-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtabulated.cpp
130 lines (95 loc) · 3.43 KB
/
tabulated.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include "rplib/tabulated.h"
#include "rplib/distributionwithtrend.h"
#include "nrlib/flens/nrlib_flens.hpp"
#include "nrlib/random/distribution.hpp"
#include "nrlib/random/uniform.hpp"
#include "nrlib/random/normal.hpp"
Tabulated::Tabulated()
{
}
Tabulated::Tabulated(std::vector<DistributionWithTrend *> elastic,
NRLib::Grid2D<double> correlation_matrix)
{
n_variables_ = static_cast<int>(elastic.size());
elastic_variables_ = elastic;
Sigma_sqrt_.Resize(n_variables_, n_variables_, 0);
normal_ = new NRLib::Normal();
CalculateSigmaSqrt(correlation_matrix);
}
Tabulated::~Tabulated()
{
delete normal_;
}
std::vector<double>
Tabulated::GetQuantileValues(const std::vector<double> & u,
double s1,
double s2)
{
NRLib::Vector ind_normal_samples(n_variables_);
for (int i=0; i < static_cast<int>(u.size()); ++i) {
double sample = normal_->Quantile(u[i]);
ind_normal_samples(i) = sample;
}
NRLib::Matrix Sigma_sqrt(n_variables_,n_variables_);
for(int i=0; i<n_variables_; i++) {
for(int j=0; j<n_variables_; j++)
Sigma_sqrt(i,j) = Sigma_sqrt_(i,j);
}
NRLib::Vector A(n_variables_);
A = Sigma_sqrt * ind_normal_samples;
std::vector<double> correlated_samples(n_variables_);
for(int i=0; i<n_variables_; i++)
correlated_samples[i] = A(i);
std::vector<double> correlated_u(n_variables_);
for(int i=0; i<n_variables_; i++)
correlated_u[i] = normal_->Cdf(correlated_samples[i]);
std::vector<double> correlated_elastic_variables(n_variables_);
for(int i=0; i<n_variables_; i++)
correlated_elastic_variables[i] = elastic_variables_[i]->GetQuantileValue(correlated_u[i], s1, s2);
return(correlated_elastic_variables);
}
std::vector<double>
Tabulated::GenerateSample(std::vector<double> & u, double s1, double s2)
{
u.resize(n_variables_);
for(int i=0; i<n_variables_; i++)
u[i] = NRLib::Random::Unif01();
std::vector<double> correlated_elastic_variables(n_variables_);
correlated_elastic_variables = GetQuantileValues(u, s1, s2);
return(correlated_elastic_variables);
}
void
Tabulated::CalculateSigmaSqrt(const NRLib::Grid2D<double> & Sigma)
{
// Calculate square root of positive definite correlation matrix
NRLib::Matrix corr_matrix(n_variables_,n_variables_);
for(int i=0; i<n_variables_; i++) {
for(int j=0; j<n_variables_; j++)
corr_matrix(i,j) = Sigma(i,j);
}
NRLib::Vector eigen_values(n_variables_);
NRLib::Matrix eigen_vectors(n_variables_,n_variables_);
NRLib::ComputeEigenVectors(corr_matrix, eigen_values, eigen_vectors);
NRLib::Matrix eigen_vectors_transpose(n_variables_,n_variables_);
for(int i=0; i<n_variables_; i++) {
for(int j=0; j<n_variables_; j++)
eigen_vectors_transpose(j,i) = eigen_vectors(i,j);
}
NRLib::Matrix lambda_square(n_variables_,n_variables_);
for(int i=0; i<n_variables_; i++) {
for(int j=0; j<n_variables_; j++) {
if(i == j)
lambda_square(i,j) = std::sqrt(eigen_values(i));
else
lambda_square(i,j) = 0;
}
}
NRLib::Matrix Sigma_sqrt1(n_variables_,n_variables_);
NRLib::Matrix Sigma_sqrt(n_variables_,n_variables_);
Sigma_sqrt1 = eigen_vectors * lambda_square;
Sigma_sqrt = Sigma_sqrt1 * eigen_vectors_transpose;
for(int i=0; i<n_variables_; i++) {
for(int j=0; j<n_variables_; j++)
Sigma_sqrt_(i,j) = Sigma_sqrt(i,j);
}
}