Open
Conversation
Collaborator
|
잘 적어주셨습니다! 데이터 효율성으로 10년이 지난 현재까지도 ResNet이 ViT 대신 사용되기도 하죠. 수고하셨습니다 유하님~~ 👍👍 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
<과제 1>
장점 1. 데이터 효율성
장점 2. 계산 효율성
<과제 2>
pretrained=True는 대규모 데이터로 사전 학습된 가중치를 사용한다는 말이다. 만약 pretrained=False로 설정하면, 학습 초기 정확도가 매우 낮고, 수렴 속도가 느리며 최종 성능이 저하될 가능성이 높다. 이는 1번에서도 말했다시피 ViT는 구조적으로 CNN 기반 모델들보다 inductive bias가 약하기 때문에 충분한 데이터가 없으면 의미 있는 feature를 처음부터 학습하기 어렵다는 점에서 비롯되는 것이다.