX;xbV;CN|hkWX7^S$*!KsDC+;|M+L$}-n0b;dX_1j3Dox?{2&-8 z_l~f8&cFH#QY7gYikvz}Ua?}v9g7wc%nY)N+#3Abl{v+}v!0gNFKrY3K`rinL#`@x z{cqt$TI5FLEC93)$=RJs4t6A{etEaH>mLKk)&D1aBUSV(q16laELM1mvI?;1K$YcI zuyYn2dwqvqR|JDwhMP8o z=3xjJ5#XKa?YbA2t`Mf6h8SKAa@Y%aV@XcZ(E}8Iz`62>?ADjs&1HmLpL+?h!fTweMuwKjyVGZwCX)ZC-O_SJFsNLBQRl2K&ANfnJcBo3qUr^V8PSk&(8Fb<0>GJqOfz}F0=xzrSmh$TLd#;Wj#&OO zY`t5XGy__VUh6MlaQ=ISpo-u)5t20Yb2RVuNMGtg)P9|&f2ykeyGbApkX1;A7fZTr zi=}~XLQHY&LK0T!kRDd(0dNnOUVc-^CH;x@*0OsUW>qVEuokho!zv&cM58yIKrO4Y zD&2X#`s3fo%U+f{Hxtw5>f5*S|6Ih$tbr{wEAM#a7~M(M9OK?&xikKWx@%G3|9cno z-9si>N)4yJ*;MEBU&$fp`ns_;Lmk^n7kUP&@3G7mtpk>z5BARzv~{w3h%<( zru${%CUF()pAOHvga>?&%{Yg>fs;79eQIQ2v@kG?qymmn3|iaw{M0Mh1N^+{>W~r8 zC>6km%{9%_X+3}=vMmQWmRX}lHz1$ma z=ad=%M4-*abbuRsB}I37o@sZ>2UrwidSO0+MgQJH-UHIrVLMlMqHYcFhtiEi#>JT9 z_b^rab<4E!NL6c;vZnW!Qdu|N2BHb?Cx-XqBY0KEmM5DnwSEorRr{8`=cH;3l+I@Uu5W5+qIbHv%qhO_yQ47x@hjsK!^T`X z0preZfZS^t8e)O=Xtn+z%L9&o;u&9oY$=%J?gVMw*!Y{9BNz@7r2kND^29-So7CMl zYWVCct_d!I&o@>&e*R6T#N2yu^KVBAZ+&LjexCUA(ir+zmu1w+209Ep^IXgd!~s!C z-{gnH4c6L3-=WfFk=HPC$rw4vN;YZ)4^uIZW75mJZF&?uMpK^ESk8S>8}WEn;4;#A zzO%TafxF;j#E|vechAI-jNfFcc3`TOR$?ZhFXz#&3^^c696!&VptFW(JXa)+Tmv2q z=8?CQNVzR>OP$0Z|MLx?HP3KO%Z1eTfU|o`5Fn>}uHNo}6b`T#@5go;kLKl|_q zN-Rrwq$ROa8P+>z+1*N^sK-$b0_(`|lgCH>jYZ(nEtcB-ZQ}@K2xu-L7`VRHa_DbR zrfv8~gWdSKavh&Gg_%hnMyGWS2dld3PB+s{CM(XkVgK19^kOejzvDY~i%a?{THJF; z?G|DeN|qY=tkc!l8oyauJc@`E(lYM=eTIbyhOANBD%eFoBIw=!*@YL@F}f)*rCo3g z?gYoAe8^N{e}8&}G+f26J=H228%?ayyVmHO&i4}xaheB!)uH*}Gm+uA_G_SAf&!*} zJFd$!KS$IH>th2y&AU8VJ3k+UW~bSB{4~Y?*5i-q&>-PrG@I0JV6@BtpQAS#KK`LV zM_5)5UoRk++A?lh2JIamXms}Nk4iyUhh`28Er$TJeA}%%e%3YV@=sgx zO(+_mWXKEfwdw_Uk}!WaN`mc5vE(M3rcPt#dT=yEO(yEGNT{naK|0C(sfsQAc`4bP z+OrlLBkZWxU}uN{Z4tzX%{87$@izy2sEsc5@7ze^?f%9s@ssO(~@k(t~BPpU*IB0M+S z4nB*l(?!9wpIGk%7a6+$s@zW^HbR>B9er<6$4m$0^!HLquqqMK|8;Y_h@qqVubGp*7HQgd)!uKW<%C zxGzm-4GQYYu6xZ80^ESFux%KpQOn|8!yEG!8v`W5yB5DNM;M3YfgRgIfIgsG!aoH+Q@t|7RA|KVAD62G25y=BWmm$VwVuDlC7^8WLd=3RK-BL!!di2 z*1DM5CzDMUE{+$b-9Xr~?GRkMIwbJSs@7lFsUqQ8J$rJh=x-IUz2TT+GLk3EIN%x* zgtg8F9)z-Lu|@G~l1C;w02ZLth|K=_Wvlj>Ob$2cFJl~fx^|!tREIeEm4!w#q|!1i z5ovk5P8qy*v5S)g*+}S44Q1;|&zCNbSGsomohxi06NNs=8_}rz9wf|+u0n>M2tLbw zV_3(J#*JPd&M=0{_zmvv-^nLd_q`7`7eV@a5v``_^`2}dY2tL@C3iE|stUpVW+y#E zm>g5Q*ebr2bcU0zJ4Rz1LB0ROcTl~8mPI{T4K}+=_3Uq31zTZ#B0@9WRzPtnk&jiI<H`mEc@l7NDP>|z+%rfdGwgWB?nL^oj+S`W{2 zPIItcBpKTX(CpVhe4xa&$69ghsqkRV1AMo>!Vy}J2_Ul$nl3$DroCi z>uZpJi!b;JtYc48tETZXx;s3)qkT58-iP$=Fy=I~@-zuwBs1?&P0%GnqO7;ZV^djw zJ$Ln&*LZF}!orIbSBqEW=P8!m)(0Er6&_@t){4rhsh(-9zASfx$K+WBdt2L1BOiR< z`R503sgl-p-u=gP$XX=QtZ}1h8jV)`oGWa9_hPY#_eqEIUDjf_vBm?@Lsserr`GVv zdj)=ZkvR4Zuqp!9_iaADPDXYQmTaF1bIYB6hXP|(2P-btEtlh$Om?HOz^iSDW zl|ZPGY8}z25cr6UT0%2zX_2$&yn~GST@ejg0XLO;K69bDmAtPdyUO;}ETfiD1qC=? zN9xy{OS_T$-n+5Oq)T=c5c~zmAQ2DV&`0vWB*~LA6*rP+>B}+Y8?6;-rt;fHPx|t< zr%|hwL?=$4cZxk{4`DEaFOQwqYV5vX?%gwLh)tq+RyGjHCFJ0!jAQGz|t0cO+l_EaiqREC^ee#m5k6>ZlLzsgSEe;R%*SR6t0X=y=N$0iWBE zTZIOUZ0&2VOt+Gde4X)xe<$1&7MzZb!Eax4hZ*#fI>R;Jv1cBed{7&chSpORUV-YC zWxi1FEgTu|Y&-t9Q>5aRy5X2JUpMtR)n;b4XWoyJ=eOgR zmqG{ihZ=DPQtW#bZLZfP4+fWsg1{a@_x^GeSiLm%M((O-$lG0)Pq@*cHV(3d?x zv$JT;$NQ+8HC8Kd3mrdAMHC9-H)2xFxZItb6U@$@cU#2UqDz5G7CGiQ`b98i!_SCk zOcmIAB4b9l*8cva@PH)|GCa{~+G!cNXuZFROvR7K8=`++nnMKzYGpieF^=z8Vs8fk ziJOwRcRM+f2A)G@Mrq}WGh4ABWE~1c{{Y!&Hv?Dy9%&KHC%=y*% z)z=S5IKz6Gs>$9AsTf+(^;OFPw-)gq+*l45>)H1LqL<5b;5XdcCI}eS@LXZ}nUpAv z)i-uueu77q>7pQQpy|Z9j}Z*nPFo}SO13=6kw61TmShp8z^xG>ZTlpbf0nmGtIEMF z7NaUI>G)F~+LB$_15MGZwwqEc3_APW>D-Y&2uzOHTvoC4_R%;Ld^nT&sP5sPR3at0bf-KKiC}C%4cRiI$uK%AbwV*OY#?N$)DFaoA#mHymj( z1q~(Wxh|#6Mx*Z+@;nZ%4V94^Dw%0%qttf~*keRkE{C)|dZtj5XK_zl<9)nqC?ehe z{Ydur$a_oaWF|y<^M2npIAAlzB07+!n6XS#nKfgv$Hn{d2hjcJ?_FeBH*UhQv>%}j z?-tfu?mtJNBm)Ysw%Ic6Z+0UrMEin9|5?b>Wer`p`Z`ItdQ<~q_p`W5KDo=)khc2> zH;m8d{eN6Oc9V$`6;Q9k!EJ`gUL-AG6!5z!m5T(Z;lv9Y%-XZ-c3t%NTaxn64Bdat z@pH8e4Na*Q93Y}j@svCOIz3(Tf9&xIQwm*Jw5eZ1p@aXTJ{V+`h#AFFHaBnvxy47ia6CP>>8l*auV-SZ84`rRL#L|C4^r+H0;^0#Qp#?-&@32zuC|_Dw>h8{ zO(bP#ZR*wwH|TrXn-4!u>Eq+>Jrn1|8`kw(vN;cAD6#o2g~rC*^Vpdq$QYg{&fY;@G4 zRy_TD=63xx6rcj%!TorcSjVR@We@4dSHx3ai6`?GWgp-t>LcXHrVwaNNmvw3=V9CR zpqm;kOim&?A=&HZ(5Uiqks8gxb~`^U@-30Yz$oR-xF6dR@%(su%^z_6h|Vbw@j|8o zUDX~ZS$Ta7=GeWQ)Ps8^Y^HSh==UI)q6xFPt28VA+%t;PhYKwSwN;cVk=fwEdFtQ> zt-b__w88HX&RPeK_x^gKBIpJQ!Faic#>F*s4`b?tvfUQ7P}sP?o-{#cH0V4bsc8Md zdw&&SXnQW;3(kMRR7n!RZg0!=ojAY56-gIk3J^^>%%n|yKXI9f0MxD89v>qAPjyMx zf7<`e_4Q%;SJ((?=S9R-NNeo!ZG}_ca5x`yYm_RzT39J%e=gl`1gcLd#!42@k0);E zO^F@HUjL!$+j2X{@wX$Z8T59q#mfkat9mcswCus|TzRB9d zko2da$*LNLO%hzm+*VLzJKhZ39ojb6O(duG71`@fKMOP6?$CP`^KZeA)LQ2i5JQ4?#ztd# z`nP4n)gC_0wQF+tk!{d5(P>bKo~ElKg#WZC`63Yn>^AnO=A=jB&0#hg8TI_@RN4Su@?-<`ER$G#WJLz z*wijsl^s)emw~{#XsQymET&L1&0a(YToEp>Z5V2h&1Lf*7b{pyh827*8WQ2`9*EB& zf5(5>B9=k-WS85EDg7iJwJ`LQ;2p47`P%@PO)Adpl|COlldZ z61uT{L3SL1Y(&3w{TjGl(1^m&iR7>W2`|%!>N+=BA$+Va5f(!1!vBO{wZWV3 z+!dGdTU$K781OyWaZd4LuL$-BdGh@<4ZDHDCj#i~Y9BO$W;|QPb`ZA}tnaY-DBqQ< zNQ1Jg&!`T+bb)kJqZb19!#|=YIw;6#5S_Pv{^mXEW1L)Rige*luORmsoBxGt$$Di( zW%?r5Rs$Ir8PId)BsSGRp->S=2!#UHr16C~ZwQ{Z@V9GKVHPRIM|zDb z8<*n@y0RvagABF^`k-RjqU`kIr@F~!=rqZ6b`lVcK+cM|h)LnzN%I+Ki%zi^gf4Db zB2yt-xFGo!Wf~T}fqRdH&<6@dh*SGVVaMrATjm|c0b>p9SrY_0HA!``G*t2#t>bCr z6~xAh{YJ3`3)aju*#2&l;J`itv*7|pG#`CK(54=tjZ7TO^}3@^M0_dSH*Nre_3mqK zpJOr{4O6kb)(>q1N!A^n%UaOG580>Cp6@@<-?$@_aSyg+THY_v&pdnYw7szjs3b9Y zBd;np*cP1^OBMi!w}56b_%GW?BtL0b8EH3(5!i|{(Hz%e;%?z3X?dI>4fUCoI`>5A zkc6cb$D^L0Lax1sYtb44SH#KeYFWl;EU8JOSwKOX+VqM395=DJLun6;&(Z=-3BCaV z5Cz3(u_HHVzske#3rmTX_kUY~gIj^eqeC`)D#3k`G+HsVj#bevo93v5cOstA|G$5z zW1^{w!Qzd{1NCs;p~E2l0n9PSupk$lskD?kf9X0jD=~ckHlYHBBOyU9MZ9#hFOj5k zUmf9jPZHQRr4qWRTm#Sj!s4!`N(MCLI7$t@h~jn42F?*Lq#iOpZx(YD^#zA`lq%b4N>5>=~B^~w@{Fouh8)r*4T>H(1mH4 zBsIdXiO9GL2cH=xDCe}vEJ}&$fZ*x(>sI`7L*3%4(W&BPOzfHJ-_O~|5PvvlqeC3K z>Q5}$c|=ah^Q^7Io=pd+oyii`(sFYA?&RRB?~@ZHq-0d|JIRT%KU}+avzFf%iAsn4&htepOIjq6`gU46-@t#brWC%>7J{8o?rnb5tgOFpnP&LG=V zR931&3+wanL^iy=AD+|LGoH|~NM!LNe!yK$0zervxmi1{tn%Fjag<~|-QHE6o}PT! zpkEvTFp5G~?&#=fc3(%;*w|RM)n0}T+n!cvN&o`=>0)l~Qz8>h#WjsF3X!s&Ish2t zr<;=*gvPw{=g+fuAB>K!5n$VXL0eC*QB$KOq*B-<#%rZ289$P^u^Ldy&DzhOKeM$? zZ?riNPkM=-6jGU%3SsyYndpBXREaRj?P%V zRYxaG&W}#t&atQITQgFQ1_tVs#_zd?wy!8JFOQ4V8N*oe7s+;TW0UXc=^=)Mgsfv> zr46Nf?uacgom@R?z`;uk%vOY&;nr{?`(BwSD}D0<`~5bMq_heU|5<44ae+M7X*h zeEfKFb#-;ET&AV!n9rHbmNtje2I%YS zkEj)>=ukRpF?Mq}doE0G=ac)W2%;C+>?cLD5=v=N(a~X{Kj1XZ0|mN1eDY*JMf>d8 zv;D5ofvxOEk6>q81QFTv^mM;~fGq>Fv$Hi3za1-?4=Uc#)piOUQyE-)l$MbRGh2K7_;Eo;5slcA8V>B2@e_c~5qhrou6q3V zF|j4lX#4halh%_yipB;&7KFOg)Ks>OF8TApDcL>Ek!&Y5|Sc9x?gy>F{ep| z^WRZ<``?c!i5EK~7!cPKcrdSe*xs+Hq3sT4HCy)~26nj&C?YZi0s$NM4(7+e3HR;W zXDa4)1D!)9MH`>lm;smypBJG}6Q{vb*$|^22*13TpRb^1;N@USVb+}d^fP}(F|&U? zv>c0b?D_EFLm~9r)Le~VF$7ZRrT+@Yi%=PUWYY1n1Bd^J6MxW`A# z4GE9y+bu0~SBN5~1q!