diff --git a/main.tex b/main.tex index bdb0d26..5a9fdc2 100644 --- a/main.tex +++ b/main.tex @@ -19,6 +19,7 @@ \newcommand{\acts}{\curvearrowright} \newcommand\Gal[1]{\operatorname{Gal}({#1})} \renewcommand{\phi}{\varphi} +\newcommand\discr[1]{\operatorname{discr}({#1})} \begin{document} @@ -154,79 +155,90 @@ \section{Preliminaries from algebraic number theory.} \marginnote{User: GRK, password: 2240.} \subsection{Number fields} - \begin{outline} -\begin{definition} - An algebraic number field is a finite field extension $k/\Q$. -\end{definition} -This implies it is of characteristic 0 and primitiive element theorem is available $\implies k=\Q(a)$ for some $a\in k$ with a unique minimal polynomial $f\in \Q[X]$ of $\deg d = [k:\Q]$. - \1 The roots $(a_1,\ldots,a_d)$ must not lie in $\Q$ but rather in algebraic closure of $\Q$ inside $\bC$ and are called \textbf{the Galois conjugates} of $a$. - \1 Requiring $a\mapsto a_i$ defines isomorphism $\Q(a)\cong \Q(a_i)$ and any embedding $\Q \rightarrow \bC$ must send $a$ to some $a_i$, so there are exactly $d$ embeddings $k\rightarrow \bC$. - \1 Note that $(a_1,\ldots,a_d)=\overline{(a_1,\ldots,a_d)}$, so $\sigma_i(k)\subseteq \R$ iff $\overline{a}_i=a_i$. - \2 So we can split embeddings in real ones (real places of $k$ denoted $r_1$) and complex ones (complex places of $k$, denoted $2r_2$ because of complex conjugation). This implies $d=r_1+2r_2$. - \3 For $k=\Q(\sqrt[3]{2})$, $r_1=1, r_2=1$. - \3 For $k=\Q(\exp(2 \pi i/n)$, $r_1=0, r_2 = \phi(n)/2, n\geq 3$. -\0 \begin{definition} - Associated to any $\alpha\in k$, we have two rational numbers: the \textbf{norm} and the \textbf{trace}. - $N_{k/\Q}(\alpha)=\sigma_1(\alpha)\ldots \sigma_d(\alpha)$ and $Tr_{k/\Q}(\alpha)=\sigma_1(\alpha)+\ldots+\sigma_d(\alpha)$ -\end{definition} -\marginnote{$N_{k/\Q}(\alpha)=\det (\alpha N \rightarrow N)$, similarly for trace.} -Let $(\alpha_1,\ldots,\alpha_d)\in k$, $\lambda_1,\ldots,\lambda_d\in\Q$ such that $\sum \lambda_i\alpha_i = 0 \iff \sum \lambda_i \sigma(\alpha_i)=0$ for all $i$. Then $\{\alpha_i\}$ is a basis of $k$ $\iff \det (\sigma_i(\alpha_j))\neq 0$. - -\begin{definition} - The \textbf{discriminant} of a basis $\{\alpha_1,\ldots,\alpha_d\}$ is given by $\det^2(\sigma_i(\alpha_j))\in\Q$. -\end{definition} + \begin{definition} + An algebraic number field is a finite field extension $k/\Q$. + \end{definition} + \1 This definition implies the following properties: + \2 The field $k$ has characteristic 0. + \2 By the Primitive Element Theorem, $k = \mathbb{Q}(a)$ for some $a \in K$. + \2 There exists a unique minimal polynomial $f \in \mathbb{Q}[X]$ for $a$, with $\deg(f) = d = [k:\mathbb{Q}]$. + \1 Let $(a_1, \ldots, a_d)$ be the roots of $f$ in the