-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaperFigures.R
828 lines (629 loc) · 45 KB
/
paperFigures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
library("rootSolve")
library("data.table")
## use library("SingleSampleRNAdynamics") if the package is installed
source("SingleSampleRNAdynamics/R/SingleSampleRNAdynamics.R")
library("ggplot2")
library("EnsDb.Mmusculus.v79")
library("org.Mm.eg.db")
library("gridExtra")
## The figures of the paper were generated using the following sessionInfo()
##
## R version 4.0.5 (2021-03-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.1 LTS
## Matrix products: default
## BLAS: /usr/local/lib/R/lib/libRblas.so
## LAPACK: /usr/local/lib/R/lib/libRlapack.so
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_CH.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=de_CH.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
## other attached packages:
## [1] gridExtra_2.3 org.Mm.eg.db_3.12.0
## [3] EnsDb.Mmusculus.v79_2.99.0 ensembldb_2.14.0
## [5] AnnotationFilter_1.14.0 GenomicFeatures_1.42.3
## [7] AnnotationDbi_1.52.0 Biobase_2.50.0
## [9] GenomicRanges_1.42.0 GenomeInfoDb_1.26.6
## [11] IRanges_2.24.1 S4Vectors_0.28.1
## [13] BiocGenerics_0.36.0 data.table_1.14.0
## [15] rootSolve_1.8.2.1
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.6 lattice_0.20-41
## [3] prettyunits_1.1.1 Rsamtools_2.6.0
## [5] Biostrings_2.58.0 assertthat_0.2.1
## [7] utf8_1.2.1 BiocFileCache_1.14.0
## [9] R6_2.5.0 RSQLite_2.2.5
## [11] httr_1.4.2 pillar_1.5.1
## [13] zlibbioc_1.36.0 rlang_0.4.10
## [15] progress_1.2.2 lazyeval_0.2.2
## [17] curl_4.3 rstudioapi_0.13
## [19] blob_1.2.1 Matrix_1.3-2
## [21] BiocParallel_1.24.1 stringr_1.4.0
## [23] ProtGenerics_1.22.0 RCurl_1.98-1.3
## [25] bit_4.0.4 biomaRt_2.46.3
## [27] DelayedArray_0.16.3 compiler_4.0.5
## [29] rtracklayer_1.50.0 pkgconfig_2.0.3
## [31] askpass_1.1 openssl_1.4.3
## [33] tidyselect_1.1.0 SummarizedExperiment_1.20.0
## [35] tibble_3.1.0 GenomeInfoDbData_1.2.4
## [37] matrixStats_0.58.0 XML_3.99-0.6
## [39] fansi_0.4.2 crayon_1.4.1
## [41] dplyr_1.0.5 dbplyr_2.1.1
## [43] GenomicAlignments_1.26.0 bitops_1.0-6
## [45] rappdirs_0.3.3 grid_4.0.5
## [47] gtable_0.3.0 lifecycle_1.0.0
## [49] DBI_1.1.1 magrittr_2.0.1
## [51] stringi_1.5.3 cachem_1.0.4
## [53] XVector_0.30.0 xml2_1.3.2
## [55] ellipsis_0.3.1 generics_0.1.0
## [57] vctrs_0.3.7 tools_4.0.5
## [59] bit64_4.0.5 glue_1.4.2
## [61] purrr_0.3.4 hms_1.0.0
## [63] MatrixGenerics_1.2.1 fastmap_1.1.0
## [65] memoise_2.0.0
with.inspect.comp <- TRUE # set to FALSE to avoid the lengthy rate generation from INSPEcT
figdir <- "mfigs"
figpath <- function(fname){
return(paste(figdir,fname,sep="/"))
}
######### SIMULATED DATA (Fig.2 ) ###################3
nsim <- 50000 # number of data points
tp <- t(exp(seq(-5,5))) # time points for trajectories
ntp <- length(tp)
## generating random rates
ra <- exp(rnorm(nsim,0,2)) # production rate
rb <- exp(rnorm(nsim,0,2)) # degradation rate
rc <- exp(rnorm(nsim,0,2)) # processing rate
pre.p <- ra/rc*exp(-rc %*% tp) # pre-existing (or unlabeled) premature RNA
pre.m <- ra/(rb-rc)*exp(-rc %*% tp) - ra*rc/(rb*(rb-rc))*exp(-rb %*% tp) # pre-existing mature RNA
lab.p <- ra/rc*(1-exp(-rc %*% tp)) # labeled premature RNA
lab.m <- ra/rb*(1+rc/(rb-rc)*exp(-rb %*% tp))-ra/(rb-rc)*exp(-rc %*% tp)# labeled mature RNA
pre.frac <- pre.p/(pre.p+pre.m) ## unlabeled observables
lab.frac <- lab.p/(lab.p+lab.m) ## labeled observables
ersd = 0.00 ## simulated noise level (not used because we also have real data)
pre.frac <- exp(log(pre.frac)+rnorm(nsim,sd=ersd))
lab.frac <- exp(log(lab.frac)+rnorm(nsim,sd=ersd))
pre.frac[pre.frac==0] <-NA
lab.frac[lab.frac==0] <- NA
sc <- 5 # using a single time point to infer rates.
t <- tp[sc]
frac <-cbind(pre.frac[,sc],lab.frac[,sc])
## estimating rates from observables
my.ratesn <- apply(frac,1,solve.rates,t=t)
rates <- cbind(sapply(my.ratesn,"[[",1),sapply(my.ratesn,"[[",2))
## classifying number of solutions
to.show <- sapply(my.ratesn,function(x)length(x)==2)
get.table <- function(lrb,lrc,rates,ambig,frac){
diffb = sqrt((log(rb)-rates[,1])^2)
diffc = sqrt((log(rc)-rates[,2])^2)
res.data <- data.table(rb=rb,rc=rc,lrb=log(rb), lrc=log(rc),diffb=diffb,diffc=diffc,preex.ratio=frac[,1],label.ratio=frac[,2])
res.data[,col:=ifelse(!ambig,"A",ifelse(diffc>0.1,"B","C"))]
res.data[,k:= lrc-lrb]
return(res.data)
}
resn <- get.table(log(rb),log(rc),rates,to.show,frac)
p1 <- ggplot(data=resn,aes(x=preex.ratio,y=label.ratio,color=col))
p1 <- p1 +geom_point(aes(stroke=0))
p1 <- p1 +geom_line(data=data.frame(x=seq(0,1,0.05),col="green"),aes(x=x,y=1/(2-x),colour=as.factor(col)),size=1.5,show.legend=FALSE,guide=FALSE) + theme_classic() + scale_color_manual(name ="rate estimate", labels=c("ambiguous","wrong","correct","b=1/(2-a)"), values=c(rgb(0,0,1,0.5),rgb(1,0,0,0.5),rgb(0.5,0.5,0.5,0.5),"green"))+labs(x="unlabeled ratio (a)",y = "labeled ratio (b)")
p1 <- p1 + scale_x_continuous(limits=c(0,1)) + scale_y_continuous(limits=c(0,1))
p1 <- p1 + theme(text = element_text(size = 20), legend.position=c(0.7,0.3))
pp <- p1 + geom_abline(slope=1,color="red")+geom_abline(intercept=1,slope=0,color="blue")
pp
### plotting trajectories Fig 2 bottom center
trajs <- data.table(lra=log(ra),lrb=log(rb),lrc=log(rc),k=log(rc)-log(rb),preex.ratio=pre.frac,label.ratio=lab.frac)
p1 <- ggplot(trajs,aes(x=preex.ratio.V2,y=label.ratio.V2,z=k))+theme_classic()
for (i in seq(-6,6)){
for (j in seq_along(tp)){
cx <- paste0("preex.ratio.V",j)
cy <- paste0("label.ratio.V",j)
topl <- trajs[abs(2*k-i)<0.01]
topl$col <- i
p1 <- p1+ geom_point(topl,mapping=aes_string(x=cx,y=cy,col="col"),shape=20,size=1)
}
}
p1 <- p1 + scale_color_gradient2(low="darkolivegreen1",high="darkorange1",mid="black",midpoint=0,name= "k [log]")
p1 <- p1 +labs(x="unlabeled ratio (a)",y = "labeled ratio (b)")
p1 <- p1 +geom_line(data=data.frame(x=seq(0,1,0.05),col=1.0,k=100),aes(x=x,y=1/(2-x)),color="green",show.legend=FALSE)
p1 <- p1 + geom_abline(slope=1,color="red")+geom_abline(intercept=1,slope=0,color="blue")
kk <- seq(-4,4,4)
pt <- p1 + annotate("text",x = 1/(1+exp(kk/2)),y =1.05,label=paste("log(k)=",kk/2))
pt <- pt + theme(text = element_text(size = 20), legend.position=c(0.8,0.3))
pt
#### noise analysis ##################
#all.sdrel <-c(0,1,5,10,50)
all.sd <- c(0,0.01,0.05,0.1,0.5)
sim.corr1S <- matrix(NA,nrow=length(all.sd),ncol=3)
init.corr <- sim.corr1S
nsol <- rep(NA,length(all.sd))
for (i in rev(seq(length(all.sd)))){
ersd = log(1+all.sd[i]) ## simulated noise level
### simulated introns and exons
pre.int = pre.p
pre.ex = pre.p + pre.m
lab.int = lab.p
lab.ex = lab.p + lab.m
## adding gaussian noise in log space
npre.int <- exp(log(pre.int)+rnorm(nsim,sd=ersd))
npre.ex <- exp(log(pre.ex)+rnorm(nsim,sd=ersd))
nlab.int <- exp(log(lab.int)+rnorm(nsim,sd=ersd))
nlab.ex <- exp(log(lab.ex)+rnorm(nsim,sd=ersd))
sc <- 5 # using a single time point to infer rates.