$>v>RmJusMnF*~9bB`Ij=NyMV7Id=y#;!Ikci?TwEqQm3_ck{mnQ^+q7t9Tc5xcoR^l$KngufP@0Y^A^}x$}zX z0nzIQedH8Z1VB%-A2v5P*AIkqNvU_uny9EK7ikh90*LE=s{friIVu~=!HA_;qoe&A z5wVLCs$h!|A-&^ibF(c)d$qj$fF!-F8$BR|I#xkg{-PJ61HY3eO)MSc=xs>MpJa@? zlBBRCeFRuF-ZgqsQj)0~f@ReE8HmTPQZw{Pu6=!drpeoP?fR28W3f1L*R)zq(#_vY6GIOI z)z%0-Ak`xxB3>*&)Ir4m#np_yJ*d683#;ZJ$Qh!)xM4=|z!-QaM-ihCuB=Gxoav$6zO>K61d;a*kMxJKG`GqcOIldA7l^gqEI zoeO^l!}Iq)VBz?xrzbZwC)YG=s}4viN1*igRQv{q65(6&oXWTfj5K|>DsG`Yzwt^) z{iO!+fIxKi_rmSW*4Eat`ueKQromf>>mGWKtV`fCSqGn}fnT}GDY4Pz< zNT*34QAxuhS`h2V?4!fl2Yq~SI?j3ft4m6@b=Sw3SKPaI!-QPdiB{gv*x2~s0l8^S z0l47Kl*WwyCV+BHSrB9Y98M@lR)7ReGo$Apnm}mD0o6cONr%$WAy}gM)mJ1nNsDAnQ{g)#n!IY;{ z`@={?-Jv!OyWG@EXTEy%YMQK1rTl9(XzkNXj}aMd=i;Gs?t1rrA(?qZmig7I`N?lVA-3gB;|$wA>D26NW2Roo(@~aMjN&qNRR-eMNM{y z1f~ez*&=-VANqgz&PbIeY(_Zn*TdPaUAvYVAMb+Rx8-NejN`i9w=*&_wp&?kFz~6p z*nkNTkTfw99ePk`11 zaXeUI%-gqbXIBBog15^>nvW!$);@-AcW0*ug>4zVi_`OCcKjr=gzVQunhNVKSTYFW zHLYw@pjeTX4L}B5ral;Uy}cBW=ON43wc69u)BX5HaFd3K^N}#o>O#2Ha;S3$o07t6 zvhKQwlfhX0!Ic2T%G=C%4w0k{NUQ()8j@p0Iuv{lCrBrUUHRmgF0{fUp->nrmbT1w zkNW@-40pqg~H)?r)H^pta2&+$e z09fsHMTFg(YLF35J&Z(s3K-!45o4XPm%Y99R=X^E^Fs}>D(CJ*!C!qYwZl(yD=jJB@;ScH6?<64Rnt}FCXs${)B9;bf zTyq2!ym2yN%a7LXD#9t>AHJVt{dFqKe@ZRFDSi}OSAg$@naK27**l+ zHC5VcVrHh%dwR;rzCZp2V7K5APdpsTXv@mV&NVRU!yQGUUUND5&dU4R<{Fm2iX`0@ zW_^AA1kC@jQxbQ46i&hfh2D99U)2^_Kb1>|x*Zv~Z0cJ;!JXBZnY3E^b5uFwju|)t z3h8nu6v{NBbk$lp0fb`Zt-d^Ro*WkN%uurNq``y;mC%?o>;MA5V1A8Diz0-VbKF@ zBelpB48Iu=Y+MAo=c_WFQ;o(m5MMU}(VaqL1X(rYTeofvS!%}{m4Q5QBH#=<^~gFD zwu8Ok*ioQ#ngkiUW=Yh%u`8tvdZY&|$U%qKFzNMK`zpZQ8+f^6WD zAPYB3V#tXTXF$hi|3+lJM~$&^-L>a+WTnF35KT-{{s3(CRcSWaJ+XD=q=UpKU{mo(-m8W;kdS4Pas-^U|eD z>|?)0MVWDu)-}mb5P-;nZ0hRj3hU}Dfp!PB@7QrZwB*UNXX6d>c%5fFnS)|{8`0t~ zUMSZu_KbgU!=hM6Q)?^5$1-nzaS1{^Pi`rqB7+nV|Fz;bt;S)yth8~-T#NsN#>HFf z>j5Q=(_%GCYbPB~L9L<7ZeVy+r1Rn#CcqDoiL1p8G^hjC4ypaT=MJ$|1=HPS8vC4n!HBj>;H z3}cmIA+VSXR_fBse|f24pXU$N2I7HQkwxQuqPO@!qIP)-0w6}=k&zz_ zF#|}8%~gVt#Aq^(k>r;SIFHJ`D~!%*6^1RL?6Ov(S~HssgoP+FZ~6BaOja zP6K#gj8$QKOpxx%7l2DlK@l($hD?L2943CNa^td?0&{NFVS_0G2LATiQEYG9_$K}z Dzn`Z2 literal 0 HcmV?d00001 diff --git a/marginTree4.png b/marginTree4.png new file mode 100644 index 0000000000000000000000000000000000000000..246b5c5e82cde01a954306ba9c5034ef2f3ff0fb GIT binary patch literal 55435 zcmYg&2{@G9`~Q$BOEN`GSu#{88ZFky9+g5WS;mr-CBhI{Ls<%;EEPghuk5?A6E)T> z$&$UXMYbec{O?2G-}Qg5>%HFVo#!~uIp^L!_kDlP^GHiWjg^^`8H2&Fo;$0ejlpcu z!(g^DGt$E^?-eCp!hh%-wAGX_=}p|@@IMUZiWe0zn5+<%)$3UJeK6|9_~Miw z=HX1QU+1g#@`Zm)t`EX*TlVbPvunGquI}DY6BA}-k&S=eKCd!;eE9A2p_Sql=~0KW zU$fJzE~Q2e(;laJYqrUofB6%XaewsgXUZS(c^Oz1Z8wF0!6(!&MMI@~Y8X6LutRAcwug)+Q z{*I~XY4xP1Z@tU)4Gh|%=r9316vEuZ@bFDDGZprV{!=nCZMHDG6-<#_P*Cvb5mW8z z+PM7Rck5%ke-A9_ho4V+_fGJy4hA!Hh8Q4gm8YMRlk;?8H?!~gB(jr}!1`?qZUzjE z4raBudGpN4vV?@dKo+L-v^2}HYhpX-F|XB#0X<#4z3n7hi?M+Lg~aj|!^D>7F)?58 zo@c%jFoZks>ZrE1%Z+n>eqTE}#Ftavy?f`}_Sh2UtqvyPq{$8rmxVYE)*9&QTIA_3 zD{*mdqr*^?hyf)QyuYGfzFZb4O|-{hLU~~#U;VUO>P$tVJ?lSM;u8M-8er^pr{nrM zZ}0<*R}2BKLeo$CT2Rb2TbQGrsf3Vl$G`RW zcO1N9Vd3n2Es+Pk3wN5Vs4_7$q|{cBkPs2EJJ{*bM@5W64;8!f-T5R_b*84KCeNa9 z6aS4Vf=IZXuAZLz_wSD^u`xA$ZIm&=Qu-QABTQDTeyfub91^1bQR2jjxw*O5qVwKp zs#KV2cT{d;L&Mp0og)z-#^1hWEmDk_fL#>AP>WSwWK`6lOTrw?*REY#R#HOmsrDz~ zW;?sPTe)p4#>U3ZCO+DD$39r<(Bh(QPEG<}6o-|VC6WriGBIE;$C^4Jmt~(A-w+m1LL9i4fP)yHT(3b3A6pfDGU zHx=d-Az1ap{`=PGy$^jzIB!a6X%mzb3Dm??>}1fNAW_ z({GI2;Wm2hAf2?+_Y0?rMk`7df?6}}`~nT(WFbE=hvg}J#};{FY#!I2g3{RE}? zl?;-&Vfn=t%}uXFWW0a%$nM+a(Xp|=uOF`5fuzicr4VF)udb4aQHR1_K7W4C&8-bj zuZZl0k>)dVDNQHm!~~T}t*;L(!*QUMtR28Vbmk2HI60YmP%}w;d~MChn2{AWi&+n2 zsS-`ox$WYj*ZNi|!Oq1cS@a>&SFcejb};JaPn(M`{rq;Yv59kTNL3DIQhO2-B5ugZ z+1=Cg#bOcd>0Ti0sj#T%2nX}iBS()O#pe1ngvi-&%gW1lfM40m4VxPr989=!^Or>Eyvyy<+Fz1@u)%EntTCO9hg_*vM*ojV%YuVE9;&hJE3e!v^R z+j#85cr}Evn19!ze4jjXu+V^`OU z5k(5g8tJ!}AWV$`-m)v2jDbIuu5=lAct zvd|5|Z-oQh*VWnCe8Jpej7C#QM9Vv-1rt?OR(ijcR#ujgk>RY#K!?AbnL^NZ2Ej2k zH8;=AWvk8_Al=yt+CKjN$`Kt*Y;5e!)CuAL{dgF;8#wLUTc)N%KYv~{uGny9X5h>$ zliRI`>(637-h4(0o|QV&lP6EU zT8Vqmd7!fim4Ls9Z?Wjq_95zlp)eprISZk3x!o#nWMt&v#lsxT&d$!u^t(2eewyYp z*3sSl@|KXYvbniA=NU3u`Wx_)9$nwQwe^@;P(9Kv9sD^v+ah4Wf{x)4__OJz&!5GQ z@8d-AQmED5(ecgw31jr8FQQ2M3Wu&%Kk94lO;{h(;d#coorCad9?> zDaoMW0!ik|9;O{KxUnI0V6aPvM?Y)hW2oFaqT?EAE-HpjJ)hAcx!jsurtpm@v4Dbo4_@5Ybd z<9NZCLxO_NzB+#V_@$KgdF(wew3;|7b~d)4Kr(9moZls4l%dgoq7@r{aaoZVASxc+ z*wv+XPV{k&X_9see$y|WK7g-|f)FL1vzN1|q~wcGi3%(;UXtds*wfVXWQ0RmdE2&a zoW2{{J?}@t#Yw?ttbGQP?9jr;08jK4Qz%*CruOz(?N;L~GaG*UP8iFO0Wu&LigMaY^V|(9X0pRHT z53M5+y62CPc)7Ou`}-Rk8zcYI9m+B^4Q9Huh}kl{>+v5a*5`t@sOCX=>}ot^!+tD&(1 z38}051Jbc~R(UVQp9Kd6X-Nic*qLo8%g7}FQLkP_#>8Jaa#~h)j3s~rO_TvoG*a5L zUnkVF?d7dwLT`+NH^w$LUTnnr`60Ldc*7CS?4+2K<+AOtv9-O;v7`VC9yma*6qD7yzCLi~w5P_zsJOVe-&h(7>=%bgz| z^l5py$moN=pN6KUIJ09AoC=kXTzPhKdU~SWZ4)mlAV26;!iNv4tf}!eD)9G1QHt3S zg&rywxpDx-{$DR+W0PL{%OO7l$aZfx3@NS1}_YL!x>4!oBf_x}BL8aL5Yx?wC^ zA%X&CtWR<^GkX}ub&xvp2Du@^d74jxl^EyAlPAex#EA2M{`^^{4}A!st)=BsSLJrt zJ&u=LNyyVb8a=Hi#8Iepfc0nEe?G9105*zAXnubF{E)1eBlx^a1WT~bqPV{ZaRq=p z?{(uD-ukjwBG)~nO5FQAB}G{H8{mNBN)K|;vh5Gxx7Yst>ydorY2a)_!-d3_X1tde zda@Iq_!ZAT2@0Y{+;ev?LD63Up+vM5zXYQU%?lT(;`i>|TU=VwGsa{i=dJRHbPNOG z-pNTPz06lBK|6VjMZpjKjSy_#Q z7;puyZ%XL`^|_R0VK#8kAOV1b@uEZ`abD?^SZ;Rq>q`U%w7o*uUbB(KjSJXHv|2#9 zQuhFZ50mwXao|O!vfqnh29YJv!xNJ{eH(XoQhMxx0|!J!MVIMuoJeO>Xg&|VScvu1 zXs5sY2OBX}$ns%_b|#Q1LGUMuviMdF4=0sj7y{91c2EW?tZi*4lE|BhhQa`n41o3> z9|7VU3Htk?2*s>|LL4I_WdMURjf&dV)?FQEtNl0kWAYX9q4P;kNj&DaZgB?tm0?s+ z@Q0n6yfrd5R#R1_6-h}*=%6q}IE8i#5HRO*Mu#AHmDf_Tva74BsiK%L1ix0*h|hOA z{{`6bto}NL%i`iTyw`t7_g)>qH&DU(8Zr6%p}@{u{RCbz!%Z>SV`mYhD|+zifP4h8Z}CerBU$pUrM$6T_|&$B)l0EW8!P zEYhR(Z6Q}Oe6bRbTCa_;HZ!Xp_Fbm;vPGNOqDJh@0B8cfIx0&$nU-z?Pj(<*3z)Vu z142Zp4=byok&zXLf;p*MQeHm8zZp4b1Opdty15x-7%D46h~>mK2kWOndi#1?>&A0y zcs>P)H$z`p89_yCbLqEl2C#P%0u}4#=;2`#l@6!U9qlFe^XJc6x(&Ct9sX!&11{DM zTe-RxwOEX?U|f+oZ)c#Gbi8kW|63wBIJh0bMTPrl8IxfwPVYA0Vv_cwBnEFYv@1Zm zlS(P=FF{o%o)wdNdwa)OFi(|X8o;!fEFgAQOGxD)sS)y0L4TmfkDt7$ zVbaWxlz9N~q^mUNCP?)9f)1sNfM10&N37v96xR*tvr)2U=0%#>1{MjaMRhfUIurd1 zWTz(-h>NjsBBxFrxfTyu^^eO6AJKwy!&p3%0i}>O~uN0 zSmo`(kG{QhvPq^xT}bsJOCneSJMA_Lv1AA48|Ju!H$W zq#4O05s%XdCuL;5L9&L$>_;ADml|==4R)sU5VBK~61o|bYKBUY6@M=*jLgYXatni+ zkuG84(Bahb<5y)GZ#f`$E?i>@>IA}DMW=o+fHX5LA}Ts@=%&ROtRWHOj%0e!mo(!H z`Hw3g@l&$0UxY9rNEqj8-H7+dTVD_EyS!3S869$ zYx^iPBXM}rhGXp+!)yR>J=}nO<^YX+?b>MtsV=Xy0yZ1waQC2(wP!Zuix@u&=V~R%PO2B=$1wr=`$qXte10T~Nk}IK5F*taga_qu|3z^{r z97-GGg=a^7z+YQiUm!Apzs|_W0AcS%OEr8Xi?pXp^=QthO$QUpi&TdSrfif^M^45r96aF!8I6E&5m1q|5z(2`uho7jDX&**@rYa&_7N=iD9RV*$_nY&}a(^N>l zuEX|kLO;^~pdUtB6-4TO;1#Jkb_y(KSj1Rlk8s4}G7RAlnkS?B8B2O<>X+}!-}qn|3>KtZ?6IfQM<#6{A~ z$jHYZax5$?Jwsa-RRQQk)ssJ>dJ~nB=}-w39fR|BR#uOb80c21y$W^bK7e)-KGQd0 zL6z6%MAx%*MT#yjl`rDgeJ)FT?Z|W9ilLzGO+y$e5^I!9$e{jA8>S!qD7L z=k$^mhlkG?Z}DnEhN3v)1E`H$M~tdpACzC+wzLdh+jy(j6A&6|GM%lrli0y@|;HkYK&5c78s$Y&*sf;)KE--zb){va-4tMYlO9r0tD(;$07LfVcAV;03b9*&QB ztEr)JFgrV&e`l1yc?OK@4B!