-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
836 lines (700 loc) · 40.2 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
\input{preamble.tex}
\usepackage{enumitem}
\usepackage{stmaryrd}
\usepackage{outlines}
\usepackage{faktor}
\usepackage{tikz-cd}
\usepackage{tabularx}
\usepackage{float}
\usepackage{nomencl}
\setcounter{section}{-1}
\newcommand{\QT}{\mathbb{Q}[T]}
\newcommand{\ZT}{\mathbb{Z}[T]}
\newcommand{\bigslant}[2]{{\raisebox{.1em}{$#1$}\left/\raisebox{-.1em}{$#2$}\right.}}
\setcounter{MaxMatrixCols}{11}
\DeclareRobustCommand\longtwoheadrightarrow
{\relbar\joinrel\twoheadrightarrow}
\newcommand{\ux}{\underline{x}}
\newcommand{\uy}{\underline{y}}
\newcommand{\ua}{\underline{a}}
\newcommand{\ub}{\underline{b}}
\DeclareMathOperator{\pt}{pt}
\DeclareMathOperator{\tp}{tp}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\TOP}{TOP}
\DeclareMathOperator{\simp}{simp}
\DeclareMathOperator{\sing}{sing}
\DeclareMathOperator{\cell}{cell}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\Ext}{Ext}
\newcommand{\Csimp}{C^{\simp}_*}
\newcommand{\Hsimp}{H^{\simp}_*}
\newcommand{\Csing}{C^{\sing}_*}
\newcommand{\Hsing}{H^{\sing}_*}
\newcommand{\Ccell}{C^{\cell}}
\newcommand{\Hcell}{H^{\cell}}
\newcommand{\rk}{rk}
\newcommand{\tors}{tors}
\newcommand{\CP}{\mathbb{CP}}
\newcommand{\coCsing}{C_{\sing}^*}
\newcommand{\coHsing}{H_{\sing}^*}
\newcommand{\coCcell}{C_{\cell}^*}
\newcommand{\coHcell}{H_{\cell}^*}
\newcommand{\ra}{\rightarrow}
\renewcommand{\nomname}{List of Symbols}
\makenomenclature
\begin{document}
\maketitle
\tableofcontents
\newpage
\nomenclature[1]{$\cH_*$}{homology theory (functor)}
\nomenclature[2]{$\partial$}{boundary homomorphism}
\nomenclature[3]{$C_*=(C_*,c_*)$}{chain complex}
\nomenclature[4]{$H_n(C_*)=\ker(c_n)/\im(c_{n+1})$}{$n$-th homology of a chain complex}
\nomenclature[5]{$f_*$}{chain map $C_*\rightarrow D_*$}
\nomenclature[6]{$H_n(f_*): H_n(C_*)\rightarrow H_n(D_*)$}{induced homomorphism on homology (by a chain map $C_* \rightarrow D_*)$}
\nomenclature[7]{$\Csimp$}{simplicial chain complex}
\nomenclature[8]{$\Hsimp$}{simplicial homology}
\nomenclature[9]{$\Delta_n$}{standard $n$-simplex}
\nomenclature[a1]{$\Csing$}{singular chain complex}
\nomenclature[a2]{$\Hsing$}{singular homology}
\nomenclature[a3]{$\sigma:\Delta_n\rightarrow X$}{singular $n$-simplex}
\nomenclature[a4]{$\Csing(f)$}{induced chain map (by a map $f:X\rightarrow Y$)}
\nomenclature[a4]{$\Hsing(f)$}{induced homomorphism on homology (by a map $f:X\rightarrow Y$)}
\nomenclature[a5]{$e^n_i$}{open $n$-cell belonging to $i\in I$}
\nomenclature[a6]{$\overline{e^n_i}$}{closed $n$-cell belonging to $i\in I$}
\nomenclature[a7]{$\partial e^n_i$}{boundary of an $n$-cell belonging to $i\in I$}
\nomenclature[a8]{$Q^n_i$}{characteristic map}
\nomenclature[a9]{$q^n_i$}{attaching/gluing map}
\nomenclature[b1]{$\Ccell_*$}{cellular chain complex}
\nomenclature[b2]{$\Hcell_*$}{cellular homology}
\nomenclature[b4]{$\chi$}{Euler characteristic}
\nomenclature[b5]{$\Lambda$}{Lefschetz number}
\nomenclature[b6]{$\cH^*$}{cohomology theory}
\nomenclature[b7]{$\delta$}{boundary homomorphism}
\nomenclature[b7]{$C^*=(C^*,c^*)$}{cochain complex}
\nomenclature[b8]{$H^n(C_*)=\ker(c_n)/\im(c_{n-1})$}{$n$-th cohomology of a cochain complex}
\nomenclature[c1]{$\coCsing$}{singular cochain complex}
\nomenclature[c2]{$\coHsing$}{singular cohomology}
\nomenclature[c3]{$\coCcell$}{cellular cohomology}
\nomenclature[c4]{$\coHcell$}{cellular cohomology}
\nomenclature[c5]{$K(A,n)$}{Eilenberg MacLane space}
\nomenclature[c6]{$\pi_n(X)=[(S^n,*), (X,x)]$}{$n$-th homotopy group}
\printnomenclature[2in]
\section{Humble beginnings}
\begin{outline}
\1 simply connected = no "handle-shaped" holes
\1 contractible = no holes at all
\end{outline}
\begin{lemma}[Splitting lemma]
Given SES $$0\rightarrow X \stackrel{r}{\rightarrow} Y \stackrel{q}{\rightarrow} Z \rightarrow 0$$ the following are equivalent:
\begin{outline}
\1 SES splits on the left
\1 SES splits on the right
\1 $Y \cong X\bigoplus Z$
\end{outline}
\end{lemma}
\begin{outline}
\1 let $Y$ be a Hausdorff space, and let $X$ be a compact space, and $\sim$ equivalence relation on $X$. Let $f:X\rightarrow Y$ be a surjective continuous mapping that is constant on the equivalence classes.
