-
Notifications
You must be signed in to change notification settings - Fork 320
/
datasets.py
225 lines (196 loc) · 9.13 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset related classes and methods for ViT training and validation"""
import os
import math
from paddle.io import Dataset
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddle.vision import transforms
from paddle.vision import image_load
from augment import auto_augment_policy_original
from augment import AutoAugment
from augment import rand_augment_policy_increasing
from augment import RandAugment
from random_erasing import RandomErasing
class ImageNet2012Dataset(Dataset):
"""Build ImageNet2012 dataset
This class gets train/val imagenet datasets, which loads transfomed data and labels.
Note:
train_list.txt and val_list.txt are required.
See the readme webpage for more info and download links:
https://github.com/BR-IDL/PaddleViT/tree/develop/image_classification#data-preparation
Attributes:
file_folder: path where imagenet images are stored
transform: preprocessing ops to apply on image
img_path_list: list of full path of images in whole dataset
label_list: list of labels of whole dataset
"""
def __init__(self, file_folder, is_train=True, transform_ops=None):
"""Init ImageNet2012 Dataset with dataset file path, mode(train/val), and transform"""
super().__init__()
self.file_folder = file_folder
self.transforms = transform_ops
self.img_path_list = []
self.label_list = []
list_name = 'train_list.txt' if is_train else 'val_list.txt'
self.list_file = os.path.join(self.file_folder, list_name)
assert os.path.isfile(self.list_file), f'{self.list_file} not exist!'
with open(self.list_file, 'r') as infile:
for line in infile:
img_path = line.strip().split()[0]
img_label = int(line.strip().split()[1])
self.img_path_list.append(os.path.join(self.file_folder, img_path))
self.label_list.append(img_label)
print(f'----- Imagenet2012 {list_name} len = {len(self.label_list)}')
def __len__(self):
return len(self.label_list)
def __getitem__(self, index):
data = image_load(self.img_path_list[index]).convert('RGB')
data = self.transforms(data)
label = self.label_list[index]
return data, label
def get_train_transforms(config):
""" Get full training transforms
For training, a RandomResizedCrop is applied with random mirror,
then RandAug, AutoAug or ColorJitter is applied,
then normalization is applied with mean and std,
and RandomErase is applied.
The input pixel values must be rescaled to [0, 1.].
Outputs is converted to tensor.
Args:
config: configs contains IMAGE_SIZE, see config.py for details
Returns:
transforms_train: transform ops
"""
aug_op_list = []
# STEP1: random crop and resize
aug_op_list.append(
transforms.RandomResizedCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE),
scale=(0.08, 1.0), interpolation='bicubic'))
# STEP2: random horizontalflip
aug_op_list.append(transforms.RandomHorizontalFlip())
# STEP3: rand_augment or auto_augment or color jitter
if config.TRAIN.RAND_AUGMENT: # MAE: True
policy = rand_augment_policy_increasing(
magnitude_idx=config.TRAIN.RAND_AUGMENT_MAGNITUDE)
rand_augment = RandAugment(
policy=policy, num_layers=config.TRAIN.RAND_AUGMENT_LAYERS)
aug_op_list.append(rand_augment)
elif config.TRAIN.AUTO_AUGMENT: # MAE: None
policy = auto_augment_policy_original()
auto_augment = AutoAugment(policy)
aug_op_list.append(auto_augment)
else: # MAE: None
jitter = (float(config.TRAIN.COLOR_JITTER), ) * 3
aug_op_list.append(transforms.ColorJitter(*jitter))
# STEP3: other ops
aug_op_list.append(transforms.ToTensor())
aug_op_list.append(transforms.Normalize(mean=config.DATA.IMAGENET_MEAN,
std=config.DATA.IMAGENET_STD))
# STEP4: random erasing
if config.TRAIN.RANDOM_ERASE_PROB > 0.:
random_erasing = RandomErasing(prob=config.TRAIN.RANDOM_ERASE_PROB,
mode=config.TRAIN.RANDOM_ERASE_MODE,
max_count=config.TRAIN.RANDOM_ERASE_COUNT,
num_splits=config.TRAIN.RANDOM_ERASE_SPLIT)
aug_op_list.append(random_erasing)
# Final: compose transforms and return
transforms_train = transforms.Compose(aug_op_list)
return transforms_train
def get_train_transforms_simple(config):
""" Get training transforms
For training, a RandomResizedCrop is applied with random mirror,
then normalization is applied with mean and std.
The input pixel values must be rescaled to [0, 1.].
Outputs is converted to tensor.
Args:
config: configs contains IMAGE_SIZE, see config.py for details
Returns:
transforms_train: transform ops
"""
transforms_train = transforms.Compose([
transforms.RandomResizedCrop(size=(config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE),
interpolation='bicubic'),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD)])
return transforms_train
def get_val_transforms(config):
""" Get training transforms
For validation, image is first Resize then CenterCrop to image_size.
Then normalization is applied with mean and std.
The input pixel values must be rescaled to [0, 1.]
Outputs is converted to tensor
Args:
config: configs contains IMAGE_SIZE, see config.py for details
Returns:
transforms_val: transform ops
"""
scale_size = int(math.floor(config.DATA.IMAGE_SIZE / config.DATA.CROP_PCT))
transforms_val = transforms.Compose([
transforms.Resize(scale_size, 'bicubic'), # single int for resize shorter side of image
transforms.CenterCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD)])
return transforms_val
def get_dataset(config, is_train=True):
""" Get dataset from config and mode (train/val)
Returns the related dataset object according to configs and mode(train/val)
Args:
config: configs contains dataset related settings. see config.py for details
is_train: bool, set True to use training set, otherwise val set. Default: True
Returns:
dataset: dataset object
"""
if config.DATA.DATASET == "imagenet2012":
if is_train:
# use full augmentation
transform_ops = get_train_transforms(config)
else:
transform_ops = get_val_transforms(config)
dataset = ImageNet2012Dataset(config.DATA.DATA_PATH,
is_train=is_train,
transform_ops=transform_ops)
else:
raise NotImplementedError(
"Wrong dataset name: [{config.DATA.DATASET}]. Only 'imagenet2012' is supported now")
return dataset
def get_dataloader(config, dataset, is_train=True, use_dist_sampler=False):
"""Get dataloader from dataset, allows multiGPU settings.
Multi-GPU loader is implements as distributedBatchSampler.
Args:
config: see config.py for details
dataset: paddle.io.dataset object
is_train: bool, when False, shuffle is off and BATCH_SIZE_EVAL is used, default: True
use_dist_sampler: if True, DistributedBatchSampler is used, default: False
Returns:
dataloader: paddle.io.DataLoader object.
"""
batch_size = config.DATA.BATCH_SIZE if is_train else config.DATA.BATCH_SIZE_EVAL
if use_dist_sampler is True:
sampler = DistributedBatchSampler(dataset=dataset,
batch_size=batch_size,
shuffle=is_train,
drop_last=is_train)
dataloader = DataLoader(dataset=dataset,
batch_sampler=sampler,
num_workers=config.DATA.NUM_WORKERS)
else:
dataloader = DataLoader(dataset=dataset,
batch_size=batch_size,
num_workers=config.DATA.NUM_WORKERS,
shuffle=is_train,
drop_last=is_train)
return dataloader