(-$9Ys=*y^M;;4l)yQm`9VaIa`DvJH*gPk_mk~M}d8In6t*!0P zH>nB6Ha0f3>Hr4e*((UW`e~qkUNMY^@jX2~;U}|Kl$6V}<&-qOVwM3*K}tSXzSgmh z4r~9zaF!>*!L{Ry-xHOLjf`kXV3@3Q3V$>-G-zhpLL8)1;1j*Zu+LcJsi`@f?z*r0ILU7iPvZyG0u;<5DT7Nw17%{gjEzdP^O?NZMqq7UAr(z-5ro~L$=@OsE zPAuvf8GXfJ+#7o(!OX_ZnCL-Ks|CGCb~ZK_n<(;f##7MQDEswY`3GhoR^#6+W-!Z7 z;_9d9X`Pgt?NF$HdkM1`|4X7W1f3^)zk?zGm1HMqUMTlx-(-XriZNh#9sB-mXUL6c z@uweUh09;RevNc5Ur}VGtFX;0U^0TFG8gH4fZsGF{`9UN%gg%8{p5Fdm)0QX2N_2% zNK~Sb;)D`2`8_%7x54Z7;O zo43dsXaCLku)dAd+?!W?IX^}da&+8L4U|3nfm+lWnDzXhp-a&M;E zUf%uttr!)ENge;zO|vA9X>^eVdZ8MqC5a5>Q?Y)~Rt2-xJM62dkXkt_hR9x?wC+W*=%iegw%rq0$`MwxE0_ueC^Oe)O>fUX zQ=ODR+}B<(hoZ(kYB8z#&KNjNu`ekA^Omjx9O0zL<-v;R@|iqoPcONgM3t1XSz#2? zYfLXSJ^%Z89aQP5ar=FJri%N}qL{*LYZq7yQ$II+6m=Z#)nt%nAV@YvOv$Dv$aOy6 zg|wX>cUTj|MYe5-ZKegIaf=@^NOq7WYlN??tZ@GL0LXMTAH>T_7Z5IQUI1-@kt+lP}n9pN681 z=O~0xKa2_zDrCipWgvYofA?A}=-+U|^U2m`IHS4S^~2eInCjQ17g08y=n0bdvV}nq z8i#WWA^%NySV+_M%#pu+0W)Ttr+@d)J+k9U&!$F}45@=g4wE$y2GddkG)|KQUk*w; zKpHU@Wc>_AvYcx_106C5Th=aNEKp*W=Gw#T>sp%L@^Er;k}CSgA&CidI`ez?Z285R zLDm-|+V5eU~2~i;k0$llzME!ubC4cw6txfH&hbgU+P#IT=~m@cX79 zbXZhdpFm+j!Mm0j5VT1qysP_x%JlTKczEvlB>wek=-ByT7?R+CJw4^J`;0+jwl{k@ zDAu=}BXatn^5xfhTwMInx)%3o zRfTlj==kDf^%<98R5+=K-!6rZiHQl%>4S!cUuzbHa(KOYZLQ1?^Dw?NmiTs4!;aw| zG+iL4jDDp+a8T`hNp1fc7~gX`gGl^WyGwX=!O~xvt2bwpaPvNf} zwOIxd7Q!;24H-Ows-~?H&q;v5u4q_AoIj)dB6Bw@bc10vY(II(QygK9bM$M-X?AZ7 z-M}m3sU%`?Ta4;S`}_Ar*Bw9RSz_e7J3B)^ zw{k24Ia?jJEPe;4v*UvQKY6^OqxtAe7eZxU%Wu-S91t(g%iGn(CCe9U!M@52Ytw#u zm#CYjGc2MbvWF|!PxYi(n+}v*#2HNNUN(+E+~SUaLq|Es;o4IO(MMeFjGtQj=_0sY z9wQfjG1CG3?OElol=%7z8pp^}CDxl0P#^5`l1Z{+tng|U=tL)Ukl04bY_Z@7JR^Po zYRc8%TTORTp+CWgd69TAQxeUf^L8VliJ`pRwyZJ$Wd#>5NVquZL(?GO!=ZOG$UwE; z%j_mV^t7~E%iH(w8!JD^EGQ7Py#d4nWlVN^pTOBq1_cmWLgOdNiq4`2#Hiui-;0a? zwJ1WK6RnrUDi-05r8q4juYEp z%&ss)Vqs3s0dryABRSw9=WapUU7Ug70X0Q3S^J6H$E=MIrD7JvqQ86>`Vk40dWMD( zk{?{ysZYgO+xjCJVgK`@i6rDcnl2}4*Y?(1Iogq!g{IA+)vJurb^>Gi6#KzOR~y#e z{4R)G2}&z{4mI5^;(I)DO5(gFMd_ty=jT8-Yjc_$XuXFoZ zE*qa@6s6^}saV78t3n(-l-j=?hP%X0S)fw$$C9F=R-Bh(v%qtp30&iH+P#`g=O_gJ z@8!dh(NS?4UCR5(sVQ*4%ogkosw?kw(QVf z?VhwGqOd4`{xsfNBHHQDJr9re|F&6Mq4tO$=HPqqTJG*WaeKma^W=xSj_qL?a7!Nb zk(87q%aP56SY1B6dh}<09>7{{mPDm#mQ<&p=7`$L4MPSv_p&HgA_$E*dVuZQ9IB<1 z#sVl~R8RuZph*3A9vo)8Fw6%%B=U*58B1FTpmTkw$In1ug6Jf1Di2j)HyU-Z>XP`} zL$QXc|MA5wlFGMMwOfcyzIc|)v;)2CRMZ_J)FOpP)^SmmUgTsmI}7`{uvlt?lk zCN}HE;*-xg)dW!HnM+3~@mCF31@`iT44=b1xTpySa|M^rJIs{_ z+;W*dqOubIASqKPrB*sgSHv&k%0&&0I+=1P%i+A(EZBp#!nvqaQ3l4xlVh|%Tg5p7 zK$ToZ*F>MNZpYd99EVuz^~{bqrmY~Iz#z%jk*({T49C@PWy@YtSlBG2gi_yw4wc}> zKOck^G$-rB;@y$Xa!`!r!`Q(2OM+fMMj(MkdP*5+Z;yykyLIc97zam61Va>+-tx9B zd(6w1WJ%9u`YP~~p$_Lpe7=$kP+k$=0P%LE9AW^@%UE~Czxd|dI^XxPJ;4tYULAVD z5?Oy!`Vm9-rLxk}qtpE!3GlwaEE(7}w3G-1yXvt}T!@kT`0=9{2WN`?=cXnrM(Sy2 zi#CDh>|hm3;Sgw%?L0|KJId<&RzIyy4a!{!vZvY3wgZ438~cwNpUb2Q*%~1ZCPQ6; z>YelYjZR&Om$upg3y&5MfAJVfzQ{r^pztI|OFb?t%RL|PGA+@~-943$kOAIEkaL@N z$vFXh?rsYdIyv5c_@KN*kiEHES}ocH)%0oSPe2I%NQORc!m+OH&o?0Sl5(_3)5b%3 zN_??3bVKFBY;47gF|D_+O2JkJr&3y5Jboz3?R=on40oMMvGm3vBw zJMRt9pO&Pc(#J_ZmjJ|q=z;lpu@q~lGZNUA8#ioYa-a#%$=uV{_RRe?nF8D0MjC+{ zy{HVJf0W9!Oh|6jLvlV$O{M!)nG4G8={Vzw5}7;G%>n^VFvK2)i(rq zKuSiY9w&7Q>hQR@J_kiN({WUN;U_yf9*nz#P_lvw7(o3nIZwYGzfsRqdHV^WiNXi{ zvGl;z`SvYZ^?-Kr6&knX@#6`61b&c4*zXnoEsz2g{Xt|j0_pUK58!h0D$-veV&kp0 z<^O*CE>iUt$}M05C~Cnm_7Ny3lS&ZK2wE^0dBPc#Lkpey%I@Idk;X@G2l@($SYLKA zn&65kP=bOt)lR_i@clT1cf_+5N2;ubOSqLlL;aPXR|Vxk$MF5^8*Kssa;Hz91|?L9 zk0KotEOi9GK6f1OtT+S19mtv%to$Vu=aG5Pm(qN|V#p1jdM)QyS4DUo?%mT>R-lsR z1dDT(qX|!;;fgCV0%Y?|aGN`DIJDl7_6Ws^4QWe}eIyj$AO&_b9QBdVA4wPHd>oaQ za1X43kD!pt#D5jmsW<`nO-d?M*#ilBwj0s|w)*cB925}3@}af)?AbFkYU~s~x5Zah z_Tw6qUgRdBM(O9(45xJB@cwb&f{pP5l_KOWR4V~8?=%wG^ULmod0c^(kXZD^VERGG z@KK-RB5r&s*Zx?Ye>i>EI1!(FM8PvsFYD0>$P78@>03bPz_8h98S+3p>|HO4FWX+B z&NJ*2asDPi?>l#{UhG*7t;h)EZsW5_3Qbga3F_tZ z%aAzsv;^=O1d!A5-}Q8zY5$>L?9_rt;L%CLT7uAr<89L3-Hd0P7MCo5Hd zGg$NuiUMpG6S}PT1fE%PMA-^fcH~6)__$@4r6qf{0yqN(+B1?Jz|)XkW8y)g=<3_G z2_tfUvys}9j7Y1ft5IuKj5D230h`RqWis`GohZ%9;d2+H%soBJK79Y`@eNX}HC@M$ zQ+dJ@$o?_LEdq@9(Zqw28)->|-!&bbq94b}{XKH=doSOnLgCi^Kgc{->5N`q+~|%o zR!uu7I(KE(@|PN(=?M`zdbHMd@4kJ>9TUq+15kURDN|BX{V?l=TS6ri7r_83?w5bY z0)iS=xO*+^mBFbVHhraimp$s*Qh6Ctg9i3YkRKdfAG9_ zPwM5FZE0Lje{5X^!@g%{7k{aO4USR{(7$#vbyklUwQ^wqn$-{%R`V@Jjscji7ewSm z+(7Vxgkq8YARolwILnQgvTYQSSC!@KdGA#`quK7Wc=4ho%;B`c5rcV-aeHbQ%mlN zjpbpb>jI3y&Bc{?5jP0Q!OX)EAEI}T+LXZW?WdftsO59?LmSCGccZw9hPvOo*DQn+ zfOYU%5XZOyL?wW&w*E>OBcG4<%Z3!UMHf0Jb!rZl>3&|@Av9*^?;L`L>oGgfn&`&2 zN%j!$h$(IOqU(V(tZZx@Kz>)PR@FRgMz{fvd5W=J2qy(W$9u(tI0l4+ac^ku=jFBA zoU-`o*aSs8)$c>;m2-4Z8W(4HlkwM8T0&yaaPS_~&o{~Re8zGL%I>ZrYbO?(uV;1M z43^*@v$nP#V`=H??+;l!S*5I_27A2(d)*uVhZ3IyNx-L}=4R+&$f%U>BRGmuY%_=iD5i7C3jW+M>FnEDpkR4DM&(5CAD;C71*ZPz%Np>z1jek8nFKf&))s} zpX8~{@W>cI6WfyUtlCO@7>osvZ$c<*!16c`0?X0i+^hZJ#&(~6EG#&ArfWm3aIO+s zhHwB6Bot{E-P9gJC_nqnnG$ay5e;i5(!G53D*y2eP>Uf&X909_CO>{Y1Z5*33Y9yO z!St7)P!gII=b%{fYjIKNonX|y+l*)R-LkA9=}c5W1Oc-kQs!;oz7Sg_UTi(9wUP(v zS`7WZITQndPg;r;tgQ{Ork@v0H#k*S1ez&U98`7?9-!DZ+~oVF^EfF;CH@0EYP=o9y-dXQBx+8g45O0eYVWQbx$s)D+DfdO68_@q+L=d8=~c zUGV2X)SL_}Hkn|uvt~KQG(%iQiC8>9RqiAnOR_AXk=w8P-Z$Ac0jBOpg1)@pyp!04>$T7&whFUOhi8 zQ`%dFW_+Rj)ODS^o56bx>|{QKlxd98Z~CD}I~Vuc_$Um4tbnz;!8(y%;pXMN&A8|# zp-4Cc2MyfY$*8M;5vz{DT_Ktfx*v|&6OK6rB15t{w6v5rIzZZ`^sV4dnop7|Jt+p7 zx9L+lCOEO4P~D-{Fr9@fAPS#>JaY^xnxl|&al3*ny}eAP6?sftxArM=9cyL9LVx5=iq=VAw!?t9IWz67e=8 zWXOlQIB>r&}D$CIr@-}9e3KYJTnu|M+?eh0{TBx@vJy1P&&IB01v-L15$p& zM>_`%FR)crIuw{I{=i0Exhh~e7 z4>ViSbkvP81KVIzKwA}f+hyHNg&ey>$aM6Cyn*3U2?(_C*T#JK3$1_&V@#n@F8;6+ z5r0$x&!FPfsU?)si2orXP zu?UPnr$X~cxfC=I@HigO%6QPqT-aaG)$KLV?kMvr1mFsHd|Cw7RFZy0da!?)jtU@pDyn7DD{2Kjk( z`QLBl?NQ!)VN*5C)ljeJT#mRXe$Uml6;~w&<{sT@b5oe_xCcW(JEXc1^bPAv^6P5G zTVE>^JBu@ztE-qk)Zrgbr95OO@>7ll_70~N< zi7}-qf=kBqJi_~((V!MhkLnj z6WhBrBHrc?V75n?fS}@um8kVO%ru|V*-C?e_x=hE5tc`jS&RXW4{H<}y3FepM_ATH(9 zB*{p>w&Yd;f^+c=>`;@N%4F*7_>I89=#0qS?xRo}E(`wDz9k`tVhTjy*dVCz1yDm- zoGO{CleCk65swR>J~k@G*e@d7IR#fB%WQy7ql}^dQdT$*4LjBQP!fP!Tb;i9fiQbi zwyMezyInr7(51pO-~;JwzdC(o?8cl zf`Tj0jKR0BUe5FS2TL}I_TP}-z(vrXRrF#Gnajs-$_s* zE=^e3k3$bVARaiT)y&nWHP@a4qqHC0t>asK^WooG`HM@Z?d-=jnxz8l!dTW)KhtM* z_Vq;?50y3JN?Mk(eWrC^JaWb19{25unu3l2BL`*R^Rg&TMnWwwW!J&%>(PbZ&J9f| z@ykargea$gqB; z==vvdOeale!U}M8+6CMmRaWcaK#ha@ZqGHR# zt-W5oaKA*230=*oXGgJs}Gd{?H z#&mSzw@rBslYl|F<3%Z zUEO2u1WOU(Uts5;v7hq(6){qschMk+GyPqpcJUwF%N$?P}Is0D=@-7)x1{6`1@B6Rl_6WMVRG5F+hNUHqoT&#+RUdABFP_o&lwd#{zo!NSx5 z88AiJ#j^(G%ZIZd+M!S1W|Ftoh~5BTW(FnOf6aOPH9r&C2KTNEEy#wBtOb+4eGQt+`X{ zu1i{0gE}36xH&%rWcE`Art|OtZFklSl2f6qz^Syn%NW9r!H3uSY0z!daW^0pu}7ST z%YNIrVeHMzggpzkz#6k+Jgj~LYzM$tPuG?