t <- tp[sc]
## building required dataframe
sim.data <- data.frame(sim.prod=log(ra), sim.deg=log(rb),sim.proc=log(rc),unlabeled.intron=npre.int[,sc], unlabeled.exon=npre.ex[,sc],labeled.intron=nlab.int[,sc],labeled.exon=nlab.ex[,sc])
## estimating rates from observables
res.data <-singleSampleRateEstimation(sim.data)
## computing correlations
keep <- which(! res.data$twosols)
init.corr[i,1] <- cor(c(npre.ex[keep,sc],npre.int[keep,sc],nlab.ex[keep,sc],nlab.int[keep,sc]),c(pre.ex[keep,sc],pre.int[keep,sc],lab.ex[keep,sc],lab.int[keep,sc]))
sim.corr1S[i,1] <- res.data[twosols==FALSE,cor(x=sim.prod,y=prod.rate,use="pairwise.complete")]
sim.corr1S[i,2] <- res.data[twosols==FALSE,cor(x=sim.deg,y=deg.rate,use="pairwise.complete")]
sim.corr1S[i,3] <- res.data[twosols==FALSE,cor(x=sim.proc,y=proc.rate,use="pairwise.complete",)]
nsol[i] <- res.data[!is.na(deg.rate),.N]/sum(!is.na(rates[,1]))
}
corr.sim <- data.frame(sd.val = all.sd,init.cor=init.corr[,1],frac.sol=nsol,prod.cor=sim.corr1S[,1],deg.cor=sim.corr1S[,2],proc.cor=sim.corr1S[,3])
## Fig 2 - bottom right
pn <- ggplot(data=corr.sim[1:5,], aes(x=sd.val)) + geom_line(aes(y=deg.cor,color="degradation rate"),size=1) + geom_line(aes(y=proc.cor,color="processing rate"),size=1)+ geom_line(aes(y=prod.cor,color="synthesis rates"),size=1)+labs(x="noise relative standard deviation",y="correlation with true value",color="") +theme_classic()+theme(legend.position=c(0.5,0.8),text=element_text(size=20)) + scale_x_continuous(labels = scales::percent_format()) + scale_y_continuous(labels = scales::percent_format())
mfrac.sol <- corr.sim$frac.sol[1]
pn <- pn + geom_line(aes(y=frac.sol/mfrac.sol,color=" fraction of estimated rates"),size=1,linetype="dashed")
pn <- pn + scale_color_manual(values = c("black", "red","blue", "green"))
## fig.2 - top row
ps <- ggplot(data=res.data[solvable=="C"],aes(x=sim.prod,y=prod.rate-log(t))) + geom_point(alpha=0.1)+theme_classic() +geom_abline(color="red")+ theme(text=element_text(size=20)) + scale_y_continuous(limits=c(-7.5,7.5))+ scale_x_continuous(limits=c(-7.5,7.5)) + labs(x="true value [log]",y = "estimated value [log]", title="synthesis rate")
pd <- ggplot(data=res.data[solvable=="C"],aes(x=sim.deg,y=deg.rate-log(t))) + geom_point(alpha=0.1)+theme_classic()+geom_abline(color="red")+ theme(text=element_text(size=20)) + scale_y_continuous(limits=c(-7.5,7.5))+ scale_x_continuous(limits=c(-7.5,7.5)) + labs(x="true value [log]",y = "estimated value [log]", title="degradation rate")
pb <- ggplot(data=res.data[solvable=="C"],aes(x=sim.proc,y=proc.rate-log(t))) + geom_point(alpha=0.1)+theme_classic()+geom_abline(color="red")+ theme(text=element_text(size=20)) + scale_y_continuous(limits=c(-7.5,7.5))+ scale_x_continuous(limits=c(-7.5,7.5)) +labs(x="true value [log]",y = "estimated value [log]", title="processing rate")
grid.arrange(ps,pd,pb,pp,pt,pn,nrow=2,heights=c(1,2))
dev.copy2pdf(file = figpath("simul_dat.pdf"),onefile=T)
##### REAL DATA ####################3
##loading and preparing data ####
data.WT10 <- fread("./data/transcripts_tpm.csv")
## getting transcript annotations
edb <- EnsDb.Mmusculus.v79
biot <- select(edb, keys=data.WT10$rn, columns=c("TXID", "TXBIOTYPE"),keytype="TXID")
idx <- match(biot$TXID,data.WT10$rn)
data.WT10$biotype <- NA
data.WT10$biotype[idx] <- biot$TXBIOTYPE
rownames(data.WT10) <- data.WT10$rn
data.WT10[,rn:=NULL]
## getting gene symbols
gene.info <- select(edb, keys=rownames(data.WT10), columns=c("TXID", "TXBIOTYPE", "SYMBOL"),keytype="TXID")
data.WT10$txid = rownames(data.WT10)
data.WT10[,symbol:=gene.info$SYMBOL[match(txid,gene.info$TXID)]]
###### Figure 3 ##############
## Fig 3 left - plotting the raw data
p1 <- ggplot(data.WT10,aes(x=log(P_1_WT_10_8d.intron/P_1_WT_10_8d.exon),y = log(L_1_WT_10_8d.intron/L_1_WT_10_8d.exon)))
##p1 <- p1+ geom_point(alpha=0.01,pch=20)+scale_x_continuous(limits = c(-7, 3)) + scale_y_continuous(limits = c(-7, 3))
p1 <- p1 + geom_rect(xmin=-10,xmax=-7,ymin=0,ymax=10,fill="#CCFFFF",alpha=0.1)
p1 <- p1 + geom_rect(xmin=-10,xmax=-7,ymin=-10,ymax=0,fill="#FFCCCC",alpha=0.1)
p1 <- p1+ geom_point(aes(alpha=log(1+P_1_WT_10_8d.exon + P_1_WT_10_8d.intron)),pch=20)+scale_x_continuous(limits = c(-7, 3)) + scale_y_continuous(limits = c(-7, 3)) + scale_alpha(range=c(0,0.1),guide=F)
p1 <- p1 + geom_density_2d(color="wheat")
p1 <- p1 + geom_line(data=data.frame(x=seq(0,1,0.05)),aes(x=log(x),y=log(1/(2-x))),colour="green") + geom_abline(slope=1,colour=rgb(1,0,0,0.5)) + geom_abline(slope=0,colour=rgb(0,0,1,0.5))+theme_classic()+theme(text = element_text(size = 20))+ ylab("labeled ratio (b) [log]")+ xlab("unlabeled ratio (a) [log]") + xlab(bquote("observed unlabeled ratio "*r[u]~ "[log]")) + ylab(bquote("observed labeled ratio "*r[l]~ "[log]"))
p1
nrep <- 3
pre.frac <- data.WT10[,seq(nrep+1,2*nrep),with=F]/data.WT10[,seq(1:nrep),with=F]
lab.frac <- data.WT10[,seq(3*nrep+1,4*nrep),with=F]/data.WT10[,seq(2*nrep+1,3*nrep),with=F]
data.WT10[,paste("pre.frac",seq(nrep),sep=".") := pre.frac]
data.WT10[,paste("lab.frac",seq(nrep),sep=".") := lab.frac]
### Fig 3 left - inset
p2 <- ggplot(data.WT10[biotype=="protein_coding" & is.finite(lab.frac.1)],aes(x=lab.frac.1>1,y=log(P_1_WT_10_8d.exon),fill=lab.frac.1>1))+geom_boxplot(notch=T)+theme_classic()
