-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_slic.R
40 lines (33 loc) · 1.37 KB
/
extract_slic.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Creates dataframe with values from rasters over SLIC shapefile polygons
library('tidyverse')
library('terra')
library('collapse')
library('sf')
input_folder <- 'data/model_input/rasters'
slic_folder <- 'data/model_input/slic/2020'
categorical_variables <- c(
"hemerobia",
"holdridge",
"land_cover")
# Read files
sf <- terra::vect(paste0(slic_folder,'/slic.shp'))
raster_files <- list.files(input_folder, ".tif$", full.names = TRUE)
r_variables <- rast(raster_files)
# Assign name to rasters
col_names <- gsub('.tif','',raster_files)
col_names <- gsub(paste0(input_folder,'/'),'',col_names)
names(r_variables) <- col_names
# Divide rasters into categorical and numerical
numerical_variables <- setdiff(col_names, categorical_variables)
r_cat <- r_variables[[categorical_variables]]
r_num <- r_variables[[numerical_variables]]
# Extract values over shapefile with mode for categorical and mean for numerical
extract_cat <- terra::extract(r_cat, sf, fun='modal',
na.rm=TRUE)
extract_num <- terra::extract(r_num, sf, fun='mean',
na.rm=TRUE)
# Join categorical and numerical and save dataframe
df_final <- extract_num %>%
left_join(extract_cat, by=c('ID'))
write.csv(df_final, paste0(slic_folder,'/df_xgb_input_slic.csv'),
row.names = FALSE)