\2 then $f$ induces a surjective map $\overline{f}: X/\sim \rightarrow Y$
\2 if $\overline{f}$ is bijective, then it is a homeomorphism
\1 classification of $2$-surfaces
\end{outline}
\begin{table}[h]
\centering
\begin{tabular}{m{2.5cm} m{2.5cm} m{5cm}}
\toprule
& with boundary & w/o boundary \\
\midrule
orientable & sphere, torus, etc & \\
non-orientable & Moebius strip & Klein bottle, real projective space \\
\bottomrule
\end{tabular}
\end{table}
\begin{outline}
\0 \textbf{Notes from "Homology theory, lecture 10, Panov T. E."}
\1 tensor product $\bigotimes$ -- quotient of a free abelian group
\1 set of homomorphisms $\hom(G,H)$
\2 $H$ abelian $\iff \hom(G,H)$ has a natural AbGrp structure
\1 covariant functor $\otimes G: H\mapsto H\otimes G, (H_1\rightarrow H_2) \mapsto (H_1 \otimes G \rightarrow H_2 \otimes G)$
\2 $H_n(X)\otimes \Z = H_n(X)$
\1 contravariant functor $\hom(-,G): H \mapsto \hom(H,G), (H_1\rightarrow H_2) \mapsto (\hom(H_2,G)\rightarrow \hom(H_1,G))$
\1 topological space $X$, singular $n$-chain complex $C^{\text{sing}}_n(X)=\Z\langle \sigma: \Delta^n\rightarrow X\rangle$
\1 $C^{\text{sing}}_n(X;G) = C^{\text{sing}}_n(X)\otimes G$
\2 this is functor from $TOP$ to $Grp$
\2 singular $n$-chains with coefficients in $G$
\1 $C_{\text{sing}}^n(X)=\hom(C^{\text{sing}}_n(X),G)$
\2 singular $n$-cochains with coefficients in $G$
\2 cochain = function on singular $n$-chains with values in $G$
\2 $0$-dim cochain is a function on $0$-dim chains in $X$ with values in $G$ (function)
\1 boundary homomorphism $\partial: C_n(X)\rightarrow C_{n-1}(X)$
\1 boundary homomorphism $\partial: C_n(X;G)\rightarrow C_{n-1}(X;G)$
\2 same formulas
\1 coboundary homomorphism $\delta:C^{n-1}(X;G) \rightarrow C^n(X;G)$
\2 $\langle \delta_{n-1}c, \sigma \rangle = \langle c, \partial_n\sigma\rangle$
\2 $\delta$ is dual to $\partial$; the value of $\delta_{n-1}c$ on $n$-simplex $\sigma$ is determined by the value of $c$ on $n-1$ simplex $\partial \sigma$.
\2 $(\delta_{n-1}c)(\sigma) = \sum_i (-1)^i c(\sigma \mid_{[v_0\ldots\Hat{v_i}\ldots v_n]})$
\1 \{chain complex, homology\} $\xrightarrow[]{\hom(-,G)}$ \{cochain complex, cohomology\}
\1 Rechenregeln
\2 $H_n(\bigvee_i X_i)=\bigoplus_i H_n(X_i)$
\2 $H^n(\bigvee_i X_i)=\prod_i H^n(X_i)$
\1 homological algebra
\2 given $0\ra F \ra G \ra H \ra 0$ apply $C_n(X)\bigotimes -$ and consider $0\ra C_n(X,F)\ra C_n(X,G)\ra C_n(X,H)\ra 0$
\0 \textbf{Notes from "Homology theory, lecture 12, Panov T. E."}
\1 cup product $\smile : H^p(X;R)\times H^q(X;R)\ra H^{p+q}(X;R)$
\1 associative graded-commutative ring with $1$ denoted by $H^*(X;R)=\bigoplus_{p\geq 0} H^p(X;R)$
\1 graded-commutative $\iff ab = (-1)^{ij}ba$
\1 $a\in C^p(X;R), b\in C^q(X;R)$, define $a\smile b \in C^{p+q}(X;R)$
\2 given $p+q$-simplex $\sigma:\Delta^{p+q}=[v_0\ldots v_{p+q+1}] \ra X$
\2 define $(a\smile b) (\sigma) = a(\sigma\mid_{0,p})b(\sigma\mid_{p,p+q})$ where $a$ and $b$ share one vertex $p$
\1 Rechenregeln:
\2 identity element is $1\in H^0(X;R)$, cochain with values $1$ on each point of $X$
\2 $\delta (a\smile b) = \delta (a \smile b) + (-1)^p (a \smile \delta b)$ (Leibniz property)
\3 ausklammern + $p$ transpositions to change $\delta$ with $a$
\3 $\sigma:\Delta^{p+q+1}\ra X$
\4 $(\delta a \smile b)(\sigma)=\sum_i (-1)^i a(\sigma\mid_{0,p+1}) b(\sigma\mid_{p+1,p+q+1})$
\4 $(-1)^p(a\smile \delta b)(\sigma) = \sum_i (-1)^i a(\sigma\mid_{0,p})b(\sigma\mid_{p,p+q+1})$
\1 cohomology ring $H^*(X;R)=\bigoplus_{p\geq 0} H^p(X;R)$ is a graded-commutative ring with $1$
\end{outline}
\section{Axiomatic homology}
\subsection{Eilenberg-Steenrod axioms}
\marginnote[0pt]{Vorlesung 1, 09.10.23}
\begin{outline}
\1 homology theory $(\cH_*, \partial*)$
\2 functor $\cH_*:\TOP^2 \longrightarrow \text{$\Z$-graded $R$-modules}$
\2 boundary operator $\partial_* : \cH_* \rightarrow \cH_{*-1}\circ I$
\3 $I:(X,A)\rightarrow (A,\emptyset)$
\1 five axioms
\2 homotopy invariance
\3 homotopic maps induce the same map in homology
\3 caution! the converse doesn't hold
\2 long exact sequence of pairs\\
$\ldots\rightarrow\cH_n(A)\rightarrow \cH_n(X)\rightarrow \cH_n(X,A)\rightarrow\ldots$
\2 excision
\3 if $\overline{A}\subset B^\circ$ then $\cH_n(X-A,B-A)\cong \cH_n(X,B)$
\2 dimension
\3 $\cH_0(\bullet)=R$
\3 $\cH_{\neq 0}(\bullet)=0$
\2 additivity
\3 $X= \coprod_{\alpha} X_\alpha \implies H_n(X)= \bigoplus H_n(X_\alpha)$
\3 caution! this implies that each $X_\alpha$ is open in $X$, otherwise you can get pathological examples (taking disjoint union of all points in the space implying homology of any space equal to homology of a point)
\end{outline}
Natürlich fragt man sich -- what the fuck? Jedem topologischen Raum $X$ wird eine unendliche Kette an $R$-Moduln zugeordnet. Jede stetige Abbildung zwischen $X,Y$ induziert ein Homomorphismus zwischen Homologien von solchen Ketten. Aus Exaktheit versuchen wir, neue Informationen über die Moduln in der Kette abzuleiten. Das ist die Grundidee.