p2 <- p2 + xlab("")+ylab("expression [log TPM]")+scale_x_discrete(labels=c(expression(r[l] <= 1),expression(r[l] > 1))) +theme(legend.position = "none",text = element_text(size = 16))+scale_fill_manual(values=c("#FFCCCC", "#CCFFFF"))
p3 <- p1+ annotation_custom(ggplotGrob(p2),xmin=-1.5,xmax=3,ymin=-8,ymax=-3)
p3
#dev.copy2pdf(file=figpath("data_phase.pdf"),onefile=T)
## classifying transcripts:
## C: solvable with a single solution
## A: potentially ambiguous solutions
## B: bad and discarded
## L: limit cases, k may be infered but not the rates (rates are too fast)
data.WT10[,solvable1:=ifelse(lab.frac.1>1/(2-pre.frac.1),"C","A")]
data.WT10[,solvable2:=ifelse(lab.frac.2>1/(2-pre.frac.2),"C","A")]
data.WT10[,solvable3:=ifelse(lab.frac.3>1/(2-pre.frac.3),"C","A")]
EPS = exp(-30)
data.WT10[pre.frac.1 < EPS,solvable1:="L"]
data.WT10[pre.frac.2 < EPS,solvable2:="L"]
data.WT10[pre.frac.3 < EPS,solvable3:="L"]
data.WT10[lab.frac.1>1 | pre.frac.1 >= lab.frac.1,solvable1:="B"]
data.WT10[lab.frac.2>1 | pre.frac.2 >= lab.frac.2,solvable2:="B"]
data.WT10[lab.frac.3>1 | pre.frac.3 >= lab.frac.3,solvable3:="B"]
pl <- length(setdiff(data.WT10[biotype=="protein_coding" & P_1_WT_10_8d.exon>1,symbol],data.WT10[biotype=="protein_coding" & P_1_WT_10_8d.exon>1 & solvable1 %in% c("A","C","L"),symbol]))/length(unique(data.WT10[biotype=="protein_coding" & P_1_WT_10_8d.exon>1,symbol]))
print(paste("proportion of genes with bad ratio",pl))
table(data.WT10$solvable1)
table(data.WT10$solvable2)
table(data.WT10$solvable3)
tt <- table(data.WT10[biotype=="protein_coding"& L_1_WT_10_8d.exon>10 & L_1_WT_10_8d.intron>10,solvable1])
(tt[2]+tt[4])/sum(tt)
tt <- table(data.WT10[ L_1_WT_10_8d.exon>10 & L_1_WT_10_8d.intron>10,solvable1])
(tt[2]+tt[4])/sum(tt)
cl <- NULL ## change this to cl <- init.cluster(10) if you want to work in parallel
## computing rates ####
refactor <- function(mat){return(list(mat[1,],mat[2,]))}
refactor2 <- function(mat){return(list(mat[,1],mat[,2]))}
refactor4 <- function(mat){return(list(mat[1,],mat[2,],mat[3,],mat[4,]))}
refactor3 <- function(mat){return(list(mat[1,],mat[2,],mat[3,]))}
## computing processing and degradation rates for solvable cases
data.WT10[solvable1=="C",c("deg.rate1","proc.rate1"):=refactor(mapply(solve.rates2,pre.frac.1,lab.frac.1))]
data.WT10[solvable2=="C",c("deg.rate2","proc.rate2"):=refactor(mapply(solve.rates2,pre.frac.2,lab.frac.2))]
data.WT10[solvable3=="C",c("deg.rate3","proc.rate3"):=refactor(mapply(solve.rates2,pre.frac.3,lab.frac.3))]
## computing processing and rates for potentially ambiguous cases
data.WT10[solvable1=="A",c("deg.rate1","proc.rate1","deg.rate1b","proc.rate1b"):=refactor4(mapply(solve.rates3,pre.frac.1,lab.frac.1))]
data.WT10[solvable2=="A",c("deg.rate2","proc.rate2","deg.rate2b","proc.rate2b"):=refactor4(mapply(solve.rates3,pre.frac.2,lab.frac.2))]
data.WT10[solvable3=="A",c("deg.rate3","proc.rate3","deg.rate3b","proc.rate3b"):=refactor4(mapply(solve.rates3,pre.frac.3,lab.frac.3))]
## finding out ambiguous cases
data.WT10[,twosols.1:= !is.na(deg.rate1b)]
data.WT10[,twosols.2:= !is.na(deg.rate2b)]
data.WT10[,twosols.3:= !is.na(deg.rate3b)]
## optimization procedure for unsolvable cases
data.WT10[solvable1=="A" & !twosols.1, c("deg.rate1","proc.rate1"):=refactor2(eval.rates.vec(pre.frac.1,lab.frac.1,cl=cl))]
data.WT10[solvable2=="A" & !twosols.2, c("deg.rate2","proc.rate2"):=refactor2(eval.rates.vec(pre.frac.2,lab.frac.2,cl=cl))]
data.WT10[solvable3=="A" & !twosols.3, c("deg.rate3","proc.rate3"):=refactor2(eval.rates.vec(pre.frac.3,lab.frac.3,cl=cl))]
## computing production rates
data.WT10[,prod.rate1:= get.production.rate(log(P_1_WT_10_8d.exon-P_1_WT_10_8d.intron),deg.rate1,proc.rate1)]
data.WT10[,prod.rate2:= get.production.rate(log(P_2_WT_10_8d.exon-P_2_WT_10_8d.intron),deg.rate2,proc.rate2)]
data.WT10[,prod.rate3:= get.production.rate(log(P_3_WT_10_8d.exon-P_3_WT_10_8d.intron),deg.rate3,proc.rate3)]
## also for ambiguous cases
data.WT10[twosols.1==T,prod.rate1b:= get.production.rate(log(P_1_WT_10_8d.exon-P_1_WT_10_8d.intron),deg.rate1b,proc.rate1b)]
data.WT10[twosols.2==T,prod.rate2b:= get.production.rate(log(P_2_WT_10_8d.exon-P_2_WT_10_8d.intron),deg.rate2b,proc.rate2b)]
data.WT10[twosols.3==T,prod.rate3b:= get.production.rate(log(P_3_WT_10_8d.exon-P_3_WT_10_8d.intron),deg.rate3b,proc.rate3b)]
## a simple heuristics to guess which of the two solutions is correct, take the one with the smaller the production rate
swap.ambiguous <- TRUE
if(swap.ambiguous){
swap.elmt <- function(a1,a2,idx){
tmp <- a1[idx]
a1[idx] <- a2[idx]
a2[idx] <- tmp
return(list(a1,a2))
}
swap <- function(a1,b1,c1,a2,b2,c2){
idx <- which(a1>a2)
la <- swap.elmt(a1,a2,idx)
lb <- swap.elmt(b1,b2,idx)
lc <- swap.elmt(c1,c2,idx)
return(list(la[[1]],lb[[1]],lc[[1]],la[[2]],lb[[2]],lc[[2]]))
}
data.WT10[twosols.1==T,c("prod.rate1","deg.rate1","proc.rate1","prod.rate1b","deg.rate1b","proc.rate1b"):=swap(prod.rate1,deg.rate1, proc.rate1,prod.rate1b,deg.rate1b, proc.rate1b)]
data.WT10[twosols.2==T,c("prod.rate2","deg.rate2","proc.rate2","prod.rate2b","deg.rate2b","proc.rate2b"):=swap(prod.rate2,deg.rate2, proc.rate2,prod.rate2b,deg.rate2b, proc.rate2b)]
data.WT10[twosols.3==T,c("prod.rate3","deg.rate3","proc.rate3","prod.rate3b","deg.rate3b","proc.rate3b"):=swap(prod.rate3,deg.rate3, proc.rate3,prod.rate3b,deg.rate3b, proc.rate3b)]
}
k.name <- paste("k",seq(3),sep=".")