algebraic closure of $\mathbb{Q}$ within $\mathbb{C}$. These roots are called the \textbf{Galois conjugates} of $a$. Note that these roots do not lie in $\mathbb{Q}$. + \1 Properties of embeddings: + \2 For each $i$, the map $a \mapsto a_i$ defines an isomorphism $\mathbb{Q}(a) \cong \mathbb{Q}(a_i)$. + \2 Any embedding $k\rightarrow \mathbb{C}$ must send $a$ to some $a_i$. + \2 There are exactly $d$ embeddings $k \rightarrow \mathbb{C}$, denoted $\sigma_1, \ldots, \sigma_d$. + \1 Classification of embeddings: + \2 Note that $(a_1, \ldots, a_d) = \overline{(a_1, \ldots, a_d)}$, so $\sigma_i(k) \subseteq \mathbb{R}$ if and only if $\overline{a_i} = a_i$. + \2 We can thus classify the embeddings as: + \3 Real embeddings (real places of $K$): $r_1$ + \3 Complex embeddings (complex places of $K$): $2r_2$ (counted in pairs due to complex conjugation) + \2 This classification implies $d = r_1 + 2r_2$ + \1 Examples: + \2 For $k = \mathbb{Q}(\sqrt[3]{2})$: $r_1 = 1, r_2 = 1$ + \2 For $k = \mathbb{Q}(\exp(2\pi i/n))$, $n \geq 3$: $r_1 = 0, r_2 = \phi(n)/2$ (odd $n$) + \0 \begin{definition} + For any $\alpha \in K$, we define two rational numbers:\\ + 1. The norm: $N_{K/\mathbb{Q}}(\alpha) = \prod_{i=1}^d \sigma_i(\alpha)$\\ + 2. The trace: $Tr_{K/\mathbb{Q}}(\alpha) = \sum_{i=1}^d \sigma_i(\alpha)$ + \end{definition} + \marginnote{Note: $N_{K/\mathbb{Q}}(\alpha) = \det(\alpha: K \rightarrow K)$, and similarly for the trace.} + \1 Basis criterion: Let $(\alpha_1,\ldots,\alpha_d)\in k$ and $\lambda_1,\ldots,\lambda_d\in\Q$. Then $\sum_{i=1}^d \lambda_i\alpha_i = 0 \iff \sum_{i=1}^d \lambda_i \sigma_j(\alpha_i)=0$ for all $j$. + Moreover, $\{\alpha_i\}_{i=1}^d$ is a basis of $k$ if and only if $\det(\sigma_i(\alpha_j))\neq 0$. + \0 \begin{definition} + The \textbf{discriminant} of a basis $\{\alpha_1,\ldots,\alpha_d\}$ of a number field $k$ of degree $d$ over $\Q$ is defined as: $\discr{\{\alpha_1,\ldots,\alpha_d\}}=\det^2(\sigma_i(\alpha_j))\in\Q$, where $\sigma_1,\ldots,\sigma_d$ are the $d$ distinct embeddings of $k$ into $\bC$. + \end{definition} + \begin{exercise} + Prove that $\discr{\alpha_i} = \det(Tr_{k/\Q}(\alpha_i\alpha_j))_{1 \leq i,j \leq d}$. Show that if $k = \Q(a)$ for some $a \in k$, then $\discr{\{1,a,a^2,\ldots,a^{d-1}\}} = \prod_{1 \leq i < j \leq d}(\sigma_i(a)-\sigma_j(a))^2$. + \end{exercise} + \0 To introduce relative versions for an extension $l/k$, we define the relative discriminant $\discr{}_{l/k}$ using only those embeddings $\sigma_i : l \hookrightarrow \mathbb{C}$ which restrict to the identity on $k$. \end{outline} -\begin{exercise} - Show that discr$\{\alpha_i\}=\det Tr_{k/\Q}(\alpha_i,\alpha_j)$. Show that $k\in \Q(a) \implies discr\{1,a,a^2,\ldots,a^{d-1}\}=\prod_{i