-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathews.py
509 lines (449 loc) · 21.3 KB
/
ews.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 15 18:19:31 2019
This module contains the class Ews, which extends a Pandas series adding
methods to estimate changes in resilience on a time-series.
.. currentmodule:: regimeshifts.ews
Detrending
==========================================
gaussian_det
Resilience metrics
==========================================
ar1
var
pearsonc
Trend's strength
=========================================
kendall
Significance test
=========================================
bootstrap
@author: Beatriz Arellano-Nava
"""
import functools
import inspect
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.ndimage.filters import gaussian_filter
from statsmodels.tsa.ar_model import AutoReg
from scipy.stats import kendalltau
class Ews(pd.DataFrame):
"""
Ews (Early Warning Signals) extends the methods of a Pandas Series
to include useful tools to estimate changes in autocorrelation.
"""
# def __init__(self,column_labels,**kwargs):
# if column_labels:
# self.columns = column_labels
class Filtered_ts:
def __init__(self,ts, trend):
self.trend = trend
self.res = Ews(ts - trend)
def gaussian_det(self,bW, scale=True,**kwargs):
"""
Detrends a time-series applying a Gaussian filter.
This method detrends a time series using the `scipy.ndimage.gaussian_filter`
function.
Parameters
----------
bW: scalar
Bandwidth of the Gaussian smoother kernel.
If scale is false, it is the parameter sigma in the original
scipy function: Standard deviation for Gaussian kernel.
scale: boolean
If True, scales the standard deviation of the smoothing kernel
so that the quartiles of the Gaussian probability distribution
are at +-1/4 *(bW).
The quartiles are +- 0.6745*(sigma), sigma is the standard deviation
for the Gaussian kernel.
scaled sigma = 0.25 * (1/0.6745) * bW
**kwargs:
The possible parameters for the `scipy.ndimage.gaussian_filter` function.
Returns
-------
object
An object with the properties:
- trend: Pandas Series containing the filtered time-series.
- res: Pandas Series containing the residuals after filtering.
Notes
-----
Examples
--------
noise = np.random.normal(0,20,1000)
ts = pd.Series(np.arange(0,100,0.1)*2+ noise)
ts = Ews(ts)
trend = ts.gaussian_det(bW=30).trend
res = ts.gaussian_det(bW=30).res
"""
if scale == True:
sd = 0.25 * (1/0.6745) * bW
kwargs['truncate'] = 4 * (0.6745) #Bandwidth expressed in number of standard deviations
else:
sd = bW
def _apply_gaussian(ts,sd,**kwargs):
trend = gaussian_filter(ts.dropna().values, sigma = sd, **kwargs)
trend_notna = Ews(pd.Series(trend, index=ts.dropna().index))
df = pd.concat([ts,trend_notna],axis=1)
trend = df.iloc[:, 1]
return trend
trend = self.apply(_apply_gaussian,axis=0,sd=sd,**kwargs)
return self.Filtered_ts(self,trend)
def validator(func):
"""
This function to be used as a decorator performs 3 tasks:
- Calls the gaussian_det function according to the value of
the detrend parameter.
- Separates the keyword arguments to be used properly in the target
functions.
"""
@functools.wraps(func)
def wrapper(inst,*args, **kwargs):
"""
The wrapper function receives the instance and the keyword
arguments.
"""
filt_args = set(inspect.signature(inst.gaussian_det).parameters.keys()).union(set(inspect.signature(gaussian_filter).parameters.keys()))
detr_kwargs = {k: kwargs[k] for k in (kwargs.keys() & filt_args)} # Obtains the parameteres to be used for the gaussian filter
if 'detrend' in kwargs:
if kwargs['detrend'] is True:
inst = inst.gaussian_det(**detr_kwargs).res ## Gets the residuals from the gaussian_det function
# Obtains the parameteres for the rolling window, ignoring the detrend parameter as it's been used previously
roll_args = set(inspect.signature(inst.rolling).parameters.keys()).union(set(inspect.signature(func).parameters.keys())).difference(detr_kwargs).difference({'detrend'})
if 'indicator' in kwargs:
### Arguments for the rolling window according to the selected indicator. The argument 'detrend' is ignored as it's been used before
roll_args = roll_args.union(set(inspect.signature(getattr(inst,kwargs['indicator'])).parameters.keys())).difference(detr_kwargs).difference({'detrend'})
roll_kwargs = {k: kwargs[k] for k in (kwargs.keys() & roll_args)} #Obtains the keyword arguments to be used when rolling the window
return func(inst, **roll_kwargs) ### Calls the function
return wrapper
@staticmethod
def _window_size(ts,wL):
"""
Estimates the window length size and validates that is smaller than the
time-series.
Parameters
----------
ts : Pandas Series
wL : float
Window length.
