-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbouncing_ball-pytor.py
354 lines (293 loc) · 12.2 KB
/
bouncing_ball-pytor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# -*- coding: utf-8 -*-
"""
Created on Tue May 22 14:07:01 2018
Simple video prediction task -- NN test
@author: Craig
"""
from bouncing_ball_utils import buildBouncingBallVideo
from convlstm import ConvLSTM
from convrnn import Conv2DRNN, Conv2DRNNCell
import cv2, numpy as np, os, random, math
import os.path as osp
import time
import datetime
import skvideo
#skvideo.setFFmpegPath('/usr/local/lib/python2.7/dist-packages/ffmpeg/')
import skvideo.io as vidio
import torch, torch.nn as nn, torch.optim as optim
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import argparse
import shutil
INPUT_SIZE = 128
NUM_FRAMES = 100
NUM_EPOCHS = 100
KERNEL_SIZE = 3
PADDING = KERNEL_SIZE // 2
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':.3f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count if self.count != 0 else 0
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, prefix="", *meters):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def printb(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
class VideoNet(nn.Module):
"""
Generate a network for predicting video
"""
def __init__(self, device, debug=False, **kwargs):
super(VideoNet, self).__init__()
self.rnn_layers = nn.ModuleDict()
self.convT = nn.ModuleDict()
self.conv = nn.ModuleDict()
self.device = device
self.debug = debug
for i in [3, 6, 12, 24]:
self.rnn_layers[str(i)] = Conv2DRNNCell(i, 3, 2*i, kernel_size=(KERNEL_SIZE, KERNEL_SIZE),
padding=(PADDING, PADDING))
self.convT[str(i)] = nn.ConvTranspose2d(2*i, i, kernel_size=3, stride=2,
padding=PADDING, output_padding=1)
self.conv[str(i)] = nn.Conv2d(3*i, i, kernel_size=KERNEL_SIZE, padding=PADDING)
self.maxpool = nn.MaxPool2d((2,2))
self.dropout = nn.Dropout2d(0.1)
def forward(self, batch_input, debug=False):
loss = nn.MSELoss(reduction='mean')
rnn_outputs = {}
batch_input.cuda(self.device)
layer = batch_input # layer is [NBatch, NFrames, 3, H, W], H = W = size
height = batch_input.data.size()[3]
assert(batch_input.data.size()[4] == height) # height = width
assert(2 ** math.log(height, 2) == height) # height is a power of 2
print("Running forward")
for i in [3, 6, 12, 24]:
_, rnn_outputs[i] = self.rnn_layers[str(i)].forward(layer)
# rnn_outputs is [NBatch, NFrames, 2*i, H(layer), W(layer)]
layer = torch.stack([self.dropout(self.maxpool(x)) for x in torch.unbind(rnn_outputs[i], 0)], 0)
# layer is [NBatch, NFrames, 2*i, H/2, W/2]
if self.debug:
print(self.rnn_layers[str(i)].weight.data)
for i in [24, 12, 6, 3]:
layer = torch.stack([self.dropout(self.convT[str(i)].forward(x)) for x in torch.unbind(layer, 0)], 0)
# layer is [NBatch, NFrames, i, 2*H(layer), 2*W(layer)]
layer = torch.cat([rnn_outputs[i], layer], dim=2)
# layer is [NBatch, NFrames, 3*i, 2*H(layer), 2*W(layer)]
layer = torch.stack([self.conv[str(i)].forward(x)
for x in torch.unbind(layer, 0)], 0)
# layer is [NBatch, NFrames, i, 2*H(layer), 2*W(layer)]
if self.debug:
print(self.convT[str(i)].weight.data)
if not self.training:
return loss(batch_input, layer), layer
return loss(batch_input, layer)
def train(epoch, video_size, model, optimizer_model,
samples_per_epoch = 1000, batch_size=10):
losses = AverageMeter('Loss', ':6.4f')
batch_time = AverageMeter('Time', ':6.3f')
end = time.time()
model.train()
print("Craig Alpha: {:d},{:d},{:d}".format(batch_size, NUM_FRAMES, video_size))
n_iters = int(samples_per_epoch / batch_size)
print(str(n_iters))
for iter in range(n_iters):
video_inputs = np.zeros([batch_size, NUM_FRAMES, 3, video_size, video_size])
for i in range(batch_size):
num_balls = random.randint(4,12)
video_input = buildBouncingBallVideo(num_balls,
[video_size, video_size],
NUM_FRAMES)
video_inputs[i,...] = np.squeeze(np.stack(np.split(video_input, 3, axis=3), 1))
data = torch.from_numpy(video_inputs).float()
if torch.cuda.is_available():
data = data.cuda()
inputs = Variable(data)
print("Built inputs for iter {}".format(iter))
loss = model(inputs)
losses.update(loss, batch_size)
optimizer_model.zero_grad()
loss.sum().backward()
optimizer_model.step()
#losses[epoch] += loss.data[0]
batch_time.update(time.time() - end)
end = time.time()
if epoch > 0:
print(epoch, loss.item())
def test(model, video_size, save_output=False):
num_tests = 100
batch_size = 15
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':6.4f')
progress = ProgressMeter(num_tests, 'Test: ', batch_time, losses)
model.eval()
video_output = None
with torch.no_grad():
end = time.time()
for iter in range(num_tests):
video_inputs = np.zeros([batch_size, NUM_FRAMES, 3, video_size, video_size])
for i in range(batch_size):
num_balls = random.randint(4,12)
video_input = buildBouncingBallVideo(num_balls,
[video_size, video_size],
NUM_FRAMES)
video_inputs[i,...] = np.squeeze(np.stack(np.split(video_input, 3, axis=3), 1))
inputs = Variable(torch.from_numpy(video_inputs).float())
loss, outputs = model(inputs)
losses.update(loss, batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if iter % 20 == 0:
progress.printb(iter)
if iter == num_tests - 1 and save_output:
diffs = np.squeeze(((outputs.data).cpu().numpy())[-1,...] - video_inputs[-1,...])