%8R+C~X-2kYZ)Zoa{RTuN@FgPPON?$| zO-G?0zIHS+vHk)lsQV4|mr0ULJQeRqbLJDLumz+JxZ_^pz+P7f(Z5bULYTaPOpld2ywN*FA7VmUi&-Dv^IS+niwAFR#8u(JP z@!!AO?~H8u*$lVt#xxE%?mqxoVBN^VMnM}W|88@l*#QdZ4I3f0>(_noe(pd~hwDxD zxP3s8mw{t)QjY98vnbidSPX#_4w&+F&`D7Zee!}RPD2Xv7TNF?rCHtvX=Rs&e71kI-FUP z)T@Z^%ISr$8%f1((;+xnQ|o%Wtr#EG-2##IT=ZQHl(ptOs|gd%MgSE}C35Z+%Z^Ni z$-)aYU#m^GA7RyqRR{RHSBN3m9w{6}XOpJI#)Ln7=IHSH0`tqk1xgF{p0M zh1`WYRjWy<3$PnAM)1YE+SpwG*IqPDMDxQ#)P31dyuzu55hVD-prI}&3a&8OD z2ll;F<^C(+g0B>U^J7i0-3J%|tkf&KvrQ&ZZ*zNBmm0AiLXac$L$3UmZ@w{dHwo_8 zYWaa;y{Wt@4>*NvSChNx)LrMIS(dd3drckmO3yo zk)nFioHY<#aG`G&cHR=_zd3wYR2vC6=I3`LKw8Sm8lD#Y@^h71wzXcR;%Rl&&I2~+ zS}a5SwIw}p8X$Iimj z(k}LRiWSA=x9{E!H^L=G@Ig^?|H8gDIf}(qm#`=QVEh-Vb;V8woRbhEGQE|F5DCvKTM?W-C1yzNhD<7qJvh|@P|#uIuHJt z=DxXwwP9g=E@cNLGy==fnT79 zN;@?6;w_#CuACYHV21+mSa5N1jzKcO!Qdgt2VZM0)nR)ZleiChHhtEG46{ITM(v$>AI#kbZfbLJDw(h9ArF0~=W~KZh31r_ z%?nn|kx5+egE74)WJR}hO2M^Zl(PB5_aR_(i9UGIL&?zG;-sH>24!w(yXO!3cXMuQ ziRK>md4&&vYu$X)&9hc^^$ul6g*%%{CAs=cqUmGdwsM&AM;;jwV(-T25}MB%KEPMJ zbSbiJv7rDh_hyjLT{?LyW0LFb+v*#4>(T8IMPVFp0dG^)r+(J1(9Z3S{bd6ZwT=cn zw74@+{SV~!j>4jp_}u}gjk~|Y{i?oqwjpO`BmcqHc;%mg>JIWfY_P-#6418@aLM3R zKUbFl@D$o{Wy1)pfGs)()FeFv{9p7GF&KYOxOnS^pFiYM;CRom3gHt7-(w7c>Vi-< zcO(KIvUfjrcG90hk#;HQYjR%j{|CJW)I^A}07Y677NJY@JK{#g`X>67oCNe+Ht=&( zii>^Fp=LF;uMa1{*hh;Fm6^=dO`wM**PXY#<8%Kwx+%X`qp20~x^-1Ut+k+wu>tb< z?I{YASAhBP0d99yuG-#%{8WZ3X5`U{3bh4l5`CchJK(6U3eAz4(<_MwwhLusul|Pb zGAJ)r{DNJGdwRSMk~wfvW|zfiQ^QxS`k~gt;8ptrWs!F3zIzT;VV7^fPT{PwT`C7q zBGJDDe061v=bz%7oRiXGx};Ok{2by6gT`pZ9-WifX)o~SLvAdrLY$9D(@S~oZ_1rCf4FMmbu|$f&QZ51rjqa3I0Jov207Pj3!qvHSHN0EeC~|q zW7VpT;8%-&z-Y29N30fd9$8etFU|J)ih zHpLzqGvsapFccN9^H393Aka%NJlG+Pw;}Gm0=*zB^&darm01*Ae^!^|3IrXMVkzLn zx4?~)+d>LoukutcyLA1hlj0=9)e~3q)*k}dZAL0@l%1~pJe1s2!+`GBLTo~w7+vjP z4(0g|eUGB& zgJgkbu*8UJNc3~n-CuycqD!iUo0nDan%u6JieUEWiVY#0!#6F59UV|-;xCJ5N;{y( z4|hqV8PFxv$KIgA8rBeyTXGNMcZLu4q&bMiC28KN@4kAlr=4o8!``MAs_Z25X>A%@ z#7+aE#ohL1mg=hWk5kV&+uQTqe>?!d;M4q0+E*xUZ(!OcoHOEw=tm(xe} zNT(RZc8qArZd?(X%xmEY@by5qKv{<`Fd%dr^$|e}x-hb2R(3&7p(7N38xro3E5S~? zZXV#0ck}d&{CpLf9^ryhLpwK+TUi~sIDjiqecR)Yl_if3{^Qs?bu9`cch!pd|C%1s z1&_~lc<@{s8s;DPv62MCa+R#YL#FbQev?e!B=iITwsTsbTE7wt4#+BWgkEVw$XPh& zBJi4)Lj0hMbK`RoK^$#hmXqh&F7PT=gKKbvy{N&pc{lIQn{1rH0jvjx)0%d{7!(MlQ>o@bQvDu+Wt%=a%Ss{|>Yv$eqfWl7)Mlx@r2`I? z0I9n~zn8s5^o0?q;rhMaGrZwWe024qr^m)XL)0F8tSrPr_r39a&z4)zE1WwHj!c{* zPYC6i8mT~I0-nU^9r7fRSSHaQlW2d;^g67fXG&5{is35+OV3>jpDFI|e7YkrFpyKp z(SkcjyMkik2}nQE5vC?yDjxRRAq*@%IjoA$(*S?DO&BDMFK7C3S@>E#iM)51WuF7NCM|4ljVG_fD= z0bApQ37|KeJv#iOWevEjbIFKV&JiUGB|6As7<)lOM}hQh&v*i#D{PUa8|3M#SnOI# z6qX%mJk_avkV%E~+?CJZ`f?#erK-!BtwS1_0XB>FEE;kSa@UgZV-lLe@fr2M| zPE4*$hUK;pGX-E!FY5H$rN3oV2Y+JNafnWY2)7a+>@gxfABD4>nIZ7XXTQitLt~Hf z8KK7HLz7##RGkd>MENOyH)*b-VtZM~pneM%^ngRbs?ji7h}mho<6Pe1!bpHu(s)-?nRw<$8L0((>}3Kaa&<`~dgkIO$h!)yroUiow;( z!MRh2Lk#4e>4mhAy5a2NC938RlY;MqO%itRg5Wx@x|RH}(cS)M{#|)aCmZK?GE~OC z0ENH#?xwwEE-1Iw+KA6o*{@F`nXxM)F%8o2fwiY0+(Xt6bW(=<7XIj&$oz?gaQaap*A&KsB0-$|Ds>9 zPn*VY< z-oPK0r<6CD9-0A#%@wfO>L0sAh`||!#jXZtj5*Lp{a%ZHknbDzft3|aZ)XLrxYP4? ziWzhk4ew7z9sbz=E+ir6!z6s}LfP|n`DI5z-=^uE;3d*l%x>Kh_}W+plO}lBTaGXc za4l3{IeF?7=d$~!fTakQ?jaWqwxhNAJwXmo(QVmFF}o%=0>oCo)qLQ2+IAYAC5noQ zcfVM;MT1-H!5?dO-FzETVV++&4|NPbFHv+cr_Z$0reydMv9r&w^_S1p{9n5RYXW2% zNUueBPXv`TgpH_!1v%Ge2a}$m`9uUcsvVy?Je{K@wJzZO_RU_t8k$Zal69R4U%VYS8 zz+Pr!GB9fOjzpLlkLR$~ylS`<^oQ>*_&m8pnRMCppsAl-@h0+`8TZ}Y!;OdJ$nF;f zQC>a{qz`e1#p*p#PJ&jEfy&6Dd_*@`x08qdZs*y@rHnp2@c)Q&pG$G z&wW20*WWzyZ_C!)?LGYKIsx&WVWawRvNvu8f+(=h zOtzmg-s)<3C@4LK*Q#R*ga!Y+@UDpK`{Nd0^M3En`0|K=Rumq9FW{-6q0QR<)UMXE zpwB1sp0<>U{2vek3$39zkgF3F6%DHybS|)zP#|==p$FDYC`p1;8DXv5=SZitK1lf) z_)9L;k=i7=o@R7jmXAdle^JAPWp0#JdQer+#L|e@s2sPS31NYTY#b z4+q!PO=~-55Z~y-2RrYTya3lGI5k^vvwUwH5vEzY%Q#Kfsd4n^23BXY@y|V!{H|hsT7E@Kc)rR7MSqUN zJ?}%A*5`h^mbe`^oQ@j~K9r-s;Gj6qE`W>`G{4aq`8luKPDyO2%bt^qG4~u*k}~Om z#ZODp*_Gq~kMx}Gv~5M3ZmYj3>8V$OAymNxn4d|~O#@U1lKv9CtlY$9WVDRG|ENVB z6lqsI=xS$o&f`?Ea!U4}XZ=-Vvz7h{uQX#RV>@%g*L-^;oT%Eg>aG#}oDLjuB0IZM zUY$Cq+I!4(msbsg1RP+5pMTf-9=BDseQd&Ut>C6n1trP-zn%2eFh^SA>}ok6-K&NZ z-RLHXy$nr{eoj3;I;fMU)sNw8RC!OJOmA(RNRPW)_Xa>z0PvT)M`x-kv%SI_1hvuH60y`l_Xxi=p zPthy4;&PA9EwXGeaCi|V>Eo?$XAU+GD}K%!Jf+-bt@^I)%9RlM{kdBr7KE3)^_rOP zNE(@$#MLw? zksTwWqaU7pHleE0%RYon5+#%$8PcZa=KC+*iX-)>*!C6I{Z3!Cq#j>o>4wb@2zvaN zVW9G}z;V;|tZj0o*8SppeD3BdU%>@#mb^FulE%izAvtkS>SZqXpUt+dHVu04-&Ws; z`oAY<;ZQOyKIS?q);=?Eppe`XIfWOeL=@)4!QBSe_xOs9w7#iH-G=sD((4_ypCciW z)BZVcq%c^(GphMH7UgG}Pums`Z41KMeW&jDaSf=DpSDGiM;$ z_RO)ZwXNdQN)Ssr`4GMgFscF3JCcgl+DaN1q{3j04P)n@KH(JoBrC#l7LlS1e675%UxpcwC0!9BPIZZa z*LOCcoXHj<8a&T3Iu6rSDtLQQSx!YgdGd`(_DV+Ys}N2q$G@;BvBDlrgV@{~=3O$$ z>i4MHv7gNg4iT~?LMA$; zfP+7=YQE*thiS*x9Xa}YhFjd9NOdrDxPaV{Tt2nwdByZQ+4zsvd-7y^^?}@S+ugXq zt5^wm)SrnzA%v3+c7Ey6b{$?MhuVxE04tCEz@0rM-oLn&5OsZa5ZrjhU;FUp5$;ps zrNWd5@n7Q`kwMf4^m`&TY)_048wGyoKfDe##Pt;RMK_uqtgwg*`RM~L`DI{dzSi$c z5iD%J^g^Dv@g9;E1}=@ND;F{oK5xki=FSr|fwAuxGS9A>)JK$qrs? zX{PH!CFH#@mKCrw8dk=m)Z$T&+ZQ#Hq{Ulinu!eFroS%jFTBzZVNUFp?$w9X%*d#P zszxAa4U$*7=>K3_Br`(?La4qE{^fvTn&M5dUzm0H8s;x0t6SUs!bS(CI4%n}#56k= z-%7T=moGu`I+0>2*( z_FILa4nBxlL=5bVtJz2@lujm=`06a_1_`7>B<<4Iz}zyvBmz3?JnIQ*fgSP4bwqbS z_=M?_ldIM8D2d~43O4%u+}tr~`Ahd>{LG-fi-Jbug3rSb}{e z@Wn=)ISyaI?@T@=IH7EWYr2nXdRrfqTx6)4kX*7;Z3t2Pm=J>Ek2&4!SLkhr58&mC zKeJ1P$5q`4QrpspXS5t$6G(MdXZBHbv*BY;kHzk5fA>ofIB*KTfw@gDPfXZhDhspx zV-nit1a*SbGR%WC19vWJUu2d;?_0Ik4Ia6?pZYT6tSX3ALsu4t-Gm2s48nXfXmAf< zrd-xh^I`L*9gtcl&k>1W*QH%An?rqBs z4H!i|p2o4yCyXz$GQG3Gc-x7Dkgf~3d$*c)sY;4TFjTR;*f$w}VJ+E&Lbzml$qS-J zTHAFA^JOE`K<9F+=NmoZ#fPO-)beO6A-0oo&uai-gH$3Y7AwG^Nx8L^wh;D#Il!q~ zdWp-5pMHyW9UOicxJoZ4M~J1EL^ijyfO#gInfU{;_kx}}`yz9WeqWn_0FaCYb72^_ zJ{;!%X>(P`j~(Va_m|?e1ssl0Nv5w0A6;)&qpe?36oPqZ8u9|s9jolaq=}oiy02zA z;?p7&Yl?Si01pfg4$+szUQUMjwXrJ1L-n|6K-SxWIHCdlSSjKu zVb{@K72r>z>f3AJWBJ>E5lGjh6>=3vD)N2|se9gjkuhTz#QU=pjvn(bBHq>hwaq;~ zKEJqg{!UF92PtQ;(~LjB3=>r;xaEU zwBO3u%EF2<2ZE9=zNU-40-nJNa?dzwkAsF_1X2`_*o@xFU%krh{Ic74-@u7{ILAkY zqnxXC%W}EY91r2)DMs9*kc0&&pJGLb36%G6*fe|p_RTfKih36`Hk^aTYY|Ea8^m}8 zSLT&Ez`twVQVgj$sJX#g1I0vD>yIl5>_`R+za>#;NdI^JgVTH6S-MkO)uWb-W^!>k zHrG3~jUzB~kncE{vyQMd zqUU>U9CeCcufTq=fY!NImvcFG<&S5@cBp6Ok9z6lv#tN77Q;qcj#Vrw_RKcOK|{+x zIF@JfL!qqYD(Zi%^X+59%kN2vJS~GVP28+_lnE7ycW*8pus6G=!D$oO`bEaRhz?Rz zEstSTzkM9Jq8>fEN9U6Y6B{-gBHb<&zjM|{r~U74Gj-06_V(*5mLq3CDEOf%Ik1t1 z;W~d7d4^5!6bqNQL5RtP;jDWH-7=at=S{+X#oT>i{n6w@0V2DO6E&HKf$FaU*bOo*I=Z>>M<+=nJ0XkRTRj!_I5j;|i0+5% zIb8hC!OF4GC(kbx(281-@jv7GrZ{&(>dlcO$Q&XmEB3iwdajQ*t}~m<*@>1It7%CWZ0im+^ZN?DnfupRw{!fu_-? zyAe*7;U7hWnWw7gQvO>kJiWBZ8+=V4_cct@ZPU-!7wPvVo$u-AE#m#3Avmi^{(0nSp9@JB)y9 zx1-kEFGh6bYh&LrPIwfmuj;7SF3=j9M8>|Y&>g1of{-5Gc zOaHw&4!