k.name <- c(k.name,paste0(k.name,"b"))
data.WT10[, c("k.1","k.2","k.3","k.1b","k.2b","k.3b") := list(proc.rate1-deg.rate1,proc.rate2-deg.rate2,proc.rate3-deg.rate3,proc.rate1b-deg.rate1b,proc.rate2b-deg.rate2b,proc.rate3b-deg.rate3b)]
## gathering some stats to compare across replicates
data.WT10[, sd.k:= apply(cbind(proc.rate1-deg.rate1,proc.rate2-deg.rate2,proc.rate3-deg.rate3),1,sd)]
data.WT10[, sd.proc:= apply(cbind(proc.rate1,proc.rate2,proc.rate3),1,sd)]
data.WT10[, sd.deg:= apply(cbind(deg.rate1,deg.rate2,deg.rate3),1,sd)]
data.WT10[, sd.prod:= apply(cbind(prod.rate1,prod.rate2,prod.rate3),1,sd)]
data.WT10[, avg.deg:= apply(cbind(deg.rate1,deg.rate2,deg.rate3),1,mean)]
data.WT10[, avg.k:= apply(cbind(proc.rate1-deg.rate1,proc.rate2-deg.rate2,proc.rate3-deg.rate3),1,mean)]
data.WT10[, avg.proc:= apply(cbind(proc.rate1,proc.rate2,proc.rate3),1,mean)]
data.WT10[, avg.prod:= apply(cbind(prod.rate1,prod.rate2,prod.rate3),1,mean)]
## Fig 3, right
p1 <- ggplot(data.WT10[biotype=="protein_coding"],aes(x=prod.rate1,y=proc.rate1))+ scale_x_continuous(limits = c(-2, 8)) + scale_y_continuous(limits = c(-5, 5))
p1 <- p1 + geom_point(pch=19,alpha = 0.05,cex=1) +scale_color_gradient2(low="black",mid="blue",high="red",midpoint=5,na.value = "grey")
p1 <- p1 + theme_classic() +theme(text = element_text(size=20))+coord_fixed(ratio = 1)
p1 <- p1 + labs(x="synthesis rate [log]", y="processing rate [log]",color="intron size [log]")
p1 <- p1 + geom_density_2d(color="wheat", bins=8)
p1
grid.arrange(p3,p1,nrow=1,widths=c(1,1))
dev.copy2pdf(file=figpath("real_data_rates.pdf"),onefile=T)
### Suppl. Figure
data.WT10[,prod.rate1b:= get.production.rate.labeled(log(L_1_WT_10_8d.exon-L_1_WT_10_8d.intron),deg.rate1,proc.rate1)]
## data.WT10[,prod.rate1b:= get.norm.factor(log(L_1_WT_10_8d.exon),prod.rate1,deg.rate1,proc.rate1)+prod.rate1]
data.WT10[solvable1=="A",exact1:= abs(func(k.1,pre.frac.1,lab.frac.1)) < 0.0001]
data.WT10[solvable1=="C",exact1:=TRUE]
rs <- data.WT10[exact1==T & is.finite(prod.rate1)& is.finite(prod.rate1b),cor(prod.rate1,prod.rate1b,use="p")]
p1 <- ggplot(data.WT10[exact1==T],aes(x=prod.rate1,y=prod.rate1b,color=deg.rate1))+geom_point(alpha = 0.08) +scale_x_continuous(limits = c(-6, 7)) + scale_y_continuous(limits = c(-6, 7))+theme_classic() + scale_color_gradient2(low="green",mid="blue",high="red",midpoint=-4,limits=c(-12,NA)) + geom_abline()+theme(text = element_text(size = 20),legend.position=c(0.2,0.8))+ labs(y="synthesis rate estimated from labeled RNA [log]",x="synthesis rate estimated from unlabeled RNA [log]",color = "degradation rate [log]") + annotate("text",x=4,y=-4,label=paste("R =",format(100*rs,digits=0),"%"),size=8)
p1
dev.copy2pdf(file=figpath("synthesis_rates2.pdf"),onefile=T)
### Figure 4 ################33
## projecting rates on the abundance and reactivity axes for
data.WT10[biotype=="protein_coding" & !is.na(deg.rate1),concentration:= (prod.rate1-deg.rate1)/2]
data.WT10[biotype=="protein_coding" & !is.na(deg.rate1),reactivity:= (prod.rate1+deg.rate1)/2]
print("correlations:")
data.WT10[biotype=="protein_coding" & !is.na(deg.rate1),cor(concentration,reactivity)]
data.WT10[biotype=="protein_coding" & !is.na(deg.rate1),cor(deg.rate1,prod.rate1)]
go.cat <- c("transcription", "monosaccharide metabolism")
go.fnames <- list()
go.fnames[["transcription"]] <- "transcription_go.csv"
go.fnames[["monosaccharide metabolism"]] <- "monosaccharide_met_go.csv"
go.dir <- "./data/"
evid <- c("EXP","IMP","IDA")
cat.pos <- data.table(cat=go.cat)
data.WT10[,go_func:=as.character(NA)]
for (gcat in go.cat){
# data.WT10[,go_func:=as.character(NA)]
gene.list <- fread(paste0(go.dir,go.fnames[[gcat]]))
keep <- which(gene.list[["GO EVIDENCE CODE"]] %in% evid)
data.WT10[symbol %in% gene.list$SYMBOL[keep],go_func:=ifelse(is.na(go_func),gcat,"pleiotropic")]
cat.pos[cat==gcat,reactivity:= data.WT10[biotype=="protein_coding" & go_func==gcat,median(reactivity,na.rm=T)]]
ss <- wilcox.test(data.WT10[biotype=="protein_coding" & go_func==gcat,reactivity],data.WT10[biotype=="protein_coding" & is.na(go_func),reactivity])
cat.pos[cat==gcat,reactivity.pval:=ss$p.value]
cat.pos[cat==gcat,concentration:= data.WT10[biotype=="protein_coding" & go_func==gcat,median(concentration,na.rm=T)]]
ss <- wilcox.test(data.WT10[biotype=="protein_coding" & go_func==gcat,concentration],data.WT10[biotype=="protein_coding" & is.na(go_func),concentration])
cat.pos[cat==gcat,concentration.pval:=ss$p.value]
cat.pos[cat==gcat,n:=data.WT10[biotype=="protein_coding" & go_func==gcat,.N]]
}
data.WT10[go_func=="pleiotropic",go_func:=NA]
## plotting Fig. 4 left
ax2 <- data.table(from.x=c(0,0),from.y=c(0,0),to.x=c(3,4),to.y=c(3,-4),y.off=c(1,-1),label=c("responsiveness","abundance"))
p1 <- ggplot(data.WT10[biotype=="protein_coding"],aes(x=prod.rate1,y=deg.rate1)) + scale_x_continuous(limits = c(-3, 10)) + scale_y_continuous(limits = c(-5.5, 4.5))
p1 <- p1 + geom_abline(slope=1,intercept=seq(-8,0,2),alpha=0.1,linetype="solid",color="brown")+geom_abline(slope=-1,intercept=seq(-4,6,2),alpha=0.1,linetype="dashed",color="brown")
p1 <- p1 + geom_point(alpha = 0.02,color="black")