\subsection{Mayer-Vietoris sequence}
\begin{outline}
\1 Mayer-Vietoris sequence
\2 if $X=A^\circ\cup B^\circ$, then exists the following Mayer-Vietoris sequence $\cH_n(A\cap B) \rightarrow \cH_n(A)\oplus\cH_n(B)\rightarrow H_n(X)\rightarrow H_{n-1}(A\cap B)\rightarrow \cdots \rightarrow H_0(X)\rightarrow 0$.
\1 inclusion classification for pairs $(X,A)$
\2 given $r:X\rightarrow A$ and $\iota: A\hookrightarrow X$
\2 $r$ retraction $\iff r\circ \iota =\id_A$
\2 $r$ deformation retraction $\iff r\circ \iota \simeq \id_{\text{rel }A}$
\3 in other words, a homotopy between a retraction and the identity map on $X$.
\3 in other words, $A$ and $X$ are homotopy equivalent
\2 $r$ neighborhood deformation retraction $\iff$ exists $U^\circ\supseteq A$ such that $A$ is a deformation retract of $U$
\3 in other words, $A\subseteq U^\circ \subseteq X$ and exists $r':U^\circ \rightarrow A$ with $r'\circ i = \id_A$
\3 tutor mentioned that HEP is equivalent to cofibration and NDR is similar to that too.
\2 cofibration
\marginnote[0pt]{Vorlesung 2, 11.10.23}
\1 Mayer-Vietoris sequence for pushouts
\2 $\begin{tikzcd}
&& {} \\
& {X_0} && {X_2} \\
{} \\
& {X_1} && X
\arrow["{i_1 }"{description}, from=2-2, to=4-2]
\arrow["{i_2}"{description}, from=2-2, to=2-4]
\arrow["{j_1}"{description}, from=4-2, to=4-4]
\arrow["{j_2}"{description}, from=2-4, to=4-4]
\end{tikzcd}$
\2 if $i_1$ closed inclusion and $(X_1,X_0)$ NDR
\2 then $j_2$ is a closed inclusion and $(X,X_2)$ NDR
\2 $\cH_n(X_1,X_0)\cong \cH_n(X,X_2)$
\2 and the usual Mayer-Vietoris sequence from above works too
\end{outline}
\subsection{Category-theoretical constructions}
\marginnote[0pt]{Vorlesung 3, 16.10.23}
\begin{outline}
\1 five lemma
\1 cone
\1 suspension
\1 suspension isomorphism
\1 mapping cone
\1 pushout
\1 wedge $X\vee Y$ = $\faktor{X\coprod Y}{(x_0\sim y_0)}$
\end{outline}
\subsection{Chain complexes, homology, chain homotopy}
\marginnote[0pt]{Vorlesung 4, 18.10.23}
\begin{outline}
\1 chain complex $C_*=(C_*,c_*)$
\2 family of $\Z$-graded $R$-modules $C_n$
\2 $n$-th differentials $c_n:C_n\rightarrow C_{n-1}$
\3 $c_n \circ c_{n+1}=0 \implies \im c_{n+1} \subseteq \ker c_n$
\3 caution! not the other way around
\2 finitely generated, projective, free, finitely generated projective, finitely generated free, $\ldots$
\2 $\dim C_* = d \iff$ $C_n = 0$ für $n>d$
\2 finite = finitely generated and finite dimension
\2 positiv $\iff C_n = 0$ für $n < 0$
\2 $\cdots \longrightarrow C_{n+1} \longrightarrow C_{n} \longrightarrow C_{n-1} \longrightarrow \cdots$
\1 homology $H_n(C_*)$
\2 $H_n(C_*)=\ker c_n / \im c_{n+1}$
\3 $\im c_{n+1} \subset \ker c_n$ because $c_{n} \circ c_{n+1} = 0$
\3 measures how far away from being exact $C_*$ is
\2 cycle $u \in C_n$ $\iff c_n(u)=0 \iff u \in \ker c_n$
\3 cycles $a,b$ homologous if $a-b$ boundary
\3 abelianization of loops
\4 cycles are loops without basepoint, since changing basepoint cyclically permutes its letters (Hatcher, p. 99)
\2 boundary $u \in C_n$ $\iff u \in \im c_{n+1}$
\1 chain map $f_*:C_*\rightarrow D_*$
\2 family of maps $f_n:C_n\rightarrow D_n$ such that everything commutes
\2 induces a homomorphism on homology $H(f_*):H_(C_*)\rightarrow H_(D_*)$
\1 chain homotopy $h_*$ from $f_*$ to $g_*$
\2 given chain maps $f_*,g_*:C_*\rightarrow D_*$
\2 $h_*$ is family of homomorphisms $h_n:C_n\rightarrow D_{n+1}$
\2 $d_{n+1}\circ h_n + h_{n-1}\circ c_n = f_n - g_n$
\2 if $f_*\simeq g_*$ then they induce the same homomorphisms on homology $H_n(f_*)=H_n(g_*)$
\[\begin{tikzcd}
{C_3} & {C_2} & {C_1} & {C_0} \\
{D_3} & {D_2} & {D_1} & {D_0} \\
& {d_3\circ h_2 + h_1 \circ c_2 = f_2 - g_2} & \qquad\qquad\qquad
\arrow["{c_3}", from=1-1, to=1-2]
\arrow["{c_2}", from=1-2, to=1-3]
\arrow["{c_1}", from=1-3, to=1-4]
\arrow["{d_3}"', from=2-1, to=2-2]
\arrow["{d_2}"', from=2-2, to=2-3]
\arrow["{d_1}"', from=2-3, to=2-4]
\arrow["{h_2}"{description}, from=1-2, to=2-1]
\arrow["{h_1}"{description}, from=1-3, to=2-2]
\arrow["{h_0}"{description}, from=1-4, to=2-3]
\end{tikzcd}\]
\end{outline}
\marginnote[0pt]{Vorlesung 5, 23.10.23}
\begin{outline}
\1 long homology sequence
\2 SES of chain complexes $C_*,D_*,E_*$ induces LES on their homologies in each dimension + induces a natural boundary operator
\2 zig-zag lemma
\1 universal property of direct sum
\2 direct sum of chain complexes induces direct sum on their homologies
\end{outline}
\section{Simplicial complexes and simplicial homology}
\begin{outline}
\1 abstract simplicial complex $\Sigma = (V, \Sigma)$
\2 $V$ vertices, $\Sigma$ simplices
\3 \textbf{the vertex condition}: $v\in V$ are always contained in $\Sigma$
\3 \textbf{the subset condition}: subsets $S\subseteq \Sigma$ are elements of $\Sigma$
\marginnote[-1cm]{$0$-simplex is a point\\ $1$-simplex is a line \\ $2$-simplex is a triangle \\ $3$-simplex is a solid tetrahedron}
\1 ordering of $\Sigma$
\2 let $\Sigma_p$ be the set of $p$-simplices (= consist of $p+1$ elements)
\2 for each simplex $S\in \Sigma$, choose bijection $u(S): [0,1,\ldots,p+1] \rightarrow S$
\2 switching two indices in the ordering introduces a minus sign, $[1,2]=-[2,1]$
\0 We now define a covariant functor from the category of simplicial complexes and simplicial maps to the category of topological spaces and continuous maps.