_#2g_E~B(_S}RvScz${V?QpWk|Z%1N4t+ioVCecTLB|zknj)^y}J6)6~>8 zmCC7m^k4Lm(BJhVA)|X$yKD<*Pa^$y1Fs)qabh_|CjbBGZTR5XDWx)%_CEb)QIgdr zn4>>F{7S5|M%3Dr@m*Kle+9p$X};G}Cu}SpD5Xr(=a7y84F>6p;B5i;w$`{@!3Hlh zwIw>iWtG(z-^!+qV_$!!O#3Y9C7!Y5iNd)Y5iv9m{dHlK$PoWfp^8$DdcoK@P2?-8 zv>~u5QW-gG;45IVVyc}7PLBa0$$Zu)1je1IL5exrO-$nYqAr)T8s_Prxf#0HXl@yw zS)H>3Z_?dd6_u@j)7f8<}Mp`-Int#sJ%kCDjcbi(M-dVc@p?$(wk6X0t5Gi75J zYDw66_wNsG-c=!IaZ0{4d&7B8l0m(Og!_62VL&*3jp=~4^$pjC@Pkvm_F@dzzYN`C zNy@mrp_vALcb!sNZF#^?Ld@s_+w1DWhNrblpq<$9nh+;95WRIHgOlQ3DM&2E@;W#r z0O)6me$ZLdW-S@5jD?Ht8Ypj$re$l^*+0#qv2?qwefT0WB>Npxc?xl7E)KgLVSQdK zu#%rV`FSerAvw6|IGE{Bi|I;;X!Ks_^O13JcOO|ftf8wLp;te`ZoH=&hwGF@Np21X zpA`FO*;YO#r&j%7Rm_QU|FC)UtyxB|0$%Ybg-RGay?EgIEHkM^Z4T~OUknyWD4#m# zXl4;Be5^O9!jyvc!F0xMqBK~%NAM{Frr~v4+I5#18Wf+_X?ZsT1E2gnJuMsGH84K} zHw_z`>U;?&7sjW-(b|W_Nlvrln$}5|LV8XW z!f;=h$@qnuf78t``Qvp$b*X7S9t0+J!*;imFixKSCIlE*=m%f4!^aExv?d_+3(Ld? zdE^eucraG-`Mm*Vjv#RIBWR^bA0M!24Sv26ow?q==p*rfzDp$3@siNOR@y%6bmM$f zbp?*gXRdmBzO9RaFs5?MV4qstJU7zbP+Qc02d&11XP{lljw8(#tdZd!OO_Pd~Zrj&q+Db{lo@Zcc)&O0H0c zFqTvQVwX=YyF_Qr5J!6qtnwFcx#Zj2_uP_WuO%hapy<=!>8(Ksr(?fN-|zpZCG57V z`0{H3t@r0+CjOjP7TB>N>(btDT20j(lO+cP;q zfYq#cc=_b0aLwr4&D^`L$E{F;++ZoGIWzLy>7Wvr>@nX5{`+C^veVe++PbYL zTvI>XZ>;#J!m%#AYHo04z3IX?;!@(J(M(xg)IJJZ%Q7($RFUQ%ag6Lcj*6GlA-8=>n?vYEe=CSKcxY9HQ^dE1JW zAtSTxi2IeOH0NFAk{VBbadV|7N0eI@=-*PR{-gPqaynTd?zI;p2qSnmxS*kgIP}f<($;x)gEr!ZxI`-&tZo||zZn|)z`cqt^ z#e39noNhbLc;Bj7JHnC^H@0!(#=ae3V>hU+PugmfH5L%x?K+)!_SfB7_18w~*(;l& z1OVQ!4+2FSTOR?Yg*)1{PQo#dha9q@IqB1b+Nzf6eAihEbEo|5Bv}us2F1n58{Qg- zu8!Cxo^FY4FTWtC#F`WLod^zgD7kLS|Mq(D$ms`98tZ?%7|bj2o<9Hvw>y+L&?%-S zNq_Y{-ykP2D8$y=g1k-5!iou&gPL+mmuYx}FmHFiK#dHF3|*zHOcA*x*u_RLc9!@LCK8)X6$R%HHMwotCQZw^|gZNSCo$U;JwK_NmBZ<*2GP zA;IU357R`cI-XZ{-Km%mGJ7bWGL3MeI%|@5`dleF@_z^axmUHv3u3pqfwsaoTzf1K z?Js{aS8cj7AGlHv#m>T#w#=rK>B|*J$`ryV?PXMRmUK6I8K%LiFriKmoQt{buMQ@} z*O_UQNR8Z8iI)7t^fv1}rUus8$pt`)S54HFDRSZx+y2wO>kWf{h8MO_hS!7R8neRIeLj-*kpbTP$vK&s`&I_Am4U7ZqSah0Tr4ek zg@lW>__z6b=w3*w7g&9zW+U&J*B6^(E`=p8iVF)T#H)}Mu`ritruV=nqs4dan{Tfb z8jO|09X9^0g~ylGlZ&zRpHQ=^8p%qhy1-ctr^^sx9p5*6Cv{2DZn(4pMeIb~CB*5yam-6Vb%G4;yo`Yh=^#bjv zKX#|X1vEC+SmNYv-*|U>nK6x0r`P%NdUgws7k__kJ$?JZQ2j1i3ou8dOw?DuqqwAV z2S9=|1@l?5;FRk%f0)x}b~)r|?<(8vDM0Z+Y_jcyF zwS6NaRWx7hH8>sdJ~|i}{z(XjD))14p9*@vh_KC)SF0&`a9W%po>6!wPyU0x0t_`H zx$?W<-SVU1dl#%@v~)%a>Yo2VMmxC4>6meQI#trI=6e6e2lE5=E^|f+AMUj!mQlIg zxASg}w`S%_|EA$kP@f$9J9>&0shEV}3a^_wK*Nl z*iK%Bc8=xk^KLe$MdIxm`{{WjxmXySTw0n5!Hd-owph+sqd@{xCExTR*a>75Zax;= zD8jNmklOkgU68~iCpPu_nn+yYNSVMy*;HL>{`R*AlcG^lGLY;}MzUXg5Mlm&xvW5% zA6L~Fj@UndGtR7@f$FdEvA5`nW+vTs^K{3p+?^~|>a6dk15RH$ur>HfWyKPUs=*h< zmVZ|ZY(JXwriQIXZ1z7G0QLFkUUinkCT}hNGB3Uz$nX68JPHxgP491g22swcmO`>N zBr$Z(h;#MxLDY9N?WJb!1~NYRM3<`NL`1N3Z6wKWph)>qb)iiB$V-IWqyTIKDe(=S z5o{YWhnjcylCCVWWo>^ubX-iLH>R56mB;J=wU) zD0!5Z3W*7pW4h65O~;F8)%BdeAAi`zy#WMkco`7ht|Q6-O}w%{zg>Q%!oiY#|NfSi zwZ0!(uvIS3fVScKE6yfL7Ts##SJ$@p%ZuuD+cuX|(|-N1prfE<>cpORnGZ!hDpSTr z((6tw^G9Mx>d`fe#!ktNrRbk@^&>F>TSHJWCQ8#P17CNKJE_08SLKBMR-rdiN5-dB zo~)df ztdsR~Z)?u~G2Q2vm9)2VuWrG?t>yp!;Q>EXqnQI~1Hs29T=+FtdCVA`%VQp>I8P|z zJDtp$9KT$N!=3-*bOb=eNJ1E!@`DxnVe}h6f>1iVRAN|nfA3&Hce=E5R`~WpG|Wrd z_*>uu>tC7%#iKv}r3vE3)IC5-kwM_TK92hNXegT_Fzq;4S>*Y7*WaIKtyw46{X3k@ zf8B|kxBJZgy0|+yH0&G$=VNDz8M-hCIVsvuDUmAGUx>S6^0Xp9SYDJexu&U{;2wa@(oI37>>5NBy(YYIQuH?XE&QMjkyaX&+MmbQo9fd_qW zr(iF5u13T0lX3n#XOOcIPmntBN3VA?-(bLL&U`AhB6rZ3JwW@grMf+X$%6<`fo!ui z`0KAs?T@w|`I9sb*w^_!;Y!M$SVTU6a@6D(alL{y&R0Qna5dunyqf~dnXtm-IXgNp z?ZX$EGW%h`VbSOc+!xhziHSNg{A0=@8(9{r%*199q8eV zh2GZW((?sgJ0!r4&x6ncZtTKF`yv(1v3A1SU^>o6cS3St1|P`eK4R+{N@>^pN%|%QEIxa;e}(O5uoa_|lzgv_Aau>q-&S&>Fi*XncrLYZwB_E*D$US4 zBE5VlkI5Uk#%I-^Z|+Ow=sPAoK~{S~j_$FL*SsbZVW-0Tu{t}}_br}eavDjX%sRvF zo5!zpV7qv@DU!GOWDjUB&*<7v6t`;NWR;GRyeG`Z zY4sc4OqCR$nDD*9OW&Ya54}!o?gW0dD4p^M^=+$b1j%~1No*wsy&CAe34PJ}GXFL? z7DI%PE{m%{s=im7fvop&qbGvMovswQTx)yr$$D$B|1Hf!U)mcht}yiE)Ei>w?)XDo zRzsOq=t*|HBaT!3XGjg4moULn69s6N26-aqNj-S!7o^g1b40irEfi;-L&$V7?z-E= z)MS_gp^4S^8a~|39G-?#N7k*&(I0{*>(-w>9z#zhBn}03WWPhNqB%>y_p+hw;kn1~ zF8$P2GxWo}BLVA-*0;ERC;qnyheGMEd`u~buZc1^LdrAF`0O)-YjpbxN_jy0#&$A?xV}SnJe_W zY4(I8#Y=gB>Kg;aFD;b1c7{++#DN4JRXS2XLCnJKi{7;y*mYBuYbq*wG~$z_a!seDJOKRj=jG%6-4x}Sq* zfbV|GyaqmV*7dXvikr8qdpA3S&m;2Hu&_);I>e?1B_(EH)r7vf(0hY&7#OYFWAVs{ zN8VD>w|;Toq6a}e`@($&WB-DRt+EC+a;65#(8DDR0&a9%3JVJh32|FjhnlF{Q=Bz? z%7!4|>&Y!{)%Mmv;8*DiFRX7&p^v61?FL8ApTj+dDL*v+&X{&@c0b?2e$n7mnYgQ# zNh%zt)UHw+5|dq9z^!Fo!Q5(`)96rh8SI>P8VM;WOF_2?g}y%>DY|bJQzcOu+{}zi zU`^9ZcOcd{{#`H@d6%7Q-SU?^mmz(xJ)vTS^Vq$UYMt8j#c!V3Y!z2I+PjgVrDgq1 z%J+0qcn}kW71PUL!!w*TFf}dJS%kWz_aQ?=^6?+BEL%?B7F*wUNR+@8(zsHTovCt5 zL)+X1xpB~150Dt@JDQ4xN%WVyKSuef*~6)|;I!%09XK&rfZ6a5FOVMwKBnAUHHM;N zm=~${14$T^!@37yqqcA&5@96)E72qxd~JyaBKI6_;PlE*|*va=%#gKLse~#i{40&52LcJHSH(Jrg5zV!IowoPmScbvoWqh$WYd@R?4zgYNfmJl7DDEMJnL<&{U5e!u6}Igx9vBjkiq*%bIGu3M*&(-?B-a+o+4*Q>~3M;-g4{ogprQWm!&M;Ncoq4`1c=Lg9>{3``cmYEY0l>~iux=X(pbLB@T_htEnrcoGkmBuAYSM8mTZU$;JTc8;d&%*kHGJ8PxH?jQcZ&Td~cdhx*4 ztjHQv{!~;JyE&HQhi5z|c|2iJHlk~I@WoXjR>Ej^5{Qn9n(LKXHfl-toHq4@6%|ZE zcR5wYRXx-l;G(dWlxSXAtXUCn@&#BosJPI}@{C<91QZ{|Hr>&b$jo<>m)Z{gU0#+v zbIHKj)fFwjQh7?j zF-UVk>g!-Dw80)Ajcj$);zo4nAm*u7P_i|P1zjv`j(jhea<;cov zA5}Y&RipOy;(_VsGNmQ~VK01DIDY-n57B?+oDdRc3hT=BKeeWtc_FyZamXKTt41T< zfbSkN)}twx31QIIR#neS^~a$_1piOIQeEvN5Tn#F!FTA$c}Tu!dfM$Q$EiMjr`&)7 zLg|VVnYNmDkGMp?C8uiu3>^BKKErLJcMIQ$`i@4oUSMENb2sAi6Kjvj`ElPL31zVV zp&IOo;?4N9rfwc?nF=En9ttTtk(0tRqr{z`ZhcM{PurY3BD`rUC;Q={ADnF=&F=N+ zvn^7x&-kk~J>SS*_2Mkc6{K8nH!|yLYtfbr7fYN;{T#s8;@duQS!QfA*4#;%%&aV- zwTpg~b}+7xGEn{PWIDa^%}I_Nj(3(D9vFHye~f88k#DW-G?Epy?TEEztB%9B`KqFh z>IiB(^E9||sd3(gMLUmGTUkE?>rgqW(2FsU7Wvai7_eo<+Jlv8^dlW@ye8w3jtYfS zu@8@+?&-dsfuhsJ)iq-q{STGTCk19>gw8&w?3b+hg)WOA)p@keG+Yd0Xw8OZMB*Y< zYYSD-vzBy-TPJU!yd}gewsAVdDuFxLaE&Z5bv{9?WL`2tE%MLf(61;hcmXV) zc-@u=m>4yv%}xrt?_IJGadjRf8S%smbES z6HdxLpRpH>XRCdNC6%uBq9$MY_V$(0!239!eVC9sPZ&`5XeTSN@?muD>Fn?kGRZTH z{_GwfuS?vp-rlyVBmmaHY2%k)9sZr+frafTezv8`J-xE#L&F<|BgZrC2=%$~4O*bg z{TF7f>H4@4YlMGKNzpQHze}-6Yq)v`FrG5%PKSYOmQT(OrCo$4Obs8y=DGsAgAI_>7M^uoo5+d-?XA7#&Ug9Cp=-D@}$nAlE`FIXU^) zHdfXjK!yfYhi#f~&H6XH3(nn{6RqR1Pqii1klmH7gqJL51 zr#)_J6XNMKw98V}BFnR$ZPsV;HWIfc1b3uz3Fixa15A`fsAviJkUa?5!vLa-vE21q6Xz z-0O?e;MC`ntAu>)L!JR}9V@G^CXD|qZ=p!Ci)Btxcm{(Gw3LJC`nTAY!w_t~_ma6JPDi@nU6 zF`cCkeI4K(`iDy4tIkc%ikGk@SQdqF33d%p@8-9#kr=tEQN)ah)8gLu`+S%Bi(d^ z{70f(h2msEI$jMvrmQC$lcZs7_mZm^ZNJGsDN(>b@90ZlTrOS0C*e%s45h`m78o@s z!uns(Z!zuq&xextXd${w&p}yA$nRwshP4`CqV`t8FkBs(6b;kB)=^g3Mm)#j$EIj^ zP)?cb{Xuc+-uOp0o-;a{((WvI9Yxq5wRfyq89v5{dT4mx08S$pxD%6$1N__a_uhL= z|J?b-E!urvx}{cNeNs;%jp%GI4`V6_qH_zh$&@^X2}8JY?Qx{R#HKXL zBTtH)$=tvz@+LxuTnc3-#d3Rhr#wr#Icf3_V2%XQDvO0JMGFIQVer!cv!v|H!EHfP zYx)@QEU{>@=&J5c{2c9n60WW{G05j4z8&dyEDOL$WY+A2EnOn93|0Ly04_{SgqEH^)&osb-ff7h8o&{@7@`>&T&QJRbG32IeGby=WTVdnT?8JazQya_Pz}NAAcCklW7nZN^p3j*N{d({$ll9nCxL z7IOoLljgnx$H0 zy4LA(+6YIBhaSF$FJCxT-%SMcbBb%m@PZOx6Sf7Ne-4L4&@t}W@JQ^2$)9!qyM|(t z{H)$`rDxb7ycrHS9o!n1{uEbLU0v~Wfp(>fqip+~v7cl>V$m?Jg8G@ZzzP`>V%gYN zoJ*Ou7A&EZY08Ph1*es>1-LByB`Fr+g9B;kwU#xi9OVzdKg5U7P59&1BJlX16<{ad z!qsv;6v^oQzanP|A@Ir!r(qM9#lM3eA-`sDx^}Jje+NTG8vf>H@EQOhr~6Q<*&X;G zcm-6on`bx-Ui5gOg4>eq@&2-j+xCsPR}SKB{>>2TrQO2oh!hfsw+^N!OP$@C{$qkH zU0o7vbl|yPU-{qNbRwh6P%eR3Xsz|pA_%7Bncl#_u?Nh2U3({bR-YMEB{v&51Gl1_ zy&Jqco8BL8j=5OFioohju?c+Wc7fB8XhFVVrZE)RLLITb*wGT(!0H*va?