p1 <- p1 + geom_point(data=data.WT10[biotype=="protein_coding"& !is.na(go_func)],aes(color=go_func),pch=19,alpha = 1,cex=1)
p1 <- p1 + labs(x="synthesis rate [log]", y="degradation rate[log]",color="GO categories")
p1 <- p1 + theme_classic() +theme(legend.position=c(0.8,0.2),text = element_text(size=20),legend.text = element_text(size = 12),legend.title = element_text(size = 16))+coord_fixed(ratio = 1)
p1 <- p1 + geom_segment(aes(x=from.x,y=from.y,xend=to.x,yend=to.y),color="black",data=ax2,arrow = arrow(length = unit(0.2, "cm")),lineend = "round") + geom_text(aes(x=to.x,y=to.y+0.5*sign(to.y),label=label),data=ax2,size=6)
p1
med = data.WT10[biotype=="protein_coding",list(concentration=mean(concentration,na.rm=T),reactivity=mean(reactivity,na.rm=T),prod.rate=mean(prod.rate1,na.rm=T),deg.rate=mean(deg.rate1,na.rm=T) ) ,by=go_func]
p1 <- p1 + geom_point(data=med,aes(x=concentration,y=-concentration,color=go_func),pch=15,cex=3)
p1 <- p1 + geom_point(data=med,aes(x=reactivity,y=reactivity,color=go_func),pch=15,cex=3)
p1
## plotting fig 4 right
p2 <- ggplot(data.WT10[biotype=="protein_coding"],aes(x=concentration,y=reactivity)) + scale_x_continuous(limits = c(-0.5, 4.5)) + scale_y_continuous(limits = c(-5, 5))
p2 <- p2 + geom_point(data=data.WT10[biotype=="protein_coding"& !is.na(go_func)],aes(color=go_func),pch=19,alpha = 0.5,cex=1)
p2 <- p2 + labs(x="steady-state abundance [log]", y="responsiveness [log]")
p2 <- p2 + theme_classic() +theme(legend.position = "none",text = element_text(size=20),legend.text = element_text(size = 12),legend.title = element_text(size = 16))+coord_fixed(ratio = 1,clip="off",expand=F)
p2 <- p2 + geom_point(data=med,aes(x=concentration,y=reactivity,color=go_func),pch=17,cex=3)
p2 <- p2 + geom_hline(aes(yintercept=reactivity,color=go_func),data=med,linetype="dotted")+ geom_vline(aes(xintercept=concentration,color=go_func),data=med,linetype="dotted")
p2 <- p2 + geom_point(data=med,aes(y=reactivity,x=-Inf,color=go_func),pch=15,cex=3)+geom_point(data=med,aes(y=-Inf,x=concentration,color=go_func),pch=15,cex=3)
p2
grid.arrange(p1,p2,nrow=1,widths=c(2.3,1))
dev.copy2pdf(file=figpath("deg_synt_rates.pdf"),onefile=T)
## checking statistical significance
wilcox.test(data.WT10[biotype=="protein_coding" & go_func=="monosaccharide metabolism",reactivity],data.WT10[biotype=="protein_coding" & is.na(go_func),reactivity])
wilcox.test(data.WT10[biotype=="protein_coding" & go_func=="monosaccharide metabolism",concentration],data.WT10[biotype=="protein_coding" & is.na(go_func),concentration])
wilcox.test(data.WT10[biotype=="protein_coding" & go_func=="transcription",reactivity],data.WT10[biotype=="protein_coding" & is.na(go_func),reactivity])
wilcox.test(data.WT10[biotype=="protein_coding" & go_func=="transcription",concentration],data.WT10[biotype=="protein_coding" & is.na(go_func),concentration])
data.WT10[biotype=="protein_coding",cor(prod.rate1,proc.rate1,use="p")]
data.WT10[biotype=="protein_coding",cor(prod.rate1,deg.rate1,use="p")]
############ Figure 5 ##########################
## comparing with Herzog et al.
data.dir <- "./data/"
am.fname <- "rates_herzog.txt"
adata <- fread(paste(data.dir,am.fname,sep="/"),fill=T)
colnames(adata)[which(colnames(adata)=="Half-life (h)")] <- "Half.life"
res <- select(org.Mm.eg.db, keys=adata$Name , columns=c("SYMBOL","ENSEMBLTRANS"), keytype="SYMBOL")
ma.idx <- match(rownames(data.WT10),res$ENSEMBLTRANS)
data.WT10[,gene.name:= res$SYMBOL[ma.idx]]
data.WT10[,sum1:=P_1_WT_10_8d.exon+L_1_WT_10_8d.exon]
data.WT10[,sum2:=P_2_WT_10_8d.exon+L_2_WT_10_8d.exon]
data.WT10[,sum3:=P_3_WT_10_8d.exon+L_3_WT_10_8d.exon]
data.WT10b = merge(data.WT10[biotype=="protein_coding"],adata,by.x="gene.name",by.y="Name",all.y=T)
aa1 <- data.WT10b[solvable1 %in% c("A","C"),list(fin.deg=sum(deg.rate1*sum1,na.rm=T)/sum(sum1,na.rm=T),slam.deg=mean(log(log(2))-log(Half.life),na.rm=T),msum=sum(sum1,na.rm=T),solvable=solvable1[which.max(sum1)],frac.solv=sum(sum1[solvable1=="A"])/sum(sum1),lab.frac=sum(lab.frac.1*sum1)/sum(sum1),pre.frac=sum(pre.frac.1*sum1)/sum(sum1),k=sum(k.1*sum1)/sum(sum1)),by=gene.name]
aa2 <- data.WT10b[solvable2 %in% c("A","C"),list(fin.deg=sum(deg.rate2*sum2,na.rm=T)/sum(sum2,na.rm=T),slam.deg=mean(log(log(2))-log(Half.life),na.rm=T),msum=sum(sum2,na.rm=T),solvable=solvable2[which.max(sum2)],frac.solv=sum(sum2[solvable2=="A"])/sum(sum2),lab.frac=sum(lab.frac.2*sum2)/sum(sum2),pre.frac=sum(pre.frac.2*sum2)/sum(sum2),k=sum(k.2*sum2)/sum(sum2)),by=gene.name]
aa3 <- data.WT10b[solvable3 %in% c("A","C"),list(fin.deg=sum(deg.rate3*sum3,na.rm=T)/sum(sum3,na.rm=T),slam.deg=mean(log(log(2))-log(Half.life),na.rm=T),msum=sum(sum3,na.rm=T),solvable=solvable3[which.max(sum3)],frac.solv=sum(sum3[solvable3=="A"])/sum(sum3),lab.frac=sum(lab.frac.3*sum3)/sum(sum3),pre.frac=sum(pre.frac.3*sum3)/sum(sum3),k=sum(k.3*sum3)/sum(sum3)),by=gene.name]
data.WT10b[,asum:=(sum1+sum2+sum3)/3]
data.WT10[,rn := rownames(data.WT10)]
# Fig 5, left
thresh <- 200
ss <- summary(lm(fin.deg+log(6) ~ slam.deg,data=aa1[msum>thresh],weights=1-lab.frac))
pv <- ggplot(aa1[msum>thresh],aes(y=fin.deg+log(6),x=slam.deg))+ geom_point(aes(alpha=1-lab.frac))