\1 geometric simplicial complex $|\Sigma|$
\marginnote[0cm]{$|\Sigma|$ is a topological space.}
\2 the underlying set of $|\Sigma|$ is the set of all functions $\alpha: V \rightarrow [0,1]$ such that $\alpha(v)$ is positive for all $v$ and the sum $\sum_{v\in V} \alpha(v)$ is always equal to 1
\3 basically all possible "weights" in barycentric coordinates
\2 for subset $S\in \Sigma$, the underlying set is the subset of $\Sigma$ given by $|S|=\{\alpha \mid s \not\in S \implies \alpha(s)=0\}$
\3 basically only uses the weights from $S \implies$ points lay in the convex hull
% This is wrong, it is a semi-simplicial complex from Hatcher
% \2 \textbf{Geometrical} definition:
% \3 set of functions $\sigma_\alpha : \Delta_n \rightarrow X$
% \3 restriction to interior is injective and each point in $X$ is in the image of exactly one such restriction
% \4 the \textbf{interior} is defined as $\Delta_n-\partial\Delta_n$ where $\displaystyle\partial\Delta_n := \cup \text{faces of $\Delta_n$}$
% \4 \textbf{face}$:=$ another sub-simplex of lower dimension (not necessarily $n-1$)
% \3 restriction to a face is one of the maps we have already, $\sigma_\beta: \Delta^{n-1}\rightarrow X$
% \3 $A\subset X$ open iff $\sigma_\alpha^{-1}(A)$ open in $\Delta_n$ for each $\sigma_\alpha \implies$ you can reconstruct $X$ not only as a set, but also as a topological space from these maps
\1 incidence number $\text{inz}^p_{s,t}$
\2 let $s$ be a $p$-simplex and $t$ a $(p-1)$-simplex
\3 if $t\not\subseteq s$ then $\text{inz}^p_{s,t}=0$
\3 else $\text{inz}^p_{s,t}$ is $\text{sgn}$ of the permutation of the ordering
\1 simplicial chain complex $\Csimp(\Sigma;R)$
\2 $C^{\text{simp}}_n(\Sigma)$ = free abelian on the set of $n$-simplices
\marginnote[0cm]{6. Vorlesung, 25.10.23}
\1 simplicial boundary operator $c_n$
\2 $c_n:C^{\text{simp}}_n(\Sigma)\rightarrow C^{\text{simp}}_{n-1}(\Sigma)$
\2 takes simplex to alternating sum of its boundary $(1,\ldots, n)$ to $\sum_{1\leq i \leq n} (-1)^i(1,\ldots,\hat{i},\ldots,n)$
\marginnote[-1cm]{Example: $c_2:(1,2,3)\mapsto (2,3)-(1,3)+(1,2)$
\[\begin{tikzcd}[ampersand replacement=\&,cramped]
\& 1 \\
2 \&\& 3 \\
{}
\arrow[from=1-2, to=2-1]
\arrow[from=2-1, to=2-3]
\arrow[from=2-3, to=1-2]
\end{tikzcd}\]
}
\1 simplicial homology $\Hsimp(\Sigma;R)$
\marginnote[0cm]{7. Vorlesung, 30.10.23}
\2 measures $n$-dimensional holes in $X$
\2 abstract homology on $\Csimp(\Sigma;R)$
\2 verifying Eilenberg-Steenrod axioms
\0 Remark: simplicial complices are very combinatorial in nature. Not very good for explicit computations by hand but good for computers.
\end{outline}
\section{Singular chain complexes and singular homology}
Sometimes a triangulation might not exist, so we could do the next best thing available -- consider maps from $\Delta_n$ to $X$ instead.
\begin{outline}
\1 standard $n$-simplex $\Delta_n\subseteq R^{n+1}$
\2 closed convex hull of $\{e_0,\ldots,e_{n}\}\subseteq R^{n+1}$
\1 $k$-th face is the image of $i^n_k$
\2 $i^n_k$ maps everything except the $k$-th element to $\Delta_n$
\1 singular $n$-simplex $\sigma:\Delta_n\rightarrow X$
\2 simplices are allowed to be "singular" e. g. constant map
\1 singular chain complex $\Csing(X)= (\Csing(X), \partial)$
$$\cdots \longrightarrow S_2(X)\longrightarrow S_1(X)\longrightarrow S_0(X) \longrightarrow 0$$
\2 each $S_n(X)$ is a free R-module generated by the set of all singular $n$-simplexes in $X$
\3 elements of $S_n(X)$ are called singular $n$-chains
\3 finite linear combinations of $\sigma \in S_n(x)$ with coefficients from $R$
\2 singular boundary operator $\partial: S_n(X)\rightarrow S_{n-1}(X)$
\3 sends $\sigma:\Delta_n \rightarrow X$ to $\sum_{i} (-1)^{i} (\sigma \circ i^n_i$)
\1 induced chain map $\Csing(f):\Csing(X)\rightarrow \Csing(Y)$
\1 singular homology $\Hsing(X,R)$
\2 free abelian of uncountable rank, unless $X$ is a finite collection of points
\1 $H^{\text{sing}}_1(X)=\pi_1(X,x_0)/[\pi_1(X,x_0),\pi_1(X,x_0)]$
\end{outline}
\section{CW-complexes and cellular homology}
\marginnote[0cm]{8. Vorlesung, 06.11.23}
\subsection{CW-complexes}
\begin{outline}
\1 \textbf{relative CW-complex} $(X,A)$
\2 \textbf{topological pair $(X,A)$}
\2 \textbf{relative CW-structure} on $(X,A)$ is a filtering (ascending chain)
$$A=X_{-1} \subseteq X_0 \subseteq X_1 \subseteq X_2 \subseteq \ldots$$
\3 such that for each $n\geq 0$ exists \textit{a} pushout that glues $n$-cells together
\[\begin{tikzcd}[cramped]
{\coprod\limits_{i\in I_n} S^{n-1}} &&& {X_{n-1}} \\
\\
{\coprod\limits_{i\in I_n} D^{n}} &&& {X_n}
\arrow["{\coprod\limits_{i\in I_n} q^n_i}", from=1-1, to=1-4]
\arrow["{\coprod\limits_{i\in I_n} j_i}"', hook', from=1-1, to=3-1]
\arrow["{k_n}", hook', from=1-4, to=3-4]
\arrow["{\coprod\limits_{i\in I_n} Q^n_i}"', from=3-1, to=3-4]
\end{tikzcd}\]
\3 $X=\cup_{n\geq 0}X_n$ and has direct limit topology
\4 $A\subset X$ closed $\iff A\cap X_n$ closed in $X_n$ for all $n$
\marginnote[-3.5cm]{
The pushouts in the definition of Wolfgang are not unique, e. g. there are many different pushouts for the same filtering giving the same spaces. Could be done differently, but the category behaves much better if you only request the existence of pushouts.
