-
Notifications
You must be signed in to change notification settings - Fork 8
/
README.Rmd
82 lines (60 loc) · 3.15 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/",
out.width = "100%"
)
```
# The dynamic landscape of peptide function prediction
This curated list collects peer-reviewed machine learning models dedicated to predicting specific properties of peptides.
For an interactive and browse-able list, please visit: https://biogenies.info/peptide-prediction-list/.
```{r, echo=FALSE,message=FALSE,results='asis'}
library(glue)
library(magrittr)
write_entry <- function(x) {
res <- glue("1. {name} ({year}): [publication](https://doi.org/{doi})", .envir = x)
if(is.character(unlist(x[["trainingrepository"]])))
res <- glue(res, "[training repository]({trainingrepository})", .sep = "; ", .envir = x)
if(is.character(unlist(x[["modelrepository"]])))
res <- glue(res, "[model repository]({modelrepository})", .sep = "; ", .envir = x)
if(is.character(unlist(x[["webserver"]])))
res <- glue(res, "[web server]({webserver})", .sep = "; ", .envir = x)
paste0(res, ".")
}
dat <- readRDS("./data/full_dat.RDS")
cat_df <- data.frame(categories = c("antiangiogenic", "antibacterial", "antibiofilm", "anticancer", "antifungal", "antihypertensive",
"antiinflammatory", "antimicrobial", "antiparasitic", "antiviral",
"blood-brain barrier", "cell-penetrating", "chemotactic", "neuropeptides",
"quorum sensing", "surface-binding", "toxic"),
nice_names = c("Antiangiogenic peptides", "Antibacterial peptides (ABP)",
"Antibiofilm peptides", "Anticancer peptides (ACP)", "Antifungal peptides (AFP)",
"Antihypertensive peptides", "Antiinflammatory peptides (AIP)",
"Antimicrobial peptides (AMP)", "Antiparasitic peptides (APP)",
"Antiviral peptides (AVP)", "Blood-brain barrier peptides (BBP)",
"Cell-penetrating peptides (CPP)", "Chemotactic peptides ",
"Neuropeptides peptides", "Quorum sensing peptides",
"Surface-binding peptides", "Toxic peptides (TP)"))
all_tools <- sapply(1L:nrow(cat_df), function(ith_category_id) {
part_dat <- dat[dat[[cat_df[ith_category_id, "categories"]]], ]
row_order <- order(part_dat[["name"]])
paste0(paste0("## ", cat_df[ith_category_id, "nice_names"], "\n\n"),
paste0(sapply(row_order, function(ith_row)
write_entry(part_dat[ith_row, ])
), collapse = "\n"), "\n\n\n")
})
links <- gsub(pattern = " ", replacement = "-", x = cat_df[["nice_names"]]) %>%
gsub(pattern = "[()]", replacement = "", x = .) %>%
tolower() %>%
paste0("(#", ., ")")
cat(paste0("- [", cat_df[["nice_names"]], "]", links), "\n\n", sep = "\n")
cat(all_tools, sep = "\n")
```
### About and citation
```{r, echo=FALSE,results='asis'}
cat(readLines("./data/citation.md"), sep = "\n")
```