pv <- pv + geom_abline(slope=ss$coefficient[2,1],intercept=ss$coefficient[1,1],colour="red")+ theme_classic()+annotate("text",x=-0.75,y=-4,label=paste("R =",format(100*sqrt(ss$r.squared),digits=0),"%"),size=8)+ labs(x="slam-seq estimate", y="single sample estimate ", title="degradation rate [log]")+ guides(alpha=FALSE)+theme(text = element_text(size=20))
pv
#### Fig. 5, right
cor.func <- function(th,aa){
ss <- summary(lm(fin.deg+log(6) ~ slam.deg,data=aa[msum>th & is.finite(fin.deg) & lab.frac<1],weights=1-lab.frac))
return(c(sqrt(ss$r.squared)*sign(coef(ss)[2,1]),ss$df[2], coef(ss)[2,1]))
##return (c(cor(aa[msum>th,fin.deg],aa[msum>th,slam.deg],method="spearman", use= "pairwise.complete.obs"),sum(aa[msum>th,is.finite(fin.deg+slam.deg) ])))
}
cor.data <- data.table(thresh=c(0,100,200,500,1000))
cort <- matrix(NA,5,3)
dft <- matrix(NA,5,3)
##laa <- list(aa1,aa2,aa3,aa4,aa5)
laa <- list(aa1,aa2,aa3)
for (j in seq(length(laa))){
var =paste0(c("cor","df","slope"),j)
fres <- sapply(seq(5),function(i)cor.func(cor.data$thresh[i],laa[[j]]))
for (i in seq(3)){
cor.data[,(var[i]) := fres[i,]]
}
}
cor.data[,quant1:=df1/df1[1]]
cor.data[,quant2:=df2/df2[1]]
cor.data[,quant3:=df3/df3[1]]
pc <- ggplot(cor.data,aes(x=thresh/2))+geom_line(aes(y=cor1,color="replicate 1"))+geom_line(aes(y=cor2,color="replicate 2"))+geom_line(aes(y=cor3,color="replicate 3"))+scale_y_continuous(lim=c(0,0.7))+theme_classic()+theme(text = element_text(size=20),legend.position=c(0.8,0.5),axis.text=element_text(angle=0,size=12)) +geom_point(data=cor.data[thresh==200,],mapping=aes(y=cor1, color="replicate 1"),size=2)
pc <- pc+ scale_x_continuous(breaks=cor.data[,thresh/2],label=cor.data[,paste0(thresh/2,"\n(",format(100-100*(quant1+quant2+quant3)/3,digits=2),"%)")],name="expression threshold [TPM (and quantiles)]") + labs(x="expression threshold [TPM (and quantiles)]",y="correlation",color="")
pc
grid.arrange(pv,pc,nrow=1)
dev.copy2pdf(file=figpath("slamseq_comp.pdf"),onefile=T)
############# Figure 6 and sup Fig D8 ##############################333
### generate inspect rates
if (with.inspect.comp){
library(INSPEcT)
sset = c(1:nrow(data.WT10))
data.WT10[,p.exon.var:= apply(cbind(P_1_WT_10_8d.exon,P_2_WT_10_8d.exon,P_3_WT_10_8d.exon),1,var)]
lfit <- loess(log(p.exon.var)~log(P_1_WT_10_8d.exon),data = data.WT10[is.finite(log(p.exon.var)+log(P_1_WT_10_8d.exon))],span=0.1)
p.smooth.exon.var=predict(lfit,newdata=data.WT10)
data.WT10[,p.smooth.exon.var:=exp(p.smooth.exon.var)]
data.WT10[,p.intron.var:= apply(cbind(P_1_WT_10_8d.intron,P_2_WT_10_8d.intron,P_3_WT_10_8d.intron),1,var)]
lfit <- loess(log(p.intron.var)~log(P_1_WT_10_8d.intron),data = data.WT10[is.finite(log(p.intron.var)+log(P_1_WT_10_8d.intron))],span=0.1)
p.smooth.intron.var=predict(lfit,newdata=data.WT10)
data.WT10[,p.smooth.intron.var:=exp(p.smooth.intron.var)]
data.WT10[,l.exon.var:= apply(cbind(L_1_WT_10_8d.exon,L_2_WT_10_8d.exon,L_3_WT_10_8d.exon),1,var)]
lfit <- loess(log(l.exon.var)~log(L_1_WT_10_8d.exon),data = data.WT10[is.finite(log(l.exon.var)+log(L_1_WT_10_8d.exon))],span=0.1)
l.smooth.exon.var=predict(lfit,newdata=data.WT10)
data.WT10[,l.smooth.exon.var:=exp(l.smooth.exon.var)]
data.WT10[,l.intron.var:= apply(cbind(L_1_WT_10_8d.intron,L_2_WT_10_8d.intron,L_3_WT_10_8d.intron),1,var)]
lfit <- loess(log(l.intron.var)~log(L_1_WT_10_8d.intron),data = data.WT10[is.finite(log(l.intron.var)+log(L_1_WT_10_8d.intron))],span=0.1)
l.smooth.intron.var=predict(lfit,newdata=data.WT10)
data.WT10[,l.smooth.intron.var:=exp(l.smooth.intron.var)]
#plot(data.WT10[is.finite(log(p.exon.var)+log(P_1_WT_10_8d.exon)),log(P_1_WT_10_8d.exon)],logvar)
ggplot(data.WT10,aes(x=log(P_1_WT_10_8d.exon),y=0.5*log(p.exon.var)))+geom_point(alpha=0.05)+theme_classic() + geom_smooth(span=0.1)+ geom_abline(aes(slope=1,intercept=0),color="red")
ggplot(data.WT10,aes(x=log(P_1_WT_10_8d.intron),y=0.5*log(p.intron.var)))+geom_point(alpha=0.05)+theme_classic() + geom_smooth(span=0.1) + geom_abline(aes(slope=1,intercept=0),color="red")
ggplot(data.WT10,aes(x=log(L_1_WT_10_8d.exon),y=0.5*log(l.exon.var)))+geom_point(alpha=0.05)+theme_classic() + geom_smooth(span=0.1)+ geom_abline(aes(slope=1,intercept=0),color="red")
ggplot(data.WT10,aes(x=log(L_1_WT_10_8d.intron),y=log(l.intron.var)))+geom_point(alpha=0.05)+theme_classic() + geom_smooth(span=0.1)+ geom_abline(aes(slope=1,intercept=0),color="red")
## gfit <- gam(log(p.exon.var)~log(P_1_WT_10_8d.exon),data = data.WT10[is.finite(log(p.exon.var)+log(P_1_WT_10_8d.exon))])
## sm <- gam(gfit,data=data.WT10)
generate.inspect.rates <- function(fname,idata.WT10,sset,benchmark=FALSE){
insp.rates <- list()
for (i in seq(1,3)){
p.ex <- paste("P",i,"WT_10_8d.exon",sep="_")
p.intr <- paste("P",i,"WT_10_8d.intron",sep="_")
l.ex <- paste("L",i,"WT_10_8d.exon",sep="_")
l.intr <- paste("L",i,"WT_10_8d.intron",sep="_")
exonExpMat <- matrix(idata.WT10[[p.ex]][sset],ncol=1)
intronExpMat <- matrix(idata.WT10[[p.intr]][sset],ncol=1)
exonVarMat <- matrix(idata.WT10[sset,p.smooth.exon.var] ,ncol=1,nrow=length(sset))
intronVarMat <- matrix(idata.WT10[sset,p.smooth.intron.var] ,ncol=1,nrow=length(sset))
rownames(exonExpMat) <- idata.WT10$rn[sset]
rownames(intronExpMat) <- idata.WT10$rn[sset]