}
\marginpar{
\begin{footnotesize}
Example for n=0: $X_1$ is a discrete set of points (perhaps uncountably many points)
\[\begin{tikzcd}[ampersand replacement=\&]
{\coprod S^{-1} = \emptyset} \&\& {\emptyset = X_{-1}} \\
\&\&\& {} \\
{\coprod D^0 = \{\pt\}} \&\& {X_1}
\arrow[from=1-1, to=1-3]
\arrow[hook', from=1-1, to=3-1]
\arrow[from=3-1, to=3-3]
\arrow[hook', from=1-3, to=3-3]
\end{tikzcd}\]
\end{footnotesize}
}
\1 Remarks:
\2 $\coprod\limits_{i\in I_n} D^{n} \setminus\coprod\limits_{i\in I_n} S^{n-1}$ is homeomorphic to $X_n\setminus X_{n-1}$
\3 each of $I_n$ describes one path component of $X_n\setminus X_{n-1}$
\3 $|I_n| = $ number of path components in $X_n\setminus X_{n-1}$
\2 main ingredients:
\3 $n$-skeleton $X_n$
\3 open $n$-cell $e^n_i:=Q^n_i(D^n\setminus S^{n-1})\subset X_n$
\3 closed $n$-cell $\overline{e^n_i}$
\3 boundary $\overline{e^n_i}\setminus e^n_i$ or $\partial e^n_i$
\3 characteristic map $Q^n_i$
\3 gluing map $q^n_i$
\1 cellular map $f:(X,A)\rightarrow (Y,B)$
\2 $f(X_n)\subseteq Y_n$ for all $n\geq -1$
\1 isomorphism of $CW$ complexes
\2 cellular maps $f:X\rightarrow Y$ and $g:Y\rightarrow X$
\1 \textbf{CW pair $(X,A)$}
\2 if $e\cap A \neq \emptyset$ then $\overline{e}\subseteq A$
\2 closed subspace $A\subset X$ + union of cells
\2 $A$ is a \textbf{CW subcomplex} of $X$ with CW structure given by $A_n=X_n\cap A$
\2 any CW pair is a relative CW complex but not vice versa
\marginpar{
\begin{footnotesize}
Example: $X=[-1,1]$ has the following CW-structure
$X_{-1}= \emptyset, X_0 = \{-1,1\}, X_i = [-1,1]$ for $i\geq 1$. I could also use $-\id$ as the gluing map.
\[\begin{tikzcd}[ampersand replacement=\&,cramped]
{S^0} \&\& {\{-1,1\}} \\
\&\&\& {} \\
{D^1} \&\& {X_1=X}
\arrow["\id", from=1-1, to=1-3]
\arrow[hook', from=1-1, to=3-1]
\arrow["\id"', from=3-1, to=3-3]
\arrow[hook', from=1-3, to=3-3]
\end{tikzcd}\]
\end{footnotesize}
}
\1 compactness lemmas about CW complexes
\2 subset $C\subseteq X$ is closed $\iff$ for all $e: C\cap \overline{e}$ compact
\2 subset $C\subseteq X$ is compact $\iff$ $C$ closed and meets finitely many cells
\2 subset $C\subseteq X$ is compact $\iff$ $C$ closed and contained in a finite CW subcomplex
\2 CW complex $X$ is compact $\iff$ CW complex $X$ is finite
\1 relative CW complex $(X,A) \implies $ $(X,A)$ is a NDR
\1 cellular pushout
\marginnote[0cm]{9. Vorlesung, 08.11.23}
\1 Mayer-Vietoris for CW-complexes
\1 covering space has CW-structure $\iff$ base space has CW-structure
\1 $X,Y$ CW-complexes and $X$ or $Y$ locally compact $\implies$ $X\times Y$ inherits $CW$-structure
\1 examples of CW-complexes
\2 $S^n$
\2 $\RP^n$
\2 $\CP^n$
\2 $T^2$
\1 cellular approximation theorem
\2 there is no difference between cellular maps and just normal maps between CW complexes
\end{outline}
\subsection{Maps between spheres}
\begin{outline}
What do we know about spheres?