>^@=B~S7 znzDQP46vi;PvJYjP-G+=-YWUjcE%N>ybX7LsO5w)+NZ0(F`wFwrPvpA#ZNX{$-1;Q zM03p6HHfD-m#pS{or*$(ipf^#Q8E=a=nfA=P+F9p)y+09@a^cV5+y5hy6iZKBv+4E zLfIFe5pkvTnP`8^jo&~IwF97M#~%8GUm*YIJw$^g2$BQV`K|xvSeFCvRD0)H3k~27 zn|?o+=EpHb*7B|AVR$xm2{+A-o307Id$*#$`%QWs02w!^G;jGc1)T+RY|@Y^B_+l9 zm^+$o{+n+fd63@q|G?G-2OI^@-^BRPl)(CdCsC%7aXvyPJkc4mYYKDRSpjR>7Hq2a z2DAHWGThSKSuEt^{!pgLIoEl1qVoE`L-MEj6knXL8>EG-t{@Q{Rw2hgrt7+#j!Ahi zEPu*%AU96{GfZxVpBDwX8)|9) zH|J-pMsB^m9Q2hyQUeInK>35F+z{)z$Mer^n=~O%1?DGQEAn{}FY6e_ybwyW>2IIc zNgB>8xqX1IhnB}+X*8{I&Af}J$|OE9Ei51&pLbpCEWg8)5K^4jN||PKhMH(kd_+#H z!f$ExeuLrzUrPar$#ho5>4-d03_NrB@%pA6~pjY&AbMf^8O`HyDpW#iRtLzcw!E zapTDC&C`VE&MIp*j}fT|DqumK>0rG9Fl{#xSlLl5?u@o=b`~vfb~t@v?5LmZzr%F# zd0xZ1`LQ#N+T8VqPZ>V+Mg9iGPbSnogeiOd*5uPmE@wwsI;+SwR|tiHBgL$p%#RR! z7#}(k81fyiU*B8!{15f5&|MLF>SQcB~*8UfR+r zdo?(or!YTV>$IlG<}gvIP0oz*{NIl+o;JQ|fb))*|2vOtADt^OWtNk`8$+Puy-41E zgL_R#oV6m3y9E~wM_&pH+Z7U#nW7fATkNoU zV5G}lfln*?J#w|PQ{A%KrS(dznCv!(dEw)TdG_xZz}lkUNo@bpw($YwJq1{q==!A4gT+&uF>801&O0J)FtZKacWaB6Jh)q&EB+pv~b775nRwufboTDLF9|@*w8^ z2Tm@AU+`!-bIy~PXw_pB)|MJtKa8Dd2VhH?V-y)otoZhpuK#aT7HizTZ-j)Z^d%`K z`r_(mB85S3i^3vu!ObUm_zF@@_JUU0{=~q zM~{J}%`L62NTwiaA%HKx*LrvIyQ7x6+&a8Y9{jQ!5rf=!J$=DFdAW>`ldwGT9=cL~ zG!vG}414{s!;taX>wAO?3=@7|%Cxw=hruX|^;{^zyCzpu1l6MdYs}C?rUpf~h@vVl z9KrCrLMcyr_;5k=7R;@k+D@Ofj zZ~t&;Il^?mgi88O>?sJP`$}Li@VJ3+-@{p>C3`kgG8ohnL&nIsvcg$Z`nmR?MD**g z5$+UOiL?Nm4l8RQLshuYE5J5s`{ME)g-bX-h`0}J#}_Q**9TRQ*vp2>OcbG4Pcc?g zw#a(_e(#F*>80U8nFwk_B6D3aq=B&i8VdfN9q$+|5<=ud@QBowYih38ysZ@Oi>K<{XWV)7amTc1kY-iK$%EXB9JR@h;ZI#pRx-4X{GF9WRGL z0%)D+<1m?5>S^oDK>MOtk&zU}FHR&$E3Rp;s(dA0+0CLggp5{_@ZGAyCMq~lsJs=N zbLDC-hHwh6eYOf6#9l3;6RX@WqxnE7;FMND{HsOm{VixrDP={YoPW50O#<)NK7tnh z6sYmmO&xJB<`~^2oq2M4BszTi1;an0M>V#6#8g6ZF5O4ArB&zfc$LFAP*@?FP{;Bf z(x7v+o=}E|_7|sKgaYyc3lHSiHYkc8`A9;5BMicW1!-yV@!>}b*hFx>D@fk$X*iU2 zp}5bn0aRJuL;I@N7n80Hr&)S)QOa6tm`NHqj>9;G!KCbG3ivN(bWv>j-WqDUDouo+ zF45qTdPD5r^@_iKVWc@4<%Hm5`R{77qvZ=AhVRf7_1ZhFF!W!PATr%>1k&8(_RyB+ zY<0WlU5 zi+}v>^sFv)21q68t6H~3EFrzH$Y@@v7{h)%CukHg%H!M&P48iDr{n|6^TTkGNjYcy z!ri>Q=xiq`q&Q8I)&Nro;98v4U@tPn*gi(|)mJRhd_>f#B{VC{PJ;gK*1%)BmnXR+ zv&+OpNo!gcLux}OFH2s&kp{&boxvM&IGK1XM_YhI)N&qnH}-Oa17zjtV=<#lQP|Js zjzye);caYmXY9*uJcin{y40SeTo1ErkbNEHU0x+6>@kF_Yxxe9=I#o-VlpfJ_^H@# zm@+mf(v-l~7a0%UE}^CxjT+zyK&NubGFBiSgt4?YtU&e%U5w!_-mtJ(3vCJy_jxv?Cm@A?oF||AGjz z*Rc*@hHc2LGdoc-xG(iciYni+Fb%~PuC)k=0*gUAd>rTeL(67P8@`cUo3i+JP9{qa zw*k}EGISGRCBI6fPiu*U8T}=|oh+IPvjJ!aO1+%#msuM(%)=eo$I>OHXGncT((e0m zPEHQ$7&LzMy$)ngdCoVQotcC-1Qv}{7!<@5f!F)?1+HMhRMWTUedr{n+T zwm6#^%WTH!LXq;`_2+xLE4cOI^P1xU3(UzO6}K$o!OZrylkuo#`)1QyU(UkT__&3T)0E zWRsuCz;1|G9mDjIKNrPbH0O9$0CE4M4LufTa>6Q$WR^4+HS7I1#431IUYeD6bF(eV zY;lyf2AEh>QNS=+Wl=0=n_IZiao)T^5w&+gzr&c>@%DJ9_L|it@hbiIE55^JBKL0y|BRJc02`uNv=8J!UK%$!BJC{Oi^lN`1Uzlsl)R3GBdkUfEZ4`24G(f>oq z$*nV`X|Cdtf|iZSm1?v@OmMs2QR96h|9}6^EJhdO8~|ak3cUGXJ271hw=G(YHpx}i!V&3Ib>1j5 z`{=V+Bxu^Z7tp6?B}9N)=bsPxCW2Om+ahM4q+RzynjiCU4c6F)#7X!MmS+oI!RfXo z>7ZyyIzUj(I%lLm>%U^<;E0q`(g?YR4FFX~?~fXab!4i@8ZF(87guNz*~A=p65xph z*Pv<`on;<$>SSVYAp#_ahiWLEySn|3Zt?zg-C-EcSJIZxA-7pwH)}DwiXaBRx5Z}d z`-dbN;zuDl0>0(c8gg)g2qYw*LOGD3ie_yFaqIdT%Y7?yzdZ^2KGv<%Aj7|=Fj*t#`xPq*x98c{_Ae+J9M$@Lo)*KjW-~#-+mFp- zm39Fkf<;T^z-|4s=P4TA$M2E@yRnJ5nKB+=aCyWvZ!DAzYD+b7a(lPxy6C$#u=nK~ zY!R@E^%}#MAo}^!3;J|6dE$HRosX8H@ouS4J=ya)kV|gQ;p{?Fj@^mhr8zF%mY2t_ zfWpcq&kw3CN#kZNXsRG!%>C2aO$0SiukWC7^-Wb|{FvnL0iSPEI>3%J&F(t>jiId* z?Q~epmH~u}CLKup4m+}QeX7OOhGCz7aYrnFc~@{{W9jPWIQx5O==9m7)iTAhydI|` zO23FzMhlNreW>c5wP8oH?U@Yq)h(f(qI<}lP(nrb!ickrr>Ce5d2IVj2t_9kbfc3t zk+kc9%Xht+uH$ri(P(zfs)U_&cj0DtZ;ig!d1kGG>9mJ`Iy%RZ$rqCz=1UT#lCq&L zJI}8%{qfTLlNWTYIuq)|b+xgys^I|>hwFFDn1xo__8EP6!yWX~Ej)lStxVPV$f$M2 zR2UO}M$$gq!E5=qOiR-7|>5%&^f)xVIw#W4{Tv{tSD8XzWieiS%FGgn;$w&?F|iuq^w8@qWwD z;Op=R-Xo7YbBc+L?Ki%Br@#ARXVCIcbH*Za(_p4tH(9wlO>`Hp+3{N#A$=eQZ>;%v zRIZg7uZ6Jtb5vaEP~W0&{e$oqo`hF2emUCD-Psi4j^72b#>)wXs6G|QK9l2{kGS_e z%fo`k#&!4onI_3D;ud9S44iV;YB<;xN#@D9$X)%W!CMnT+`_YvG;tTFo#g-vo?1Ty7fMaSlH>o}IehSzy64|tC578uq2HdeWX zFP!#-icP?Dad9!nayLhXsT~Y8H(DoztVMiO_9%BVD0b+CQ+8{Tuit*ItBW)CmGoI~ z>mu3VKHc6IYxfqzn4h2jtETTWrit5PD(mp^cb&J)|D}Biz=84l`xl$n%~ZiWW&U$u zpfW3{Y1faf6uT!@?waCp;4B8y;s?h~$%1I;#-$yJV_Nr)a{`eVymphCcEQ5sPpbuX zYf+l80NRH?72kZj4BhUTg&^o{mX?-?8wdmY%=@5h6{W)7?TCOx&3PDX=IH{a6DfDD z!hoFI2#M@3UqcVhwvyiH-C?ff?sBea=0F|v!=W^WI>33a^%l^5sj zqMmxp9O^X|Jw;1(;E=tU=icIf;AOi0OzA2UD$-%bI#VI?^Pv9PAAkJeA$B%lQ}!5| z@72Y!u#!96{&d@E=eoU)laf0(jyUyb?IJ~E=^-m?YEu)F7xya*?K<0HBx=QWknTC{ zp>lGg)6&nLnAeDsjzX+&IV*zjsi?F5tX*b?1{ZP2b9BuiWRsSwsK>u~bMvZ{q0yev z;`uXk>m(i6st@?)KcGH%9kj<3_$vj6uk@dE(*I$+Y2(OStbug6_6MuurTrApU4z&3 zX5)h%>6Vx-VG~YR(xauT3!-tRmn zF8;MvKhR1Q`HEb7hKH~CFii}clHQ3Smmr0c{ji|1-^CwU=^oP$_+N*$FxGiJV@u3o zVc{mZBWdl3truSpI{A_~;W-MstdleWjsf^I)?&{+Iel#!$R5LA14~Q3qE3JQmY7tM z|Lg9}y)ZY7_*e25?4JDdisIWvYf7EE$@S77fR+1JsF9ZKHZTnchQhjHLSx&z@FpdH zk*IR@XdqMoS(L&a{K0A~)EEFs>zp-cRjjg{R;q)ZW_zS^32#6ZZ2txRBp%WYvO{aP zk&d11h5wyeH~yCK@fl-kw42#qSf#@%R#_v7C}nJ3vN$HutbiU6^YcI&hrqQne$Z>q{pZ}w zkarL>)Tv~k-@A*9$Z5w{bWPy|OI~grfOlQrrG5jE@yxuk`1Y-_k+eQ2i9Rp0nYphM zD%@1stoU`>k9ax#t+%9kx$q~0ZB|pauXYstcyS~P&nugnh6X66M~BUyaT93tq#D>qm|>A}GZ%z;n>~|7 znL8p#eBBppXXf;&WhR`D_fq)2A9bRTPzIc?R%UvCgzbi!HE*2ZVCQ)_%iOawZ7@REExop+^v0PR2 zupzNq6%Fuj(~Yl-)kyU2o#qJs>3{I&48dS*HGXw=*Dj-E;09pGxcKy*YG8)=`bD16 zjqaUcQ1`ZP3vm(~TEm#5Z2-}+$k3tRHS zPP4Cmr^PS~lXm=}Nc*I&t`2Oc(=X6DyN|7H`>3Z*ZPP<0a4jE8JnO!f1Gl>NcZCmQ zW1Tdsfq?cogBki8#f0sLnAgvrDRk4?xJ70FAl@=%hd^OzeEYgeFNjh}Dd7T`6vEzd zTM!I-+`SpcF*;dTSg6OpjV#J0egds!BTHTfe~Q3hoNMK(8C(d}L=)#o_26>8E;vRG zmncOKdc3%J09*7i%j1TCLq><1B`5#Cs=hp)s_p&%lm=3wD}3zw*0Y{@7)?${ zNKlVCxmI+vY4%&%jP?xsIz2v{(%5O`*;1Et2>Re!?xKY}x$`~6kk)wg9H?@Lq>W{D zqmm%3_I;>)a`x<5OUuIJO!nIxX3=NEg^e@q;G+q5w|bQ`C4&wVWs1BX&6!}$ARZ#x zOnO%))I|qbC9`#+#FImdxj?5s`=OS1KbK1es9r(bbrAgwH+fDsdTus1Fk2qgQ_0W; z?;EXP-}7bHl+%5OEZ+f_M99FP$2&~LId}q>biF}gwPJm^@n{HYay@^(ep=%H|8MNu zw~Fbsa84mv_4{0HzgWqHB%3Ql3Y>Ax4#(un>Za1`+t6Ad?>lisdAR^f1&=*3+!4X{ zu|j&BzU3S*K0Egag1peNn-IItC&58+g_Rq(56&UlXU@Hx6fBmfip-n-B+j?o+8#G%phO)gQUg?uQAyjU6{LTCj7=(8RoieTe| zj}mG~umQ`TN!WN~E}+{$7^gtNSSp-I3ut-Pl*e>$$8q%=fD>KB%wH_k$k`Xpfva%)Bb8QJGc0Q_y6MTrO$;wy- z*R@?S$$I}AqSgW$LxUMV1grO78%ZCQI|y~yQsOcVDof*f0%0Px7G4B(ufd~pQ`#Xg z%F&w-x+Ln7V7KsL(7e=OtdUb0fyz*G#?UN)p(7^-Rt?