Raises
------
ValueError
Raises an error when the window is larger than the series.
Returns
-------
wL : float
window length expressed as number of data points.
"""
ts = ts.loc[ts.first_valid_index():ts.last_valid_index()]
wL = math.floor(len(ts)*wL) if wL <= 1 else int(wL)
if wL > len(ts):
raise ValueError('Window length cannot be greater than the time series length')
return ts, wL
@validator
def ar1(self,detrend=False,wL=0.5,lag=1,**kwargs):
"""
Estimates the coefficients of an auautoregresive model of order 1
for each window rolled over the whole time-series.
The AR(1) is fitted using the Ordinary Least Squares method embedded
in the statsmodels AutoReg function.
Fits an autoregresive model of order 1 over the rolling window.
Returns a pandas series containing the coefficients of the autoregresive
model.
"""
def _estimate_ar1c(ts,wL,lag,**kwargs):
#ar1cb = self.rolling(window=wL,**kwargs).apply(
# func=lambda x: sm.OLS(x[lag:], sm.add_constant(x[:-lag])).fit().params[1], raw=True)
ts, wL = self._window_size(ts,wL)
ar1c = ts.rolling(window=wL,**kwargs).apply(
func=lambda x: AutoReg(x, lags=[lag]).fit().params[1], raw=True)
return ar1c
ar1c = self.apply(_estimate_ar1c, axis=0,wL=wL,lag=lag,**kwargs)
return Ews(ar1c)
@validator
def var(self,detrend=False,wL=0.5,**kwargs):
def _estimate_var(ts,wL,**kwargs):
"""
Estimates variance along the sliding window over a pandas Series
"""
ts,wL = self._window_size(ts,wL)
vari = ts.rolling(window=wL,**kwargs).var()
return vari
vari = self.apply(_estimate_var, axis=0,wL=wL,**kwargs)
return Ews(vari)
@validator
def pearsonc(self,detrend=False,wL=0.5,lag=1,**kwargs):
"""
Estimates the Pearson correlation coefficients between the time series
and itself shifted by lag.
"""
def _estimate_pearsonc(ts,wL,lag,**kwargs):
ts,wL = self._window_size(ts,wL)
pcor = ts.rolling(window=wL,**kwargs).apply(
func=lambda x: pd.Series(x).autocorr(lag=lag), raw=True)
return pcor
pearsonc = self.apply(_estimate_pearsonc, axis=0,wL=wL,lag=lag,**kwargs)
return Ews(pearsonc)
@property
def kendall(self):
"""
Estimates the Kendall Tau correlation coefficient between the
indicator time series and time.
"""
def _estimate_kendall(ts):
# if ts.index.dtype == 'datetime64[ns]':
# mannSer = np.arange(1,ts.dropna().index.size+1)
# else:
# mannSer = ts.dropna().index
# tsCorr = pd.Series(mannSer)
# tsCorr.index = ts.dropna().index
# kendall = ts.dropna().corr(tsCorr, method="kendall")
kendall, _ = kendalltau(ts.dropna().values, np.arange(0,len(ts.dropna())))
return kendall
kendall = self.apply(_estimate_kendall, axis=0)
kendall = float(kendall) if len(self.columns)==1 else kendall
return kendall
class Significance_test:
"""
"""
def __init__(self,kendalls_surrog,kc,pval,test,indicator):
self.surrog_kendalls = kendalls_surrog
self.kendall_coeff = kc
self.pvalue = pval
self.test_type = test
self.indicator = indicator
def plot(self,nbins=30,signif_threshold=0.05):
"""
Plots the distribution of Kendall coefficients measured on the
surrogate series to visualise the probability that the measured
trend on the original series is obtained by chance.
Parameters
----------
nbins : int, optional
DESCRIPTION. The default is 30.
signif_threshold : float, optional
DESCRIPTION. The default is 0.05.
