From e1c3718c0195b86676deb8a2c1b277032307c438 Mon Sep 17 00:00:00 2001 From: Ayushi <46610680+Ayushi141@users.noreply.github.com> Date: Thu, 17 Oct 2024 13:04:51 +0200 Subject: [PATCH] Raw lecture 2 notes --- main.tex | 95 ++++++++++++++++++++++++++++++++++++++++++++++++++++ preamble.tex | 2 +- 2 files changed, 96 insertions(+), 1 deletion(-) diff --git a/main.tex b/main.tex index cf3b073..bdb0d26 100644 --- a/main.tex +++ b/main.tex @@ -149,7 +149,102 @@ \subsection{The fixed point functor and exact sequences} \end{outline} +\section{Preliminaries from algebraic number theory.} \marginnote{Lecture 2, 17.10.24} +\marginnote{User: GRK, password: 2240.} +\subsection{Number fields} + +\begin{outline} +\begin{definition} + An algebraic number field is a finite field extension $k/\Q$. +\end{definition} +This implies it is of characteristic 0 and primitiive element theorem is available $\implies k=\Q(a)$ for some $a\in k$ with a unique minimal polynomial $f\in \Q[X]$ of $\deg d = [k:\Q]$. + \1 The roots $(a_1,\ldots,a_d)$ must not lie in $\Q$ but rather in algebraic closure of $\Q$ inside $\bC$ and are called \textbf{the Galois conjugates} of $a$. + \1 Requiring $a\mapsto a_i$ defines isomorphism $\Q(a)\cong \Q(a_i)$ and any embedding $\Q \rightarrow \bC$ must send $a$ to some $a_i$, so there are exactly $d$ embeddings $k\rightarrow \bC$. + \1 Note that $(a_1,\ldots,a_d)=\overline{(a_1,\ldots,a_d)}$, so $\sigma_i(k)\subseteq \R$ iff $\overline{a}_i=a_i$. + \2 So we can split embeddings in real ones (real places of $k$ denoted $r_1$) and complex ones (complex places of $k$, denoted $2r_2$ because of complex conjugation). This implies $d=r_1+2r_2$. + \3 For $k=\Q(\sqrt[3]{2})$, $r_1=1, r_2=1$. + \3 For $k=\Q(\exp(2 \pi i/n)$, $r_1=0, r_2 = \phi(n)/2, n\geq 3$. +\0 \begin{definition} + Associated to any $\alpha\in k$, we have two rational numbers: the \textbf{norm} and the \textbf{trace}. + $N_{k/\Q}(\alpha)=\sigma_1(\alpha)\ldots \sigma_d(\alpha)$ and $Tr_{k/\Q}(\alpha)=\sigma_1(\alpha)+\ldots+\sigma_d(\alpha)$ +\end{definition} +\marginnote{$N_{k/\Q}(\alpha)=\det (\alpha N \rightarrow N)$, similarly for trace.} +Let $(\alpha_1,\ldots,\alpha_d)\in k$, $\lambda_1,\ldots,\lambda_d\in\Q$ such that $\sum \lambda_i\alpha_i = 0 \iff \sum \lambda_i \sigma(\alpha_i)=0$ for all $i$. Then $\{\alpha_i\}$ is a basis of $k$ $\iff \det (\sigma_i(\alpha_j))\neq 0$. + +\begin{definition} + The \textbf{discriminant} of a basis $\{\alpha_1,\ldots,\alpha_d\}$ is given by $\det^2(\sigma_i(\alpha_j))\in\Q$. +\end{definition} +\end{outline} + +\begin{exercise} + Show that discr$\{\alpha_i\}=\det Tr_{k/\Q}(\alpha_i,\alpha_j)$. Show that $k\in \Q(a) \implies discr\{1,a,a^2,\ldots,a^{d-1}\}=\prod_{i