(nT38hX7m*;V38t<$@{)Pq z;S`}2@B^htRjjqZ(gh_h%G9@RBfbKW2^xw!+@t{V3*KaNlEi;I_a*~*v*6$A>b+v` zNcp9qFH}fAe~F7bL<1UE0E7kD2a^j(v5z2H5%wc zTu^Wk;Xh&^nWqSzN%MN#7*#V z@${S;|8eOZ6(k@ftzT5wa2s)NC+RLord>d5fuZK~60R+2oU#jLL|0fmx=AWNG zdkwZMfQnDELL)sy*mHjiS|M|*^7xANtRTnfeaOH%w9cBEWsO$u4sr2>uYFl1T#Rs& z96WcYdRn5AVFjTz`~vWx@=4bv2)Ug+H%X}F4vi8B-xoZQ zyBRA;ObuxW7pO<0%QaKD1L|CDYuU*t4&tQKMuIDGN`#_Y;>P^QUV&H#ML7P$QhuWr zwHn|9&n)exFDzPFwQ0nnwH{jTTXNZx5%0`$O~_w?UGHsW184pmQ#|o(r4DXX zK7cTj9d^fb_4I7NA|hq(aE~J2Xv+ZFM%LTf$QXukGGHm|dBC;z?#j2MyYQ2<=uI#6 zPeJH|=;DKBbi}{1=8`&bN4|CNOLgR+gcBo8Gh($Lq7P-mykUwMHzq#%vC`w;(j%Ao z7MAv~O3z~$JKUcfa?0qZc4XH;H3IzY5>Xgz#WeEv(jofLG!5l&0bu`_iA50Rir1>3 zY3Y#&43HT?z()Bxa%h_o)^BB{zNHTfkL!gMYG~z(l`E0b_H?=(o~2#+2=hTf-G#JT z%OGwTkLwMh5DGGNjwG^s>yy%K4B^@dY1~WTUY(neM9v(YeR)BXn`F%2gTL+`QJ@$$ zqwn%ph7y+yYH7Pspy^WfGm2=%WLO~s-C)-}7|D*2Bim0(GKfk{{M*6<*44BFM3j4a zc}LC~n5<~=8#<_1oRcKp?mSRSW@K@R%T|ayG)*(qMD+cV$G1qEqigpW5)Ge-)a9CY zoLC(f*{+-Oc0RPqG7uJ(xNr(4F}W&oMe_>A>`TbelxGO}ZZ#9SG4$Xbcc4bB!A;$| za)vngsu46tk}LuIfuyg5wt@=1JY|#wJ!vbSPZ{q zf>C&Kg}eV?3mWk)q^*)eDFsqd)N>j%X&2WsT}n!~7`I8zRRT*<$RkyESl~gX?xQ94i95A-?EaN=k2jzSvVH*6IS#1rH3mxo zH8|#I{89|?e1JB0piIeg-yAIxJKIO=$cco$PZKQpc7d=*?nM>;GxDene_9HSL z+ep->mlgO+W%wlV{W9!ytN9DK@O(XLlxir#J4DUEVvE%#7!XeV=g}tCd&sP|zHg^)O9H~m4rVktZNF>hi|nUB z=WBy4sK&gIHgVulJvztDAhRH`=2G^nSK+*tRC%a|mX>HcZxm5laX#qJSkmU26J;me zR;+-08u4PkILF1?nO-xb=$kMp@MSQHh^z&K(B+fXo!;oL`p^265Ev?RAS}LTm6k!9 zThCdNF?$}x#?TLO5p5&^euesvaAcBtY1_IFT#5P%O{TlU8$q3%s}q9&?{#EKb0q`- zz;Wz$40pU0qU_WlX?6L2Q;AC*xg=lxSNpkt|9Ntvj7Gc?eEGBLcL!UZ5fr^}lC--c z=HPEj;SqgD6yrgV*8jX5tvmdq@AWF1xLkQw*s5oKzyx)?le-Urdnl-bWfCm}8pdgV z3%R#slZ1+rk~O0ZiT+d_BNYZFfG_i-lB$RYWUfJ)({_~4NQCM#ewmM#*ZSd^KkH!T zIWr8q+>fWCplGPgVERA~*y%Z7)#CwyOK5Xc8kk5lqD{_^w8oj^-%j-t4;9bDL3us z7i0BXw&=k^!%I8%^RuodzaLl@`%QXERG;f{eB0%4U#IflNe|U8SBB#@N3XN*b~(}Q zb~2VvqSS@+5^j`h_-hOPoc7{qevSkqtya%3*X^cIw!Z9S4h%&#mJW0mwyyx3F=%)? z52B^Hg|x?J;I5I`sZQkEjMJHixi>HA5b)oDgPZzL_g8UTjb@!X;v{a3=A(!U+lG*; z6I~fc3#A$z=$+u_0=X-XveE{QwKIL$8GGNb7CGOQ!ndVk*&eXA-upP5De$9Q)HOh;7 z-<0|K=UQbP3gifa5A^}wHyavRH0Y|-AQLJ7iYx2jBO$(C>F=_oE^)i@^;|(EHM`f} z^6r`im?Es8dKfPMxHlbR_Rk2gB7j&;{le3Wo_-#&^wGJ;lJg6cHqpOyu*I6}tL?b+ z?_Q_FzjL%y)x401x=#A1${$`{q*d8wl4=ZvJb|Uh#(!xh z)#de{$~MIwmXSRy-?!lSo>SVf8U+%0^zjY(>-fg>7vJdD@CE*k9dz~nFx5y;**M@o zU@sG`w@uvLW7nB3N%$1IIj>BYH_kR30_`+0z~_VC%s{Mk_D@Aqa#M21TdGB}*V z&p2|{p%rH|b)~p-l{fAegRz2+0ubY6<>)j_19ozoF4pyzTS=!JtW4ima{0Bz#fv#6 z;?J8;2M!3-^~&V#{RLb|$sYaZk zDEo+75ZV&b+Zs8wr4@>K3(a|k{bLQ6yT*w0U+GynR{?2t??vTajtnaUsXi}i8!ejdQtW@{ z;O@RTEmS)pB=38|u3R+1OraZe|K;DF@W6Cpd>vWk&X>}ka0@m14G`f{pWTwGQLcW~ zHDN%zuKJ$pDRz-R;|hQOcJ@)Me6ofFKZWTy`5FHM{YQ;l$o~!6=^AV<$a&HC|-L4T1_UDieIFT;I+9N-W z&Ft#zRgB@~EdEp&wYtYJ)}cK9L`E|H2Ttpmy!++tyHicTq+(>oNnx{R%UQFd$S2il zwW{rjyhYGnkF+3DJ}$_R(PD3G7C4>y3-0yKeuaD0r`Y#)44Sl_6b`LnOe5$c;`5yu zDt}<>>!@Fg2Y0m}UD}g(roGnZg~?qVVeaRP*xgLJ8GboO`S)6SDB&idnS9$+y_3vKyBq|^P{hCvD*DM*I+l3jHdTV z?h}aqHybZj|IBitEws9)D>Uon%Xgx!SQP`g4bpe23Nx1k8YPbuG50OKtR}z1;&Ezf z6lYC;legmSX(H*-in0CX)5wthGl0C6i_D)s1gSGSQi8Q`Nm&U)K zhF-m`^65(&nTIpe7`aKh#sHFf1bTcQY1-S_S+idZ2>O=@4>us8vgkj2b;S+ESYlP0 z6xwf|7d&;gdHu&<d5vJ;8zS@8HMx$vD^SDKp^v++vZQ2e@v=>e7jIQM|$aV;%5$T8~W=gfQi?do* zx(DUcHO5!~TABe^i&3mjM6GCKA=7Pyx3J}1CfiR-th0I1jB4)9kS@xE#_48a?-3=V zQ9gpchCE-~V&>n^cg)&_tyVlwsw2xjtoodf$btDqP*A*{vDOmmgdAOl+a}Bk zFj)ndc%{8;S`TH%>QPFTF-|^>I*d*B&VG7H0!LmEYC9yQGQ>@wn%8A<74Z@2<>qc;rdIHh z;MM<~0?9s=zhN)3wPG&W<3VA}R!Ab!yeuG=Gfid?t3HN+Fr+1KE?oR92Sj^}n;dG= zuSs_sG>p^|@F#Vx8z3{;_@t2?JA6bm^s@x8@j&raH{PIp^#45o3Oq}IM2H753-puf z)L5;ri;#nUNy4T7F%k<;|MjH|w&`Z;QukYwFkEm{L`0-El$4H2XXy}-AoB0$RA6SW z77$Y4yQIpHGy%uYiW3>Np;wAxH5&e=cOEBz<2{eKd7<)QCI22VY!dC;;<`Lkil*N?-r9cP1zS+>T#>R`8eMgfR!N9;pYdio+j@BpAfi+ zlUYcwBmvqXh8E#sxt~g{w*wHRWE+T zJVpL(`YX@??shh^rpm|=7doAHi_n;Iq)uX8?}rN?#7z%0)7j^r-&wKbvcvB1M#+^w zM<*w&{C$|eBCsNGfE<=rrp^M~kJ?KCI>N`I(79+FG5IY5!@lEjOjR!+q5Q}ZYH^Sc z)7=!VJwKfyj!J7%D!u7(udl@2S=lz}m97`oHKj+cD%q1qu-VJEaNh%s1S2V3&HTX) z!%rL**cPS7T@DCR@+VJEFS)GdYU_IH)OTHm!tU4lD@8v#_3?KIR1-pFv3g&3;org9 z3DTw7Qr#PojAphzqVmu=jqt(XlLR}SR6tgdiLsNLtk_qSe>{eZL;KWQc2E#;0?~s^ zJ*u!u%0yK{ug-mo{K2(Xm#pD);~;Rl=yNqsI`Ut|?|Q6@vP|{NPD^rGM>zxpP0c+; z(nYUAu<5EsYncu7OnD1>=L>>bA7BmKmHig}6^(w@b;n5^F46YFLAJ_+`t+6Lo4?Ux zqxL*hahVHOArHA_(pAz73rXn<4p5}PyM*WztV?{R)hH#a7w0nIZf>?YTJKbt!wLVw zaL%4}>Ccx_t9!TDQ&h=GftN+rk%#)j;l|ii7}@OJD>i<5x`g^mQgLWk`{7RkL5$Rw z{hU{GO*Vu{aq*4MJr}o5>4l78LoPpc%YREQe*0|4Mg_x`%WsEsT^cH00=qX-paRP? za!POd@u~EcPLeqLvLOXDB-?ic7lNI9>(N*qU&BkZz&af5(XqMkVrJyd?a_L&nb0Wp zse{l3lTJM*!yWjd;kAQR@z-A$q7M5E1}71qnLMnw)oPLYr~ca}eU3W~T-Vf1HoH}IA|+R2fCmE7^A|{d z?Gz(BzBTNgUvG<`K+VbVb=AZ0LAdWLs)nI7y`D&1#uV}Kw(+_A`o0-l&1pTu<0Er7 zVRAap%}eF|0yWm#RS^nbHK(W7kqI4YAdWhzp*9Bjc){-ZV{u^X5Fk1c&9r#TkKBD4 zr0=<5TK4uUW}Koyl0p@i`*dEr!Kdc_pec}Adr`E586+} zYS%7Cs|Hy|3Rzx0sf}lA> zb#w?&E0FoKY#RhH5N_;M2Ma3Uq_oB?B^4s@(NfR3(S4|$aNY<)#!=v1!Xs#@im>f& zd6|`!9K4m<)_I7X*%lBx%hr&&z3#yp9M7UB{8!*7V*8+tL7&y+{4qMooke6Ln(4N6 zL9=6}s@kMEZ&dc&e=f*Z+WpSq^q()LN?5;?n_Guo4myo-k1;2e%t6`)2P=rhhU@ z#c>{Nck663;|E{>wi#h=oQKwSaM@+%X^nMXnf?H9bG!T1y512xxw?`6{Rgk7(XTw0 z-S_v+qsT4CEb#+r&3(2bvVUG&kK#38NdL4F<=A{{mQum6Qs57ARcS1}&N;Qi@FHnc zmv=c1Jt36~#pj+d_3R{(F&FgEg!`(pqP5*$6v*D73<+4drP_&kXn6NeCVtQ=;tAA<^0+53 zzXKnLGA&!68I5e%GY<_Wk=fXK$H2I0bG-A;`ZeZmT%b?uEyoBR6 z_&jw{9NX0g8X9hCr2VyJ7wRl0{`ngxB-V07|Ce6UJ~vB+XpgR9tuNG_tP&2@`p|PC zBNEDyne|xIk#IqZ=YRMC&q;+TNmSpAL>8r2I3+7i0@Wu?a5P`6_yny(sik2KI8Pej zI1mdDk#>O~)_cT6b#9vt-*94`-FZQGf6c+mBE{k9R}2koefx9%O_*iL8FiF&JWV`v za&&HwA9|sYDwrbk)Ow5aJoSi%9FtIlCIx}rmh;0*L>U)W562h18dgxvnJ1Dv+h6B` zLDnexbO;a;rir4I;?Gd?x-X^1+Iobgy|>+G=qyL+Z(Pexl?sw$UAv|#i+Y(3PppSGwo4^@}kjy zP@JPnb~Df1;Xi`Ru5B}{BvE+G_4$oCI(Xn?-}A8Nq?|0f-P-wKkV3U=VD91G{rV3~ ziLz4yb%h*`;gj=o_w)x_OnC}|k$0C?%meUhvX@aKF;>((b(|X`4)fnls5z;+!hh+; z9qXFM8`5qh`!MVVeeP|yMh_vM?sHw?!HrvU`9`*u+$2WGD+Jrd} zf_>9fjnztejg1X4P%lPQ^sRg8@8W_giB>_owvB6f`~#H94CE-vo7}!olGD+39|6Axe@KJd)8A z=J@>Xk)rAE=CdJu5mhH-wJA|t^Eo8=F0k@b&onXKv#WFsM*wv+JG@~8O+FseGoF{$ zyCG0RVEoz@$RpGiETA>n9wNO}UVHP8we)+4sE(-4jt3=Pqi7J*bHsXQK5qPO^UM`W zoX1!5*$LyoRYW4Ch1g0*YKlM^smygc1OJN0PrjLfrGFlZnYN-nn)NgG*~zxq&K_=P zG<8-4*}USVR~sxl^rE@mdSeVFw7?cd=38Z>5Pjvvk{BJ~s4Z{m27^8EW|S~7qR|A6 z(i%hM4#J{*_yLTP5}xD!uwqeQ-k)+XA@IDy+Q3_1`DVwiPK|iZ4Bz7xntLs%e=?>= zi-#wuG-`|Ci)Ps~77$A#Pc?}zq-NEJEVco4Y-JCpc75uwVj?&Kr?|6oJhL2bq$EWd zG;i}WN=F7by@qjXV>iX%nYQ9=8M|?|k`e?#G;gB>$@76Ga;RxeuOWuklt$_$L7Hl@7jb!GL(LyB z=qkSZ-Egk_k7B~!y0SBenc+sj*F)>`(jZ@Kd&qu z_2d}6VG}#kyUX5x%7Z%f<>0D^jY&Ysi71a}a67sgBj%7>h#1Fdg1eL?-a>N^b;-=n zPcwW#DC!RB+si~#D#LaLTJqaHB>uViu?3_imQiiCFgyZMaE1uycgY0!5B^DqefE54YeyiojtBg{rQtz)>m&FdT#-m{Z;f>Lr3b< zpP=(@JVGv}{I%in?|c*z5uwEBISGh4>*(SF0Rm+kLtlQ9AsZ+@%(^I2M*{pedL5XtzR?