\1 built inductively
\2 $v_n: \Sigma S^{n-1}\rightarrow S^n$ is a homeomorphism
\1 exists suspension isomorphism
\2 $\sigma_n(X):\cH_{n-1}(S^{n-1})\rightarrow \cH_{n}(\Sigma S^{n-1})= \cH_{n}(S^n)$
\1 if $[S^d,S^d]$ set of homotopy classes of selfmaps in $S^d$ then suspension induces isomorphism between $[S^d,S^d]$ and $[S^{d+1},S^{d+1}]$ (Freudenthal)
\end{outline}
\subsection{Cellular chain complex associated with (any) homology}
\marginnote[0cm]{10. Vorlesung, 13.11.23}
\begin{outline}
\0 Given CW-complex $(X,A)$ and a homology theory (any) $\cH_*$ define
\1 cellular chain complex $C_*(X,A)= (\cup^\infty_{n=0} \cH_n(X_n,X_{n-1}), \partial)$
$$\cdots \longrightarrow H_3(X_3,X_2) \longrightarrow H_2(X_2,X_1) \longrightarrow H_1(X_1,X_0) \longrightarrow H_0(X_0,A)$$
\2 each $H_n(X_n,X_{n-1})$ is R-module of pairs in theory $\cH_*$
\2 cellular boundary operator $\partial: \cH_n(X_n,X_{n-1}) \rightarrow \cH_{n-1}(X_{n-1},X_{n-2})$ from the triple $(X_n,X_{n-1},X_{n-2})$
\marginnote[0cm]{Yes, cellular chain complex really is defined in terms of homology groups... }
\1 cellular homology $\Hcell(X,A) = \Z [\{\text{number of $n$-cells}\}]$
\1 Hauptsatz:
\2 if $(X,A)$ a finite CW-complex or $\cH_*$ satisfies disjoint union + dimension axiom then $H_n^{\cH_*}(X,A) \cong \cH_n(X,A)$
\end{outline}
\subsection{Computing cellular chain complexes}
\marginnote[0cm]{11. Vorlesung, 15.11.23}
\begin{outline}
\1 choose pushouts for CW complex
\1 $H_k(X_n,X_{n-1}) \xleftarrow{\sim} H_k(\coprod_{I_n} D_n, \coprod_{I_n} S_{n-1}) \xleftarrow{\sim} \bigoplus_{I_n} H_k(D_n,S_{n-1}) \xrightarrow{\sim} \bigoplus_{I_n} H_k(S_n, \bullet)\xrightarrow{\sim} \bigoplus_{I_n} H_{k-n}(S_0, \bullet) \xrightarrow{\sim} \bigoplus_{I_n} H_{k-n}(\bullet) = \bigoplus_{I_n}H_0(\bullet)$ if $k=n$ and $0$ otherwise.
\2 I should probably elaborate on this some time later...
\1 \textbf{cellular boundary formula}
\end{outline}
\subsection{Uniqueness of homology theory for CW complexes}
\marginnote[0cm]{12. Vorlesung, 20.11.23}
\begin{outline}
\1 if $X$ is a finite CW complex then there exist only one unique homology theory satisfying the dimension axiom
\1 if $X$ is an infinite CW complex then there exists only one unique homology theory satisfying the dimension axiom and the disjoint union axiom
\1 cell orientation
\end{outline}
\section{Euler characteristic}
\marginnote[0cm]{13. Vorlesung, 22.11.23}
\begin{outline}
\0 Let $R$ be any PID, e. g. $\Z, \Q, \F_p$.
\1 preliminaries:
\2 structure theorem for finitely generated modules over PID
\3 $M \cong R^r \oplus R/p_1^{\alpha_1}R \oplus \ldots \oplus R/p_n^{\alpha_n}R$
\3 $\tors(M)= R/p_1^{\alpha_1}R \oplus \ldots \oplus R/p_n^{\alpha_n}R$
\3 define rank of $M$ as $\rk_R (M) := r$
\2 short exact sequence of finitely generated modules,
\3 $0 \rightarrow M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow 0$
\3 $\rk (M_1)=\rk (M_0) + \rk (M_2)$
\3 if either $M_1$ or $M_0,M_2$ are finitely generated, then all of them are finitely generated
\1 Euler characteristic $\chi(C_\bullet)$ for finite chain complexes
\2 finite chain complex $C_\bullet$ = finite dimension $d$ + $C_n$'s are finitely generated
\2 $\chi(C_\bullet) = \sum_{n = 0}^{\dim C_\bullet} (-1)^n \cdot \rk(C_n)= \rk(C_0) - \rk(C_1) + \rk(C_2) + \ldots$
\2 equivalent with homology groups, $\chi(C_\bullet)=\sum (-1)^n \cdot \rk(H_n(C_\bullet))$
\1 Euler characteristic $\chi(X)$ for finite CW complexes
\2 $\chi(X)=\sum (-1)^n |I_n|$
\2 compatible with cellular pushouts and direct products; \enquote{additive} and \enquote{multiplicative}.
\1 universal additive invariant for finite CW complexes
\1 Euler characteristic for standard $n$-simplices \textit{(Exercise)}
\2 $\chi(\Delta_n)=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}$
\marginnote[0cm]{14. Vorlesung, 27.11.23}
\1 classification of platonic solids (there are only five of them)
\end{outline}
\section{Lefschetz numbers}
\begin{outline}
\1 Lefschetz numbers for chain complexes $\Lambda(f_*)$
\2 chain endomorphism $f:C_* \rightarrow C_*$ induces a map $f_*$ on $H_*(C_*)$
\2 this is a map from $R$-modules, so you can calculate $\tr(A_n)$ in each dimension $n$
\2 $\Lambda(f_*)=\sum_k (-1)^k \tr(A_k)$
\marginnote[0cm]{15. Vorlesung, 29.11.23}
\1 Lefschetz numbers for CW complexes $\Lambda(f_*)$
\2 $\Lambda(f_*)=\sum_k (-1)^k \tr(f_k)$ where $f_k$ is a cellular map $C_k(X)\rightarrow C_k(X)$
\1 both can be calculated directly from $f$ or from induced map on homology $f_*$
\1 Lefschetz fixed-point theorem
\2 if $f$ endomorphism of a finite CW complex, then $\Lambda(f)=0 \iff f$ has no fixed-point (cell mapped to itself)
\end{outline}
\section{Cohomology}
\marginnote[0cm]{15. Vorlesung, 04.12.23}
\begin{outline}
\1 cohomology theory
\marginnote[0cm]{$\cH_*$ homology, $\cH^*$ cohomology}
\2 functor $\cH^*:(\TOP^2)^{op} \longrightarrow \text{$\Z$-graded $R$-modules}$
\2 boundary operator $\delta^* : \cH^*\circ I \rightarrow \cH^{*+1}$
\3 $I:(X,A)\rightarrow (A,\emptyset)$
\2 and five axioms
\1 cochain complex $C^*=(C^*, \delta^*)$