rownames(exonVarMat) <- idata.WT10$rn[sset]
rownames(intronVarMat) <- idata.WT10$rn[sset]
exonExpNac <- matrix(idata.WT10[[l.ex]][sset],ncol=1)
intronExpNac <- matrix(idata.WT10[[l.intr]][sset],ncol=1)
exonVarNac <- matrix(idata.WT10[sset,l.smooth.exon.var] ,ncol=1,nrow=length(sset))
intronVarNac <- matrix(idata.WT10[sset,l.smooth.intron.var] ,ncol=1,nrow=length(sset))
rownames(exonExpNac) <- idata.WT10$rn[sset]
rownames(intronExpNac) <- idata.WT10$rn[sset]
rownames(exonVarNac) <- idata.WT10$rn[sset]
rownames(intronVarNac) <- idata.WT10$rn[sset]
matureExp <- list(exonsExpressions=exonExpMat, intronsExpressions=intronExpMat, exonsVariance=exonVarMat,intronsVariance=intronVarMat)
nacentExp <- list(exonsExpressions=exonExpNac, intronsExpressions=intronExpNac, exonsVariance=exonVarNac,intronsVariance=intronVarNac)
atoc <- system.time({
inspObj<-newINSPEcT(tpts=c(1/6),labeling_time=1/6,nascentExpressions=nacentExp,matureExpressions=matureExp,degDuringPulse=FALSE, preexisting=TRUE)
insp.rates[[i]] <- data.frame(rn = ratesFirstGuess(inspObj,'name'))
insp.rates[[i]][[paste("isynthesis",i,sep=".")]] <- ratesFirstGuess(inspObj,'synthesis')
insp.rates[[i]][[paste("iprocessing",i,sep=".")]] <- ratesFirstGuess(inspObj,'processing')
insp.rates[[i]][[paste("idegradation",i,sep=".")]] <- ratesFirstGuess(inspObj,'degradation')
})
if (benchmark){
return(c(n.inspect=length(sset),elapsed.inspect=atoc[1]+atoc[2],n.out.inspect=nrow(insp.rates[[i]])))
}else{
write.csv(insp.rates[[i]],file=paste0(fname,i,".csv"))
}
}
}
bench.ssre <- function(data.WT10,sset){
TPM.data <-data.frame(unlabeled.intron=data.WT10[sset,P_1_WT_10_8d.intron],unlabeled.exon=data.WT10[sset,P_1_WT_10_8d.exon],labeled.intron=data.WT10[sset,L_1_WT_10_8d.intron],labeled.exon=data.WT10[sset,L_1_WT_10_8d.exon])
#tic()
atoc <- system.time(ssre <- singleSampleRateEstimation(TPM.data))
#atoc <- toc()
return(c(n.ssre=length(sset),elapsed.ssre=atoc[1]+atoc[2],n.out.ssre=ssre[is.finite(deg.rate),.N]))
}
benchmarking <- FALSE ## set to TRUE to compare cpu time
inspfname <- "insp_rates_loess_p" # base filename for inspect rates
nbtrans <- nrow(data.WT10)
if (benchmarking){
sample.sizes <- c(10,100,1000,10000,nbtrans)
bench <- c()
for (samp.size in sample.sizes[1:4]){
sset <- sample(nbtrans,samp.size)
b.insp <- generate.inspect.rates(inspfname,data.WT10,sset,benchmark=T)
b.insp
b.ssre <- bench.ssre(data.WT10,sset)
b.ssre
bench <- rbind(bench,c(b.insp,b.ssre))
}
time.ratio <- (bench[,2]*bench[,6])/(bench[,5]*bench[,3])
bench <- cbind(bench,time.ratio)
bench
}else{
sset <- seq(nbtrans)
generate.inspect.rates(inspfname,data.WT10,sset,benchmark=F)
}
tmp1 <- data.WT10
for (i in seq(3)){
insp.rates <- fread(file=paste0(inspfname,i,".csv"))
names(insp.rates)[1] <- "txid"
insp.rates[,2:4] <-log(insp.rates[,2:4])-log(6) ## - log(6) to move from hour^-1 to 10min ^-1 units
tmp1 <- merge(tmp1,insp.rates,by=c("txid"),all=T)
}
comp.insp <- tmp1
al.val <- 0.05
thresh <- 0
cond <- which(comp.insp[,biotype=="protein_coding"])
irate.name <- c("isynthesis","iprocessing","idegradation")
rate.name <- c("prod.rate","proc.rate","deg.rate")
irate.label <- c("synthesis","processing", "degradation")
mlims <- list(c(-7,8),c(-4,3),c(-6,3))
imlims <- list(c(0,8),c(-1,5),c(-2,2))
replid <- c(2,3,1)
cpi <- list()
cp <- list()
ccp <- list()
for (i in seq(3)){ # for all three rates
## plot replicates for inspect
icol1 <- paste(irate.name[i],replid[1],sep=".")
icol2 <- paste(irate.name[i],replid[2],sep=".")
icolx <- sym(icol1)
icoly <- sym(icol2)
ilabx <- paste("repl.",replid[1], "INSPEcT","rate [log]")
ilaby <- paste("repl.",replid[2], "INSPEcT","rate [log]")
rr <- cor(comp.insp[cond,get(icol1)],comp.insp[cond,get(icol2)], method="spearman", use= "pairwise.complete.obs")
cpi[[i]] <- ggplot(comp.insp[cond],aes(x=!!icolx,y=!!icoly))+geom_point(alpha=al.val)+theme_classic()+geom_abline(slope=1,color="red")+scale_x_continuous(limits=mlims[[i]])+scale_y_continuous(limits=mlims[[i]])+annotate("text",x=Inf,y=-Inf,vjust=0,hjust=1,label=paste("R =",format(100*rr,digits=0),"%"),size=8)+xlab(ilabx)+ylab(ilaby)+theme(axis.title.x = element_text(size = 16),axis.title.y = element_text(size = 16), plot.title=element_text(hjust=0.5,size=26))+labs(title=irate.label[i])
## plot replicates for SSRE
col1 <- paste0(rate.name[i],replid[1])
col2 <- paste0(rate.name[i],replid[2])
colx <- sym(col1)
coly <- sym(col2)
labx <- paste("repl.",replid[1], "SSRE","rate [log]")
laby <- paste("repl.",replid[2], "SSRE","rate [log]")
rr <- cor(comp.insp[cond,get(col1)],comp.insp[cond,get(col2)], method="spearman", use= "pairwise.complete.obs")
cp[[i]] <- ggplot(comp.insp[cond],aes(x=!!colx,y=!!coly))+geom_point(alpha=al.val)+theme_classic()+geom_abline(slope=1,color="red")+scale_x_continuous(limits=mlims[[i]])+scale_y_continuous(limits=mlims[[i]])+annotate("text",x=Inf,y=-Inf,vjust=0,hjust=1,label=paste("R =",format(100*rr,digits=0),"%"),size=8)+xlab(labx)+ylab(laby)+theme(axis.title.x = element_text(size = 16),axis.title.y = element_text(size = 16))
## plot inspect vs SSRE estimates
col1 <- paste0(rate.name[i],replid[3])
icol2 <- paste(irate.name[i],replid[3],sep=".")