`b@M z#SHu;FNh;1DL@FuHUC*j_Zr5X-$w<5<;C?;TLLJad=>Qy|uDJ`zv81u#ohdeNK?F zpft4kJXi95;Dt?;35mVg9@AsPZcL^f7zE!6OCniVg`odU4{oa23i0oS? zs|^iN>k}D=6ryi+%S7tP=)QE$*^Ebbddc?-mJ+4m<9<*+?K~7xP`9J- zkNyOvm}Fhzo9bjv`rA@vPBP&uA9b(06)y*JubXnyZ;tDXX!(e1tR);I|zhNu4^0FjsCOk|$`deeFA6tunr0o zj%?*V2-;$(IRtW;PnM?TY~Qp>()Bw~Lx2@0TfDO5Nwy+imROtJ6)>X=(tbKV83OQ44H*$5sW^=gPW42n{g<|yTgxC+T}a|hlr%HN zrh}O{y+KB}t3Ykb_kzm=KB19=XN{cW_%9K1q}ygM$yMg>8dIwLmE$_$Y7f|Bnvt41 z+;Ziu(k3O*v6*vKu9Rq|4%PN}#vvQW;iKO;TixxCA3v@TZF~Ic0OPiM*#mJZsl|DSZ6e_v43k?Bqx7TW2 literal 0 HcmV?d00001 diff --git a/preamble.tex b/preamble.tex new file mode 100644 index 0000000..c4cc132 --- /dev/null +++ b/preamble.tex @@ -0,0 +1,172 @@ +\documentclass[11pt, a4paper, english]{article} + +\usepackage[english]{babel} +\usepackage{BA_Titelseite} + +\author{Ayushi Tsydendorzhiev} +\geburtsdatum{19. Februar 1997} +\geburtsort{Tschita, Russland} +\date{17 September 2024} +\betreuer{Betreuer: Prof. Dr. Philipp Hieronymi} +\zweitgutachter{Zweitgutachter: Dr. Tingxiang Zou} +\institut{Mathematisches Institut} +\title{Bridging Model Theory and Machine Learning} +\ausarbeitungstyp{Bachelorarbeit Mathematik} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage[style=alphabetic]{biblatex} +\addbibresource{literature.bib} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage[thref, standard, amsmath]{ntheorem} +\usepackage[dvipsnames]{xcolor} +\usepackage{csquotes} +\usepackage[colorlinks=true, allcolors=BlueViolet]{hyperref} +\usepackage[capitalise]{cleveref} +\usepackage{mathtools} +\usepackage{marginnote} +\usepackage{enumitem} +\setlist[enumerate]{label={\alph*)}} +\renewcommand*{\marginfont}{\footnotesize\normalfont} +\usepackage{outlines} +\usepackage{tikz} +\usetikzlibrary{shapes,arrows} +\usepackage{tikz-qtree} + +%%%%%%%%% mathematical bold %%%%%%%%%%%%%%%%% + +\newcommand{\bA}{\mathbb{A}} +\newcommand{\bB}{\mathbb{B}} +\newcommand{\bC}{\mathbb{C}} +\newcommand{\Cs}{\bC^\times} +\newcommand{\bD}{\mathbb{D}} +\newcommand{\bE}{\mathbb{E}} +\newcommand{\F}{\mathbb{F}} +\newcommand{\bF}{\mathbb{F}} +\newcommand{\bG}{\mathbb{G}} +\newcommand{\bH}{\mathbb{H}} +\newcommand{\bI}{\mathbb{I}} +\newcommand{\bJ}{\mathbb{J}} +\newcommand{\bK}{\mathbb{K}} +\newcommand{\bL}{\mathbb{L}} +\newcommand{\bM}{\mathbb{M}} +\newcommand{\N}{\mathbb{N}} +\newcommand{\bO}{\mathbb{O}} +\newcommand{\bP}{\mathbb{P}} +\newcommand{\bp}{\mathbb{p}} +\newcommand{\Q}{\mathbb{Q}} +\newcommand{\R}{\mathbb{R}} +\newcommand{\bS}{\mathbb{S}} +\newcommand{\bT}{\mathbb{T}} +\newcommand{\bU}{\mathbb{U}} +\newcommand{\bV}{\mathbb{V}} +\newcommand{\bW}{\mathbb{W}} +\newcommand{\bX}{\mathbb{X}} +\newcommand{\bY}{\mathbb{Y}} +\newcommand{\Z}{\mathbb{Z}} + +%%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%% + +\newcommand{\mc}[1]{\mathcal{#1}} +\newcommand{\cA}{\mathcal{A}} +\newcommand{\cB}{\mathcal{B}} +\newcommand{\C}{\mathcal{C}} +\newcommand{\cD}{\mathcal{D}} +\newcommand{\cE}{\mathcal{E}} +\newcommand{\cF}{\mathcal{F}} +\newcommand{\cG}{\mathcal{G}} +\newcommand{\cH}{\mathcal{H}} +\newcommand{\cI}{\mathcal{I}} +\newcommand{\cJ}{\mathcal{J}} +\newcommand{\cK}{\mathcal{K}} +\newcommand{\cL}{\mathcal{L}} +\newcommand{\cM}{\mathcal{M}} +\newcommand{\cm}{\mathcal{m}} +\newcommand{\cN}{\mathcal{N}} +\newcommand{\cO}{\mathcal{O}} +\newcommand{\cP}{\mathcal{P}} +\newcommand{\cQ}{\mathcal{Q}} +\newcommand{\cR}{\mathcal{R}} +\newcommand{\cS}{\mathcal{S}} +\newcommand{\cT}{\mathcal{T}} +\newcommand{\cU}{\mathcal{U}} +\newcommand{\cV}{\mathcal{V}} +\newcommand{\cW}{\mathcal{W}} +\newcommand{\cX}{\mathcal{X}} +\newcommand{\cY}{\mathcal{Y}} +\newcommand{\cZ}{\mathcal{Z}} + +%%%%%%%%% mathematical fraktur %%%%%%%%%%%%%% + +\newcommand{\mf}[1]{\mathfrak{#1}} +\newcommand{\fb}{\mathfrak{b}} +\newcommand{\fc}{\mathfrak{c}} +\newcommand{\fA}{\mathfrak{A}} +\newcommand{\fB}{\mathfrak{B}} +\newcommand{\fC}{\mathfrak{C}} +\newcommand{\fD}{\mathfrak{D}} +\newcommand{\fE}{\mathfrak{E}} +\newcommand{\fF}{\mathfrak{F}} +\newcommand{\fG}{\mathfrak{G}} +\newcommand{\fH}{\mathfrak{H}} +\newcommand{\fI}{\mathfrak{I}} +\newcommand{\fJ}{\mathfrak{J}} +\newcommand{\fK}{\mathfrak{K}} +\newcommand{\fL}{\mathfrak{L}} +\newcommand{\fm}{\mathfrak{m}} +\newcommand{\fN}{\mathfrak{N}} +\newcommand{\fO}{\mathfrak{O}} +\newcommand{\fp}{\mathfrak{p}} +\newcommand{\fQ}{\mathfrak{Q}} +\newcommand{\fq}{\mathfrak{q}} +\newcommand{\fR}{\mathfrak{R}} +\newcommand{\fS}{\mathfrak{S}} +\newcommand{\fT}{\mathfrak{T}} +\newcommand{\fU}{\mathfrak{U}} +\newcommand{\fV}{\mathfrak{V}} +\newcommand{\fW}{\mathfrak{W}} +\newcommand{\fX}{\mathfrak{X}} +\newcommand{\fY}{\mathfrak{Y}} +\newcommand{\fZ}{\mathfrak{Z}} + +%%%%%%%%% math operators %%%%%%%%%%%%%%% + +\let\leq=\leqslant +\let\geq=\geqslant + +%%%%%%%%% further commands %%%%%%%%%%%%%%% +% Outlines configurations + +\makeatletter +% the outline environment provides commands \1..\4 for +% introducing items at level 1..4, and \0 for normal paragraphs +% within the outline section. +\renewenvironment{outline}[1][]{% + \ifthenelse{\equal{#1}{}}{}{\renewcommand{\ol@type}{#1}}% + \ol@z% + \newcommand{\0}{\ol@toz\ol@z}% + \newcommand{\1}{\vspace{\dimexpr\outlinespacingscalar\baselineskip-\baselineskip}\ol@toi\ol@i\item}% + \newcommand{\2}{\vspace{\dimexpr\outlinespacingscalar\baselineskip-\baselineskip}\ol@toii\ol@ii\item}% + \newcommand{\3}{\vspace{\dimexpr\outlinespacingscalar\baselineskip-\baselineskip}\ol@toiii\ol@iii\item}% + \newcommand{\4}{\vspace{\dimexpr\outlinespacingscalar\baselineskip-\baselineskip}\ol@toiiii\ol@iiii\item}% +}{% + \ol@toz\ol@exit% +} +\makeatother + +%%%%%%%%% thm environments %%%%%%%%%%%%%%% +\numberwithin{lemma}{section} +\numberwithin{theorem}{section} +\numberwithin{example}{section} + +\theoremstyle{plain} +\newtheorem{thm}{Theorem}[section] +\renewtheorem{lemma}[thm]{Lemma} +\renewtheorem{corollary}[thm]{Corollary} + +\theorembodyfont{\normalfont} +\renewtheorem{definition}[thm]{Definition} +\renewtheorem{remark}[thm]{Remark} +\renewtheorem{example}[thm]{Example} +\newtheorem{fact}[thm]{Fact} \ No newline at end of file diff --git a/style/Zallman.sty b/style/Zallman.sty new file mode 100644 index 0000000..dbcafa2 --- /dev/null +++ b/style/Zallman.sty @@ -0,0 +1,14 @@ +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{style/Zallman}[2007/11/24 v1.0 Zallman CFR] + +\input Zallman.fd + +\DeclareRobustCommand{\Zallmanfamily}{% + \fontencoding{U}% + \fontseries{xl}% + \fontshape{n}% + \fontfamily{Zallman}% + \selectfont} +\DeclareTextFontCommand{\zall}{\Zallmanfamily} + +\endinput \ No newline at end of file