video_output = np.squeeze(np.stack(np.split(np.abs(diffs), 3, axis=1), 4)).astype(int)
print(video_output.shape)
return losses.avg, video_output
def evaluate(model, video_file):
model.eval()
vf_data = vidio.vread(video_file)
print('Test video size: ')
print(vf_data.shape)
nf, h, w, _ = vf_data.shape
if nf > 128:
vf_data = vf_data[nf/2 - 64 : nf/2 + 64,...]
if h > 128:
vf_data = vf_data[:, h/2 - 64 : h/2 + 64, ...]
if w > 128:
vf_data = vf_data[:,:, w/2 - 64 : w/2 + 64, ...]
video_inputs = np.expand_dims(np.transpose(vf_data,(0,3,1,2)), axis=0)
inputs = Variable(torch.from_numpy(video_inputs).float())
loss, outputs = model(inputs)
out_data = (outputs.data).cpu().numpy())[-1,...]
diffs = np.abs(np.squeeze(out_data - video_inputs[-1,...]))
video_output = np.squeeze(np.stack(np.split(np.abs(diffs), 3, axis=1), 4)).astype(int)
return loss, video_output
def main():
parser = argparse.ArgumentParser(description='Train video prediction model')
parser.add_argument('--just_video', action='store_true',
help="flag to just generate one video")
parser.add_argument('--debug', action='store_true',
help="outputs weights in training for debug purposes")
parser.add_argument('--size', type=int, default=512,
help="size of the square video patch (default: 512)")
parser.add_argument('--max-epoch', default=NUM_EPOCHS, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--test', action='store_true', help="test evaluation only")
parser.add_argument('--evaluate', type=str, default='',
help="evaluate on an input video")
parser.add_argument('--save-dir', type=str, default='logs')
parser.add_argument('--use-cpu', action='store_true', help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
if args.just_video:
out_video = buildBouncingBallVideo(20, [args.size, args.size], NUM_FRAMES)
print(out_video.shape)
vidio.vwrite("test_video.mp4", out_video)
return
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
device = torch.device('cuda:0' if use_gpu else 'cpu')
if not args.test:
print(osp.join(args.save_dir, 'log_train.txt'))
else:
print(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
else:
print("Currently using CPU (GPU is highly recommended)")
print("Initializing model")
model = VideoNet(device, args.debug)
print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0))
print(model)
start_epoch = args.start_epoch
optimizer_model = optim.Adam(model.parameters(), lr=args.lr)
print("Optimizer set up")
if args.resume:
print("Loading checkpoint from '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
if use_gpu:
print("Using GPU")
model = nn.DataParallel(model).cuda()
else:
print("Not using GPU")
if args.test:
print("Evaluate test score only")
test(model, args.size)
return
if args.evaluate:
print("Evaluate performance on input video")
score, video_output = evaluate(model, args.evaluate)
print("Score = " + str(score))
if not video_output is None:
vidio.vwrite('evaluate_diff.mp4', video_output)
return
start_time = time.time()
train_time = 0
best_rank1 = -np.inf
best_epoch = 0
print("==> Start training")
for epoch in range(start_epoch, args.max_epoch):
start_train_time = time.time()
train(epoch, args.size, model, optimizer_model)
train_time += time.time() - start_train_time
print("Trained epoch {}".format(epoch))
if (epoch+1) % 5 == 0 or (epoch+1) == args.max_epoch:
print("==> Test: {}".format(epoch))
rank1, video_output = test(model, args.size, True)
if not video_output is None:
vidio.vwrite('output_diff{:d}.mp4'.format(epoch), video_output)
is_best = rank1 > best_rank1
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_path = osp.join(args.save_dir, 'checkpoint_ep{:d}.pth.tar'.format(epoch+1))
torch.save({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch }, save_path)
if is_best:
shutil.copy(save_path, osp.join(args.save_dir, 'model-best.pth.tar'))
print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
elapsed = round(time.time() - start_time)
elapsed = datetime.timedelta(seconds=elapsed)
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, datetime.timedelta(seconds=train_time)))
if __name__ == '__main__':
main()