"""
ncol = len(self.surrog_kendalls.columns)
kwargsplot = {}
## Defines whether to put all plots in one row or in multiple rows
if ncol < 7:
nr,nc,figsize = 1, ncol, (2.7*ncol,2.3)
kwargsplot['sharey'] = True
else:
nr,nc,figsize = ncol, 1, (2.7,2.3*ncol)
kwargsplot['sharex'] = True
larger_ylim = 0
fig,axs = plt.subplots(nr,nc,figsize=figsize,**kwargsplot)
for i,col in enumerate(self.surrog_kendalls.columns):
### Histogram
ax = axs if len(self.surrog_kendalls.columns)==1 else axs[i]
self.surrog_kendalls[col].hist(bins=nbins, ax=ax,grid=False,edgecolor = "black", color='tab:blue')
kc = self.kendall_coeff if len(self.surrog_kendalls.columns)==1 else self.kendall_coeff[col]
ax.axvline(kc,color='r',linestyle='dashed', linewidth=1.5) ## Kendall coefficient measured on the original series
pval = self.pvalue[col]
psig = '*' if pval<signif_threshold else '' ### Including the p-value as text
comp = '<' if pval<=0.001 else '='
pval = 0.001 if pval==0 else pval
posp = 0.03 if self.test_type=='positive' else 0.4
ax.text(posp, 0.9, f'p{comp}{pval:.3f}{psig}', transform=ax.transAxes, size=11)
ax.set_xlim(-1.15,1.15)
if 'sharey' in kwargsplot:
ax.set_xlabel(r'Kendall $\tau$',fontsize=12)
if i == 0:
ax.set_ylabel('Density',fontsize=12)
elif 'sharex' in kwargsplot:
ax.set_ylabel('Density',fontsize=12)
if i == ncol-1:
ax.set_xlabel(r'Kendall $\tau$',fontsize=12)
larger_ylim = ax.get_ylim()[1] if ax.get_ylim()[1] > larger_ylim else larger_ylim
ax.set_title(col,fontsize=13,weight='bold')
if len(self.surrog_kendalls.columns) > 1:
[axs[i].set_ylim(0,larger_ylim*1.1) for i in range(0,ncol)];
else:
axs.set_ylim(0,larger_ylim*1.1)
@validator
def significance(self, indicator='ar1',n=1000,detrend=False,wL=0.5,test='positive',**kwargs):
"""
Creates an ensemble of n members in which each member has the same
length as the original timeseries and its elements are obtained
sampling from the residuals (after detrending) with replacement.
Returns an array with the kendall value of the AR(1) or Variance
changes for each ensemble member.
Parameters
----------
indicator : string, optional
DESCRIPTION. The default is 'ar1'.
n : int, optional
DESCRIPTION. The default is 1000.
detrend : boolean, optional
DESCRIPTION. The default is False.
wL : float, optional
DESCRIPTION. The default is 0.5.
test : string, optional
DESCRIPTION. The default is 'positive'.
**kwargs : TYPE
DESCRIPTION.
Returns
-------
An instance of the class Significance_test
DESCRIPTION.
"""
if test not in ['positive','negative']:
print(f'{test} is not an option fot the argument test. Resetting to its default option.')
test = 'positive'
## If detrend is True, the decorator will detrend the dataFrame and return
## the residuals
def _get_kendalls(ts,indicator,n,wL,**kwargs):
"""
Estimates the Kendall values measured on the indicator's trend after
bootstrapping the time-series n times.
Parameters
----------
ts : pandas Series
indicator : string
statistical indicator: 'ar1', 'var','pearsonc'.
Returns
-------
kendalls : list
List containing n Kendall coefficients that resulted from
bootstrapping a time-series.
"""
kendalls = []
ts = ts.loc[ts.first_valid_index():ts.last_valid_index()] ## Selecting the valid range of the series
for i in range(0,n):
## Bootstrapping the residuals to obtain a surrogate series
surrogate_ts = Ews(pd.Series(np.random.choice(ts.values,len(ts))))
kc = getattr(surrogate_ts,indicator)(wL=wL,**kwargs).kendall ## Getting the kendall coefficient for each series
kendalls.append(float(kc))
return kendalls
## Obtaining Kendall coefficients from the surrogate series over each column of the DataFrame
kendalls_bstr = self.apply(_get_kendalls, axis=0,indicator=indicator,n=n,wL=wL,**kwargs)
### Getting the Kendall values from the original series
kc = getattr(self,indicator)(wL=wL,**kwargs).kendall
if test == 'positive':
tail = kendalls_bstr[kendalls_bstr>=kc] ## Gets the Kendall coefficients that are larger or equal to the observed in the original series
elif test == 'negative':
tail = kendalls_bstr[kendalls_bstr<=kc]
pval = tail.count()/n ## getting the proportion of coefficients that are larger (less) than the observed one
return self.Significance_test(kendalls_bstr,kc,pval,test,indicator) ## return an instance of the class Significance_test
class Robustness_dict(dict):
def plot(self,vmin=-0.2,vmax=1,cmap='Spectral_r', shading='auto',**kwargs):
"""
Parameters
----------
vmin : TYPE, optional
DESCRIPTION. The default is -0.2.
vmax : TYPE, optional
DESCRIPTION. The default is 1.
cmap : TYPE, optional
DESCRIPTION. The default is 'Spectral_r'.
shading : TYPE, optional
DESCRIPTION. The default is 'auto'.
**kwargs : TYPE
DESCRIPTION.