\2 $n$-th differentials $\delta^n:C^n\rightarrow C^{n+1}$
\1 cohomology of a cochain complex $H^n(C^*)=\ker \delta^n/\im \delta^{n-1}$
\1 dual cochain complex $C_*$
\marginnote[0cm]{$C^*$ cochain complex, $C_*$ dual cochain complex}
\2 $C^n=\hom(C_n,R)$
\subsection{Singular cohomology}
\1 singular cochain complex $\coCsing = \hom(\Csing,R)$
\1 singular cohomology $\coHsing = H^n(\coCsing)$
\subsection{Cellular cohomology}
\marginnote[0cm]{16. Vorlesung, 04.12.23}
\1 cellular cochain complex $\coCcell = \hom(\Ccell,R)$
\1 cellular cohomology $\coHcell = H^n(\coCcell)$
\1 sadly LES in homology does not induce LES in cohomology. sometimes it does, sometimes it doesn't $\implies $ universal coefficient theorem
\end{outline}
\subsection{Multiplicative structure}
\begin{outline}
\1 Eilenberg MacLane space $K(A,n)$
\2 CW complex with $\pi_n(X)=A$ and $0$ otherwise
\1 $n$-th homotopy group $\pi_n(X)=[(S^n,*), (X,x)]$
\1 \textbf{multiplicative structure} (cup product)
\2 assigns to $X$ with $A,B\subseteq X$ family of bilinear maps $$\smile : H^p(X,A)\times H^q(X,B) \rightarrow H^{p+q}(X,A\cup B)$$
\1 cross product
\end{outline}
\marginnote[0cm]{17. Vorlesung, 06.12.23}
\begin{outline}
\end{outline}
\subsection{Cohomology ring of projective spaces}
\subsection{Cup product for CW complexes}
\section{Homological algebra}
\subsection{$\Tor$ and $\Ext$ functor}
\marginnote[0cm]{20.Vorlesung, 08.01.2023}
\begin{outline}
\1 fundamental theorem of homological algebra = lifting $R$-module homomorphisms to $R$ chain maps
\1 $[P_*,Q_*]\rightarrow \hom_R(M,N)$
\1 given $M_1\rightarrow M_2, N_1\rightarrow N_2$ have four functors
\2 $M_1\otimes_R N \rightarrow M_2 \otimes_R N$,
\2 $N\otimes_R M_1 \rightarrow N \otimes M_2$,
\2 $\hom_R(M_1,N)\leftarrow \hom_R(M_2,N)$,
\2 $\hom_R(N,M_1)\rightarrow \hom_R(N,M_2)$
\1 free resolution of $R$-module $M$ = exact sequence $\ldots\rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$ with free $F_i$
\2 because of fundamental theorem of finitely generated abelian groups any fin. gen. abelian $M$ has free resolution $0\rightarrow F_1 \rightarrow F_0 \rightarrow M$ where $F_0$ are generators and $F_1$ relations
\2 has same homologies with trivial resolution $0\rightarrow M \rightarrow 0$
\1 apply $\otimes_R N$ to free resolution and omit $M\otimes_R N$
\2 extends category of modules to category of chain complexes
\2 $n$-th homology group = $\Tor^R_n(M,N)=\ker(F_n\otimes N \rightarrow F_{n-1}\otimes N) / \im (F_{n+1}\otimes N \rightarrow F_{n}\otimes N\}$
$$\rightarrow F_2 \otimes N \rightarrow F_1 \otimes N \rightarrow F_0 \otimes N \rightarrow 0$$
\1 apply $\hom_r(-,N)$ and omit $\hom_R(M,N)$
\2 $n$-th cohomology group = $\Ext^n_R(M,N)$ = $\ker(\hom(F_n,N)\rightarrow \hom(F_{n+1}, N))/\im(\hom_R(F_{n-1},N)\rightarrow\hom_R(F_n, N))$
$$0\rightarrow \hom(F_0,N)\rightarrow \hom(F_1,N)\rightarrow \hom(F_2,N)\rightarrow$$
\1 properties
\2 $\Tor, \Ext$ independent of resolution
\2 $\Tor^R_0 (M,N) ) = M \otimes_R N$, $\Ext^0_R(M,N) = \hom_R(M,N)$
\2 $\Tor^R_n(M,N) \cong \Tor^R_n(N,M)$ for commutative $R$
\2 $\Tor$ commutes with $\oplus$
\1 universal coefficient theorem
\2 $0\rightarrow H_n(X)\otimes G \rightarrow H_n(X,G)\rightarrow \Tor(H_{n-1}(X),G)\rightarrow 0$
\2 $0 \rightarrow H^n (X)\otimes G \rightarrow H^n(X,G) \rightarrow \Tor (H^{n+1}(X),G)\rightarrow 0$
\2 $0\rightarrow \Ext(H_{n-1},G)\rightarrow H^n(X,G)\rightarrow\hom(H_n(X),G)\rightarrow 0$
\1 computing tips for $\Tor^R_i(M,N)$
\2 find projective resolution $\ldots P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ of $M$ and apply functor $\otimes_R N$ to it omitting $\rightarrow M\otimes_R N$, calculate hojmology of this chain comploex
\2 find SES of $R$-modules $0\rightarrow K\rightarrow M\rightarrow I\rightarrow 0$ and apply functor $\otimes_R N$, obtain a LES $\rightarrow \Tor^R_1(K,N)\rightarrow \Tor^R_1(M,N)\rightarrow \Tor^R_1(I,N)\rightarrow K\otimes_R N \rightarrow M \otimes_R N \rightarrow I\otimes_R N \rightarrow 0$
\2 ${\operatorname{Tor}_1^R(R/I, R/J) \cong (I \cap J) / IJ}$.
\end{outline}
\subsection{Universal coefficient theorem}
1. True or false?
\begin{itemize}
\item The homology groups of a free chain complex are free
\item A bounded chain complex has only finitely many non-trivial homology groups
\item The degree of a homeomorphism $f:S^n\rightarrow S^n$ is always $+1$
\item Homology groups $H_n(\RP^n;\Z) \cong \Z/2$ for all $n>0$
\item For path-connected $X$ trivial first fundamental group implies trivial first homology group
\item Homology of $X\times Y$ is equal to $H_n(X)\otimes H_n(Y)$
\item If $X=X_1\cup X_2$ and $X_1,X_2$ and $X_1\cap X_2$ acyclic, then $X$ is acyclic
\item If $\iota : X\rightarrow Y$ is an embedding, then $\iota_*:H_n(X)\rightarrow H_n(Y)$ is a monomorphism
\item By Borsuk-Ulam, each map $f:S^n\rightarrow \R^n$ has a point $X\in S^n : f(-X)=-f(X)$
\item There are no vector fields on $S^{2n}$ without zeroes, $n>0$
\end{itemize}
\newpage
2. Chain complexes
\begin{itemize}
\item What is a chain complex over a commutative ring $R$?
