-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathcreate_pointcloud.py
119 lines (90 loc) · 4.07 KB
/
create_pointcloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
from pathlib import Path
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.model as module_arch
from utils.parse_config import ConfigParser
from utils import to, PLYSaver, DS_Wrapper
import torch.nn.functional as F
def main(config):
logger = config.get_logger('test')
output_dir = Path(config.config.get("output_dir", "saved"))
output_dir.mkdir(exist_ok=True, parents=True)
file_name = config.config.get("file_name", "pc.ply")
use_mask = config.config.get("use_mask", True)
roi = config.config.get("roi", None)
max_d = config.config.get("max_d", 30)
min_d = config.config.get("min_d", 3)
start = config.config.get("start", 0)
end = config.config.get("end", -1)
# setup data_loader instances
data_loader = DataLoader(DS_Wrapper(config.initialize('data_set', module_data), start=start, end=end), batch_size=1, shuffle=False, num_workers=8)
# build model architecture
model = config.initialize('arch', module_arch)
logger.info(model)
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
mask_fill = 32
n = data_loader.batch_size
target_image_size = data_loader.dataset.dataset.target_image_size
plysaver = PLYSaver(target_image_size[0], target_image_size[1], min_d=min_d, max_d=max_d, batch_size=n, roi=roi, dropout=.75)
plysaver.to(device)
pose_buffer = []
intrinsics_buffer = []
mask_buffer = []
keyframe_buffer = []
depth_buffer = []
buffer_length = 5
min_hits = 1
key_index = buffer_length // 2
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(data_loader)):
data = to(data, device)
# if not torch.any(pose_distance_thresh(data, spatial_thresh=1)):
# continue
result = model(data)
if not isinstance(result, dict):
result = {"result": result[0]}
output = result["result"]
if "cv_mask" not in result:
result["cv_mask"] = output.new_zeros(output.shape)
# mask = ((result["cv_mask"] >= .1) & (output >= 1 / max_d)).to(dtype=torch.float32)
mask = (result["cv_mask"] >= .1).to(dtype=torch.float32)
mask = (F.conv2d(mask, mask.new_ones((1, 1, mask_fill+1, mask_fill+1)), padding=mask_fill // 2) < 1).to(dtype=torch.float32)
pose_buffer += data["keyframe_pose"]
intrinsics_buffer += [data["keyframe_intrinsics"]]
mask_buffer += [mask]
keyframe_buffer += [data["keyframe"]]
depth_buffer += [output]
if len(pose_buffer) >= buffer_length:
pose = pose_buffer[key_index]
intrinsics = intrinsics_buffer[key_index]
keyframe = keyframe_buffer[key_index]
depth = depth_buffer[key_index]
mask = (torch.sum(torch.stack(mask_buffer), dim=0) > buffer_length - min_hits).to(dtype=torch.float32)
if use_mask:
depth *= mask
plysaver.add_depthmap(depth, keyframe, intrinsics, pose)
del pose_buffer[0]
del intrinsics_buffer[0]
del mask_buffer[0]
del keyframe_buffer[0]
del depth_buffer[0]
with open(output_dir / file_name, "wb") as f:
plysaver.save(f)
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
config = ConfigParser(args)
main(config)