"""
keys = list(self.keys())
if isinstance(self[keys[0]], dict):
indicators = list(self[keys[0]].keys())
nrows = len(keys)
title = None
cols = list(self.keys())
nested_dict = True
else:
indicators = keys
nrows = 1
title = self[keys[0]].name
cols = []
nested_dict = False
ind_labels = {'ar1':'AR(1)','var':'Variance','pearsonc': r'Pearson $r$'}
fig,axs = plt.subplots(nrows,len(indicators),figsize=(2.7*len(indicators),2*nrows),squeeze=False,sharey='row',gridspec_kw={'hspace': 0.4})
for nr in range(nrows):
for i,ind in enumerate(indicators):
if nested_dict:
colorplot = axs[nr,i].pcolormesh(self[cols[nr]][ind].columns, self[cols[nr]][ind].index,self[cols[nr]][ind],vmin=vmin,vmax=vmax,cmap=cmap,shading=shading,**kwargs)
else:
colorplot = axs[nr,i].pcolormesh(self[ind].columns, self[ind].index,self[ind],vmin=vmin,vmax=vmax,cmap=cmap, shading=shading,**kwargs)
if nr == nrows - 1:
axs[nr,i].set_xlabel('Window length',fontsize=12)
if nr == 0:
axs[nr,i].set_title(ind_labels[ind],fontsize=13,pad=15,weight='bold')
cbar = plt.colorbar(colorplot, ax=axs[nr,:],pad=0.02)
cbar.ax.set_ylabel(r'Kendall $\tau$', fontsize=12)
axs[nr,0].set_ylabel('Bandwidth',fontsize=11)
axs[nr,0].text(len(indicators)/2, 1.03,cols[nr] if nested_dict else title, transform=axs[nr,0].transAxes, size=13,weight='bold')
def robustness(self, indicators=['ar1','var'],min_wL=0.2,max_wL=0.7,res_wL=15,min_bW=0.1,max_bW=0.6,res_bW=5,**kwargs):
"""
Parameters
----------
indicators : list, optional
DESCRIPTION. The default is ['ar1','var'].
min_wL : float, optional
DESCRIPTION. The default is 0.2.
max_wL : float, optional
DESCRIPTION. The default is 0.7.
res_wL : float, optional
DESCRIPTION. The default is 15.
min_bW : float, optional
DESCRIPTION. The default is 0.1.
max_bW : float, optional
DESCRIPTION. The default is 0.6.
res_bW : float, optional
DESCRIPTION. The default is 5.
**kwargs :
DESCRIPTION.
Returns
-------
Dictionary
DESCRIPTION.
"""
def _get_robustness_ts(ts,name,indicators=['ar1','var'],min_wL=0.2,max_wL=0.7,res_wL=15,min_bW=0.1,max_bW=0.6,res_bW=5,**kwargs):
"""
Parameters
----------
ts : TYPE
DESCRIPTION.
name : string
Returns
-------
kendalls : Dictionary
DESCRIPTION.
"""
_,min_wL = self._window_size(ts,min_wL)
_,max_wL = self._window_size(ts,max_wL)
_,min_bW = self._window_size(ts,min_bW)
_,max_bW = self._window_size(ts,max_bW)
bW_v = np.arange(min_bW,max_bW,res_bW)
wL_v = np.arange(min_wL,max_wL,res_wL)
ts = Ews(ts.loc[ts.first_valid_index():ts.last_valid_index()])
kendalls_arr = {ind:np.zeros((len(bW_v),len(wL_v))) for ind in indicators}
kendalls = {}
### Computing the Kendall coefficient for each combination of parameters
### Numpy vectorize is slightly faster than the for loops when computing only one indicator,
### Thus, I use for loops here for now, there might be a more efficient way to do it
for i,b in enumerate(bW_v): ## Iterating over bandwidths and window lengths
for j,w in enumerate(wL_v):
for ind in indicators: ## Iterating over indicators
kendalls_arr[ind][i][j] = float(getattr(ts,ind)(detrend=True, bW=b, wL=w).kendall)
for ind in indicators:
kendalls[ind] = pd.DataFrame(kendalls_arr[ind], columns=wL_v,index=bW_v) ## Converting into dataframes
kendalls[ind].index.name = 'Bandwidth'
kendalls[ind].indicator = ind ## Adds metadata to the dataframes to identify the indicator and column name
kendalls[ind].name = name
return self.Robustness_dict(kendalls)
robustness_dict = {} ## Returns a dictionary with the robustness analyses for each one of the indicators
for col in self.columns:
robustness_dict[col] = _get_robustness_ts(self[col],col,indicators=indicators,min_wL=min_wL,max_wL=max_wL,res_wL=res_wL,min_bW=min_bW,max_bW=max_bW,res_bW=res_bW,**kwargs)
return self.Robustness_dict(robustness_dict)
@property
def _constructor(self):
"""
Overriding constructor properties to return an instance of Ews after
performing an operation on the Pandas Dataframe
"""
return Ews
# @property
# def _constructor_sliced(self):
# return Ews