\item Give two non-trivial examples of chain complexes
\item How are the homology groups $H_n(C_*)$ over a chain complex $C_*$ defined?
\item Compute the homology groups over $\Z$:
$$0\ra C_2 \ra C_1 \ra C_0 \ra 0$$
where $C_0\cong \Z$ generated by $a$, $C_1\cong \Z\otimes \Z/2$ generated by $b$ of infinite order and by $c$ of order $2$, $C_2\cong \Z/4$ generated by $d$. Differentials are given by $\partial(b)=3a, \partial(c)=0, \partial (d)=c$
\end{itemize}
\includegraphics[]{image.png}
3. Connecting homomorphisms
Let $\epsilon: 0\ra A_* \ra B_* \ra C_* \ra 0$ a SES of chain complexes over some commutative ring $R$
\begin{itemize}
\item Define the connecting homomorphisms $\partial :H_n(C_*)\ra H_{n-1}(A_*)$
\item Point out two choices on which the definition depends
\item Write down the LES of homology groups induced by $\epsilon$
\item How is the LES of a pair $(X,X_0)$ for $X_0$ a subspace of $X$ defined?
\end{itemize}
4. Eilenberg-Steenrod axioms
\begin{itemize}
\item Name all axioms for a homology theory $h_*(X,A)$
\item Why does singular homology theory satisfy the dimension theorem?
\item If $h_*^a$, $h_*^b$ are two homology theories, is $h_*=h^a_*\oplus h^b_*$ a homology theory?
\end{itemize}
5. Relative homology groups
\begin{itemize}
\item Definte the relative homology groups of a pair of spaces $(X;A)$
\item Write down the LES of a pair $(X,A)$ including the homomorphisms in this sequence
\item Use this sequence to compute the homology of $X=F_2$, the surface of genus 2, where $A$ is the right half of $X$
\end{itemize}
6. Hurewicz isomorphism
\begin{itemize}
\item Define the Hurewicz homomorpism in degree $1$
\item Verify that it's well-defined and state which choices your definition depends on
\item Formulate the Hurewicz theorem in degree $1$
\item Prove: if map $f:(X,x)\ra (Y,y)$ induces an epimorphism $f_*$ between the fundamental groups $\pi_1$, then it also induces and epimorphism between the first homology groups.
\end{itemize}
7. Chain maps
\begin{itemize}
\item What is a chain map of degree $k$ between two chain complexes
\item Prove: A chain map of degree $k$ induces homomorphism between homology groups
\item What is a chain hojmotopy between two chain maps of degree $k$
\item Prove: Chain homotopic chain maps induce the same homomorphism
\end{itemize}
8. Simplicial approximation theorem
\begin{itemize}
\item Formulate the simplicial approximation theorem
\item Prove: if $X$ is a finite polyhedron of dimension $m <n$ then any map $f:X \ra S^n$ is null-homotopic
\end{itemize}
9. Jordan-Brouwer
\begin{itemize}
\item Formulate the Jordan-Brouwer theorem giving the homology of the complement of a $k$-sphere S embedded in $\R^n$
\item Define the linking number $Link(S,T)$ of a $p$-sphere $S$ and a $q$-sphere $T$ disjointly embedded in $\R^n$ where $n-1 = p+q$
\item Prove: if $T$ is isotoped inside the complement of $S$ to $T'$ then $Link(S,T)=Link(S,T')$
\end{itemize}
10. Transfer
\begin{itemize}
\item Define the transfer homomorphism for a $2$-fold covering $\pi: X'\ra X$ in modulo $2$ homology $H_*(-;\F_2)$
\item Investigate the LES of coverings shown in the drawing below. Calculate all relvant homology groups, calculate the connecting homomorphism for coefficients in $\F_2$
\end{itemize}
11. Bonus questions
\begin{itemize}
\item When did Poincare develop the concept of homology groups?
\item When did Eilenber and Steenrod formulate their axioms?
\end{itemize}
\end{document}
1. TODO: work this in
What is the relationship between topological spaces and simplicial complexes? Each simplicial complex K
has a geometric realization |K|
which is a topological space consisting of Euclidean simplices which are convex hulls of points in general position in some Rn
(each combinatorial n
-simplex which is a finite set of vertices is realized as a Euclidean simplex, and these Euclidean simplices are glued together by the corresponding combinatorial incidences of the faces). But certainly not every space is the geometric realization of simplicial complex. Moreover, two non-isomorphic simplicial complexes may have homeomorphic geometric realizations - are their homology groups isomorphic ("topological invariance of simplicial homology")? It was discovered that this question cannot be answered by purely combinatorial methods. This was the origin of singular homology
2. TODO: p. 41 49 Sato work out example of simplicial homology
3. TODO: https://suess.sdf-eu.org/website/lang/de/algtop/notes4.pdf
4. TODO: https://people.reed.edu/~davidp/411/handouts/simplicial.pdf
\newpage
\section{Ausgearbeitete Beispiele, die Spaß machen}
\subsection{Tripel-Sequenzen existieren}
Gegeben $A\subseteq B \subseteq X$, zeige, dass es eine natürliche exakte Tripel-Sequenz gibt
$$
\begin{aligned}
& \ldots \stackrel{\partial_{n+1}(X, B, A)}{\longrightarrow} \mathcal{H}_n(B, A) \stackrel{\mathcal{H}_n(i)}{\longrightarrow} \mathcal{H}_n(X, A) \stackrel{\mathcal{H}_n(j)}{\longrightarrow} \mathcal{H}_n(X, B) \\
\ldots & \stackrel{\partial_n(X, B, A)}{\longrightarrow} \mathcal{H}_{n-1}(B, A) \stackrel{\mathcal{H}_{n-1}(i)}{\longrightarrow} \mathcal{H}_{n-1}(X, A) \stackrel{\mathcal{H}_{n-1}(j)}{\longrightarrow} \mathcal{H}_{n-1}(X, B) \stackrel{\partial_{n-1}(X, B, A)}{\longrightarrow} \ldots,
\end{aligned}
$$
\subsection{Computing homology}
\begin{outline}
A collection of usefule tricks I've seen
\1 Excision
\1 Finding a subspace
\1 Pushout
\1 Homotopy equivalence to a point + splitting lemma
\2 contractible $\iff$ identity null-homotopic
\end{outline}