colx <- sym(col1)
icoly <- sym(icol2)
labx <- paste("repl.",replid[3], "SSRE",irate.label[i],"rate [log]")
ilaby <- paste("repl.",replid[3], "INSPEcT",irate.label[i],"rate [log]")
labx <- "SSRE"
ilaby <- "INSPEcT"
rr <- cor(comp.insp[cond,get(col1)],comp.insp[cond,get(icol2)], method="spearman", use= "pairwise.complete.obs")
ccp[[i]] <- ggplot(comp.insp[cond],aes(x=!!colx,y=!!icoly))+geom_point(alpha=al.val)+theme_classic()+geom_abline(slope=1,color="red")+scale_x_continuous(limits=mlims[[i]])+scale_y_continuous(limits=imlims[[i]])+annotate("text",x=Inf,y=-Inf,vjust=0,hjust=1,label=paste("R =",format(100*rr,digits=0),"%"),size=8)+xlab(labx)+ylab(ilaby)+theme(axis.title.x = element_text(size = 16),axis.title.y = element_text(size = 16), plot.title=element_text(hjust=0.5,size=26) )+labs(title=irate.label[i])
}
spi <- list()
icol1 <- paste(irate.name[1],replid[3],sep=".")
icol2 <- paste(irate.name[2],replid[3],sep=".")
icolx <- sym(icol1)
icoly <- sym(icol2)
ilabx <- paste("INSPEcT",irate.label[1],"rate [log]")
ilaby <- paste("INSPEcT",irate.label[2],"rate [log]")
rr <- cor(comp.insp[cond,get(icol1)],comp.insp[cond,get(icol2)], method="spearman", use= "pairwise.complete.obs")
spi[[1]] <- ggplot(comp.insp[cond],aes(x=!!icolx,y=!!icoly))+geom_point(alpha=al.val)+theme_classic()+scale_x_continuous(limits=imlims[[1]])+scale_y_continuous(limits=imlims[[2]])+annotate("text",x=Inf,y= -Inf,vjust=0,hjust=1,label=paste("R =",format(100*rr,digits=0),"%"),size=8)+xlab(ilabx)+ylab(ilaby)+theme(axis.title.x = element_text(size = 16),axis.title.y = element_text(size = 16))
icol2 <- paste(irate.name[3],replid[3],sep=".")
icoly <- sym(icol2)
ilabx <- paste("repl.",replid[3], "INSPEcT",irate.label[1],"rate [log]")
ilaby <- paste("repl.",replid[3], "INSPEcT",irate.label[3],"rate [log]")
rr <- cor(comp.insp[cond,get(icol1)],comp.insp[cond,get(icol2)], method="spearman", use= "pairwise.complete.obs")
spi[[2]] <- ggplot(comp.insp[cond],aes(x=!!icolx,y=!!icoly))+geom_point(alpha=al.val)+theme_classic()+scale_x_continuous(limits=imlims[[1]])+scale_y_continuous(limits=imlims[[3]])+annotate("text",x=Inf,y=-Inf,vjust=0,hjust=1,label=paste("R =",format(100*rr,digits=0),"%"),size=8)+xlab(ilabx)+ylab(ilaby)+theme(axis.title.x = element_text(size = 16),axis.title.y = element_text(size = 16))
## compare rates with herzog et al
comp1 <- merge(comp.insp[biotype=="protein_coding"],adata,by.x="gene.name",by.y="Name",all.y=T)
comp1[,sum1:=P_1_WT_10_8d.exon+L_1_WT_10_8d.exon]
comp1[,sum2:=P_2_WT_10_8d.exon+L_2_WT_10_8d.exon]
comp1[,sum3:=P_3_WT_10_8d.exon+L_3_WT_10_8d.exon]
aa1i <- comp1[,list(fin.deg=sum(idegradation.1*sum1,na.rm=T)/sum(sum1,na.rm=T),slam.deg=mean(log(log(2))-log(Half.life),na.rm=T),fin.syn=sum(isynthesis.1*sum1,na.rm=T)/sum(sum1,na.rm=T),msum=sum(sum1,na.rm=T),solvable=solvable1[which.max(sum1)],frac.solv=sum(sum1[solvable1=="A"])/sum(sum1),lab.frac=0*sum(lab.frac.1*sum1)/sum(sum1),pre.frac=sum(pre.frac.1*sum1)/sum(sum1),k=sum(k.1*sum1)/sum(sum1)),by=gene.name]
aa1i[fin.deg==0,fin.deg:=NA]
aa2i <- comp1[,list(fin.deg=sum(idegradation.2*sum2,na.rm=T)/sum(sum2,na.rm=T),slam.deg=mean(log(log(2))-log(Half.life),na.rm=T),fin.syn=sum(isynthesis.2*sum2,na.rm=T)/sum(sum2,na.rm=T),msum=sum(sum2,na.rm=T),solvable=solvable2[which.max(sum2)],frac.solv=sum(sum2[solvable2=="A"])/sum(sum2),lab.frac=0*sum(lab.frac.2*sum2)/sum(sum2),pre.frac=sum(pre.frac.2*sum2)/sum(sum2),k=sum(k.2*sum2)/sum(sum2)),by=gene.name]
aa2i[fin.deg==0,fin.deg:=NA]
aa3i <- comp1[,list(fin.deg=sum(idegradation.3*sum3,na.rm=T)/sum(sum3,na.rm=T),slam.deg=mean(log(log(2))-log(Half.life),na.rm=T),fin.syn=sum(isynthesis.3*sum3,na.rm=T)/sum(sum3,na.rm=T),msum=sum(sum3,na.rm=T),solvable=solvable3[which.max(sum3)],frac.solv=sum(sum3[solvable3=="A"])/sum(sum3),lab.frac=0*sum(lab.frac.3*sum3)/sum(sum3),pre.frac=sum(pre.frac.3*sum3)/sum(sum3),k=sum(k.3*sum3)/sum(sum3)),by=gene.name]
aa3i[fin.deg==0,fin.deg:=NA]
icor.data <- data.table(thresh=c(0,100,200,500,1000))
cort <- matrix(NA,5,3)
dft <- matrix(NA,5,3)
laa <- list(aa1i,aa2i,aa3i)
for (j in seq(length(laa))){
var =paste0(c("cor","df","slope"),j)
fres <- sapply(seq(5),function(i)cor.func(cor.data$thresh[i],laa[[j]]))
for (i in seq(3)){
icor.data[,(var[i]) := fres[i,]]
}
}
icor.data[,quant1:=df1/df1[1]]
icor.data[,quant2:=df2/df2[1]]
icor.data[,quant3:=df3/df3[1]]
colsbp <- c(paste0("cor",seq(3)),paste0("slope",seq(3)))
bpdata <- data.table(x=seq(3),cor=icor.data[1,c(get(colsbp[1]),get(colsbp[2]),get(colsbp[3]))], slope=icor.data[1,c(get(colsbp[4]),get(colsbp[5]),get(colsbp[6]))], method="INSPEcT")
bpdata <- rbind(bpdata,data.table(x=seq(3),cor=cor.data[1,c(get(colsbp[1]),get(colsbp[2]),get(colsbp[3]))],slope=cor.data[1,c(get(colsbp[4]),get(colsbp[5]),get(colsbp[6]))], method="SSRE"))
bpdata[method=="SSRE",si:=1]
bpdata[method=="INSPEcT",si:=-1]
pb <- ggplot(bpdata,aes(x=x,y=cor,fill=method))+geom_bar(stat="identity",position="dodge")+theme_classic()+theme(text = element_text(size=20),legend.position="top",legend.title = element_blank())+xlab("replicate")+ylab("correlation and slope") + scale_fill_manual(values=c("blue", "turquoise"))+geom_point(aes(x=x+si*0.25,y=slope,color=method),size=5)
grid.arrange(cpi[[1]],cpi[[2]],cpi[[3]],cp[[1]],cp[[2]],cp[[3]],nrow=2)
dev.copy2pdf(file=figpath("replcor.pdf"),onefile=T)
grid.arrange(ccp[[1]],ccp[[2]],ccp[[3]], pb, spi[[1]],spi[[2]],nrow=2)
dev.copy2pdf(file=figpath("inspcomp.pdf"),onefile=T)
}