You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Using the preloaded example sentences in the ADIDA interface, for instance:
"بدي دوب قلي قلي بجنون بحبك انا مجنون ما بنسى حبك يوم"
I get a score of 95.9% for Beirut
When I try to predict the same sentence using camel_tools, I get a different result. For example, using model26 which I assume is the same as in ADIDA
from camel_tools.dialectid import DIDModel26
did = DIDModel26.pretrained()
did.predict(['بدي دوب قلي قلي بجنون بحبك انا مجنون ما بنسى حبك يوم'])
I get the following scores: [DIDPred(top='ALE', scores={'ALE': 0.2744463749182225, 'ALG': 0.0019964477414507772, 'ALX': 0.0017124356871910278, 'AMM': 0.04793813798943018, ...
Similarly using model6, I also get different and lower scores than the online interface (but at least dialect is correct).
from camel_tools.dialectid import DIDModel6
did = DIDModel6.pretrained()
did.predict(['بدي دوب قلي قلي بجنون بحبك انا مجنون ما بنسى حبك يوم'])
I get the following scores: [DIDPred(top='BEI', scores={'BEI': 0.5475092868164938, 'CAI': 0.05423997031019218, 'DOH': 0.018378809169102468, 'MSA': 0.003793013408907513, 'RAB': 0.0018751946461352397, 'TUN': 0.37420372564916876})]
The text was updated successfully, but these errors were encountered:
camel_tools 1.5.2 on mac 14.1.1
Using the preloaded example sentences in the ADIDA interface, for instance:
"بدي دوب قلي قلي بجنون بحبك انا مجنون ما بنسى حبك يوم"
I get a score of 95.9% for Beirut
When I try to predict the same sentence using camel_tools, I get a different result. For example, using model26 which I assume is the same as in ADIDA
I get the following scores:
[DIDPred(top='ALE', scores={'ALE': 0.2744463749182225, 'ALG': 0.0019964477414507772, 'ALX': 0.0017124356871910278, 'AMM': 0.04793813798943018, ...
Similarly using model6, I also get different and lower scores than the online interface (but at least dialect is correct).
I get the following scores:
[DIDPred(top='BEI', scores={'BEI': 0.5475092868164938, 'CAI': 0.05423997031019218, 'DOH': 0.018378809169102468, 'MSA': 0.003793013408907513, 'RAB': 0.0018751946461352397, 'TUN': 0.37420372564916876})]
The text was updated successfully, but these errors were encountered: