-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp-isaquick-riscv.tex
875 lines (649 loc) · 26.7 KB
/
app-isaquick-riscv.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
\newcommand{\optype}[1]{\subsection{#1 Instructions}}
{
\setlength{\parindent}{0cm}
\input{def-riscv-insns}
\input{app-isaquick-riscv-macros}
\chapter{CHERI-RISC-V ISA Quick Reference}
\label{app:isaquick-riscv}
\section{Primary New Instructions}
The RISC-V specification reserves 4 major opcodes for extensions: 11 (0xb / 0b0001011), 43 (0x2b / 0b0101011), 91 (0x5b / 0b1011011), and 123 (0x7b / 0b1111011).
The proposed CHERI encodings use major opcode 0x5b for all capability instructions.
All register-register operations use the RISC-V R-type or I-type encoding formats.
\optype{Capability-Inspection}
\mrnote{What is the RISC-V equivalent of CPtrCmp?}
\jwnote{Wouldn't the legacy comparisons do the trick? (described above)}
\mrnote{Given that, unlike CHERI-MIPS, CHERI RISC-V does not yet
have a backwards-compatibility problem, we might take the opportunity
to rationalize the bit positions of permission bits.}
\mmnote{I would prefer being able to click on the quick reference and jumping to the RISC-V specific Sail definitions.}
\rvcheriheader
\rvcheriisaquick{CGetPerm}
\rvcheriisaquick{CGetType}
\rvcheriisaquick{CGetBase}
\rvcheriisaquick{CGetLen}
\rvcheriisaquick{CGetTag}
\rvcheriisaquick{CGetSealed}
\rvcheriisaquick{CGetOffset}
\rvcheriisaquick{CGetFlags}
\rvcheriisaquick{CGetHigh}
\rvcheriisaquick{CGetTop}
\dcnote{CGetPCC is a Special}
\dcnote{CGetPCCSetOffset is AIUPC}
\optype{Capability-Modification}
\rvcheriheader
\rvcheriisaquick{CSeal}
\rvcheriisaquick{CUnseal}
\rvcheriisaquick{CAndPerm}
\rvcheriisaquick{CSetFlags}
\rvcheriisaquick{CSetOffset}
\rvcheriisaquick{CSetAddr}
\rvcheriisaquick{CIncOffset}
\rvcheriisaquick{CIncOffsetImm}
\rvcheriisaquick{CSetBounds}
\rvcheriisaquick{CSetBoundsExact}
\rvcheriisaquick{CSetBoundsImm}
\rvcheriisaquick{CSetHigh}
\rvcheriisaquick{CClearTag}
\rvcheriisaquick{CBuildCap}
\rvcheriisaquick{CCopyType}
\rvcheriisaquick{CCSeal}
\rvcheriisaquick{CSealEntry}
\optype{Pointer-Arithmetic}
\dcnote{We might want a variant of these that works with DDC, because it's no longer a GPCR.}
\mrnote{The CHERI-MIPS way to get NULL is CFromPtr of \$zero and \$DDC, which will be a pain if \$DDC is a special register. Do we have a NULL capability register in RISC-V? If \$DDC is a special register, is it more important to have CFromPtr?}
\arnote{In the merged register file model we would have a NULL capability register
zero, which we should also keep in a potential split implementation (and finally add
to CHERI-MIPS as well). In that case we don't need a cfromptr \$zero since we can
just do a CInc/SetOffset \$cOut, \$cNULL, \$gpr.
To get a capability from DDC we should have a CFromDDC/CGetDDCSetOffset.
We also wouldn't need to use a new opcode for this since CToPtr raises an
exception on tag missing. Therefore, using it with the NULL register does not
make sense and we could use that encoding for CFromDDC.
If that complicates the decoder too much we can just keep that as an always
trapping instruction and add a separate CFromDDC opcode.}
\rvcheriheader
\rvcheriisaquick{CToPtr}
\rvcheriisaquick{CFromPtr}
\rvcheriisaquick{CMove}
%\dcnote{We probably shouldn't have these, because RISC-V doesn't have equivalents for integer registers - or we should define these as working on all registers.}
%\mrnote{If we have conditional moves, CMOVZ with a zero register
%can be used instead of CMove.}
%\mrnote{I thought in the MIPS case, we added
%integer and capability conditional moves because they
%were important for performance. CHERI-MIPS was originally planned to
%be MIPS III compatible, and we upgraded to MIPS IV mainly to get
%the integer conditional moves. It seems likely the same performance
%argument will apply to RISC-V.}
%\rvcheriisaquick{CMOVZ}
%\rvcheriisaquick{CMOVN}
%\optype{Pointer-Comparison}
% We inherit most of these from the RISC-V base specification.
% We should add EXEQ, NEXEQ and possibly EQ / NE which are omitted in the base spec
%\ptrcmp[header]{EQ}{0x14}
%\ptrcmp{NE}{0x15}
%\ptrcmp{LT}{0x16}
%\ptrcmp{LE}{0x17}
%\ptrcmp{LTU}{0x18}
%\ptrcmp{LEU}{0x19}
%\ptrcmp{NEXEQ}{0x21}
%\ptrcmp{EXEQ}{0x1a}
\optype{Pointer-Comparison}
\rvcheriisaquick{CTestSubset}
\rvcheriisaquick{CSetEqualExact}
\optype{Control-Flow}
\dcnote{RISC-V branch instructions all take two registers, so we end up with a lot of spare bits if we want to use one for CBTS / CBTU. It's probably better to fit them somewhere else in the opcode map. Given that they're not common (outside of fast path selection for dynamic languages, where they may be performance critical), I'm inclined to suggest that we should omit them for now and later decide if it's better to do fusion on the CGetTag + BEZ / BNZ sequence or add them as new branches.}
\vspace{1.5ex}
\dcnote{We probably don't need CJR to be a separate instruction, because we can use CJALR with the zero register as the link register}
\rvcheriisaquick{JALR.CAP}
\rvcheriisaquick{JALR.PCC}
\vspace{1.5ex}
\rvcheriisaquick{CInvoke}
\optype{Special Capabilty Register Access}
\rvcheriisaquick{CSpecialRW}
\optype{Fast Register-Clearing}
\jwnote{These require 4 instructions to clear a complete register file,
once for each quarter, with an 8-bit mask for each.}
\rvcheriheader
\rvcheriisaquick{CClear}
\rvcheriisaquick{FPClear}
\optype{Adjusting to Compressed Capability Precision}
\rvcheriisaquick{CRoundRepresentableLength}
\rvcheriisaquick{CRepresentableAlignmentMask}
\optype{Tag-Memory Access}
\rvcheriisaquick{CLoadTags}
\rvcheriisaquick{CClearTags}
\optype{Memory Loads with Explicit Address Type}
These memory load instructions explicitly expect either capability addresses
or integer addresses, with bounds coming either from cs1 or \DDC{}
respectively. For non-reserved loads, the encoding of bits 24 to 20 tries to
follow the standard RISC-V mapping for the width and signedness of the memory
access:
\begin{description}
\item [bit 24] 0 to indicate non-reserved load.
\item [bit 23] When 0, the load is DDC constrained. Explicit capability is provided otherwise.
\item [bit 22] When 0, the result of the load is sign-extended, and zero-extended otherwise.
\item [bit 21-20] 00 loads a byte, 01 loads a half-word, 10 loads a word, 11 loads a double-word.
\end{description}
For reserved loads (which require the A extension), the encoding of bits 24 to
20 tries to follow the standard RISC-V mapping for the width of the memory
access:
\begin{description}
\item [bit 24] 1 to indicate LR version of the load.
\item [bit 23] When 0, the load is DDC constrained. Explicit capability is provided otherwise.
\item [bit 22-20] 000 loads a byte, 001 loads a half-word, 010 loads a word, 011 loads a double-word, 100 loads a quad-word/capability.
\end{description}
Note that the RISC-V A extension (atomic) does not add unsigned versions of the
LR instruction.\\
Note that the LQ.\{DDC, CAP\} instructions do not strictly follow this
pattern.\\
\vspace{1em}
\rvcheriheader
\rvcheriisaquick{LB.DDC}
\rvcheriisaquick{LH.DDC}
\rvcheriisaquick{LW.DDC}
\rvcheriisaquick{LC.DDC:RV32}
\rvcheriisaquick{LD.DDC:RV64/128}
\rvcheriisaquick{LC.DDC:RV64}
\rvcheriisaquick{LQ.DDC:RV128}
\rvcheriisaquick{LBU.DDC}
\rvcheriisaquick{LHU.DDC}
\rvcheriisaquick{LWU.DDC:RV64/128}
\rvcheriisaquick{LDU.DDC:RV128}
\rvcheriisaquick{LB.CAP}
\rvcheriisaquick{LH.CAP}
\rvcheriisaquick{LW.CAP}
\rvcheriisaquick{LC.CAP:RV32}
\rvcheriisaquick{LD.CAP:RV64/128}
\rvcheriisaquick{LC.CAP:RV64}
\rvcheriisaquick{LQ.CAP:RV128}
\rvcheriisaquick{LBU.CAP}
\rvcheriisaquick{LHU.CAP}
\rvcheriisaquick{LWU.CAP:RV64/128}
\rvcheriisaquick{LDU.CAP:RV128}
\rvcheriisaquick{LR.B.DDC}
\rvcheriisaquick{LR.H.DDC}
\rvcheriisaquick{LR.W.DDC}
\rvcheriisaquick{LR.C.DDC:RV32}
\rvcheriisaquick{LR.D.DDC:RV64/128}
\rvcheriisaquick{LR.C.DDC:RV64}
\rvcheriisaquick{LR.Q.DDC:RV128}
\rvcheriisaquick{LR.B.CAP}
\rvcheriisaquick{LR.H.CAP}
\rvcheriisaquick{LR.W.CAP}
\rvcheriisaquick{LR.C.CAP:RV32}
\rvcheriisaquick{LR.D.CAP:RV64/128}
\rvcheriisaquick{LR.C.CAP:RV64}
\rvcheriisaquick{LR.Q.CAP:RV128}
\vspace{1em}
\optype{Memory Stores with Explicit Address Type}
These memory store instructions explicitly expect either capability addresses
or integer addresses, with bounds coming either from cs1 or \DDC{}
respectively. The encoding of bits 11 to 7 tries to follow the standard RISC-V
mapping for the width of the memory access:
\begin{description}
\item [bit 11] When 1 with the A extension, SC version of the store.
\item [bit 10] When 0, the store is DDC constrained. Explicit capability is provided otherwise.
\item [bit 9-7] 000 stores a byte, 001 stores a half-word, 010 stores a word, 011 stores a double-word, 100 stores a quad-word/capability.
\end{description}
\vspace{1em}
\rvcheriheader
\rvcheriisaquick{SB.DDC}
\rvcheriisaquick{SH.DDC}
\rvcheriisaquick{SW.DDC}
\rvcheriisaquick{SC.DDC:RV32}
\rvcheriisaquick{SD.DDC:RV64/128}
\rvcheriisaquick{SC.DDC:RV64}
\rvcheriisaquick{SQ.DDC:RV128}
\rvcheriisaquick{SB.CAP}
\rvcheriisaquick{SH.CAP}
\rvcheriisaquick{SW.CAP}
\rvcheriisaquick{SC.CAP:RV32}
\rvcheriisaquick{SD.CAP:RV64/128}
\rvcheriisaquick{SC.CAP:RV64}
\rvcheriisaquick{SQ.CAP:RV128}
\rvcheriisaquick{SC.B.DDC}
\rvcheriisaquick{SC.H.DDC}
\rvcheriisaquick{SC.W.DDC}
\rvcheriisaquick{SC.C.DDC:RV32}
\rvcheriisaquick{SC.D.DDC:RV64/128}
\rvcheriisaquick{SC.C.DDC:RV64}
\rvcheriisaquick{SC.Q.DDC:RV128}
\rvcheriisaquick{SC.B.CAP}
\rvcheriisaquick{SC.H.CAP}
\rvcheriisaquick{SC.W.CAP}
\rvcheriisaquick{SC.C.CAP:RV32}
\rvcheriisaquick{SC.D.CAP:RV64/128}
\rvcheriisaquick{SC.C.CAP:RV64}
\rvcheriisaquick{SC.Q.CAP:RV128}
\section{Memory-Access via Capability with Offset Instructions}
\optype{Memory-Access}
\dcnote{I'm not certain about operand order for these, because the RISC-V spec is too vague. LC/SC fit into the existing load / store encoding space, capability-base versions use the same layout for loads and stores currently, though there's no reason that we couldn't shuffle things around if it simplifies decoding.}
\vspace{1.5ex}
\ajnote{Jon points out that if preserving the information of what kind of load loaded the pointer in the first place (which happens to be available early in decode, hence not introducing data dependent decoding later on), we can dereference it as a capability or a 64-bit pointer without relying on a new set of load/store instructions. I wonder whether this is a practical approach, or wether things like loading data via a 128-bit load and dereferencing a subset of that data as a 64-bit pointer is ever useful as this would no longer work (in context switches maybe that could be an issue?)}
When using 64-bit capabilities in RV32, the RV64 instructions \texttt{LD} and \texttt{SD} are reused to behave as \texttt{LC} and \texttt{SC} respectively.\\
\begin{bytefield}{32}
\bitheader[endianness=big]{0,6,7,11,12,14,15,19,20,24,25,31}\\
\bitbox{12}{imm}
\bitbox{5}{rs1}
\bitbox{3}{0x3}
\bitbox{5}{cd}
\bitbox{7}{0x3}
\end{bytefield}
\rvcheriasmfmt[RV32]{\rvcheriasminsnref{LC} cd, rs1, imm}
\begin{bytefield}{32}
\bitbox{7}{imm[11:5]}
\bitbox{5}{cs2}
\bitbox{5}{rs1}
\bitbox{3}{0x3}
\bitbox{5}{imm[4:0]}
\bitbox{7}{0x23}
\end{bytefield}
\rvcheriasmfmt[RV32]{\rvcheriasminsnref{SC} cs2, rs1, imm}\\
When using 128-bit capabilities in RV64, the RV128 instructions \texttt{LQ} and \texttt{SQ} \textit{(anticipated encoding)} are reused to behave as \texttt{LC} and \texttt{SC} respectively.\\
\begin{bytefield}{32}
\bitheader[endianness=big]{0,6,7,11,12,14,15,19,20,24,25,31}\\
\bitbox{12}{imm}
\bitbox{5}{rs1}
\bitbox{3}{0x2}
\bitbox{5}{cd}
\bitbox{7}{0xf}
\end{bytefield}
\rvcheriasmfmt[RV64]{\rvcheriasminsnref{LC} cd, rs1, imm}
\begin{bytefield}{32}
\bitbox{7}{imm[11:5]}
\bitbox{5}{cs2}
\bitbox{5}{rs1}
\bitbox{3}{0x4}
\bitbox{5}{imm[4:0]}
\bitbox{7}{0x23}
\end{bytefield}
\rvcheriasmfmt[RV64]{\rvcheriasminsnref{SC} cs2, rs1, imm}\\
\optype{Atomic Memory-Access}
When using 64-bit capabilities in RV32, the RV64A instructions \texttt{LR.D}, \texttt{SC.D} and \texttt{AMOSWAP.D} are reused to behave as \texttt{LR.C}, \texttt{SC.C} and \texttt{AMOSWAP.C} respectively.\\
\begin{bytefield}{32}
\bitheader[endianness=big]{0,6,7,11,12,14,15,19,20,24,25,26,27,31}\\
\bitbox{5}{0x2}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{0x0}
\bitbox{5}{rs1}
\bitbox{3}{0x3}
\bitbox{5}{cd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt[RV32]{\rvcheriasminsnnoref{LR.C} cd, rs1}
\begin{bytefield}{32}
\bitbox{5}{0x3}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{cs2}
\bitbox{5}{rs1}
\bitbox{3}{0x3}
\bitbox{5}{rd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt[RV32]{\rvcheriasminsnnoref{SC.C} rd, cs2, rs1}
\begin{bytefield}{32}
\bitbox{5}{0x1}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{cs2}
\bitbox{5}{rs1}
\bitbox{3}{0x3}
\bitbox{5}{cd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt[RV32]{\rvcheriasminsnnoref{AMOSWAP.C} cd, cs2, rs1}
When using 128-bit capabilities in RV64, the RV64A instructions \texttt{LR.Q}, \texttt{SC.Q} and \texttt{AMOSWAP.Q} \textit{(anticipated encoding)} are reused to behave as \texttt{LR.C}, \texttt{SC.C} and \texttt{AMOSWAP.C} respectively.\\
\begin{bytefield}{32}
\bitheader[endianness=big]{0,6,7,11,12,14,15,19,20,24,25,26,27,31}\\
\bitbox{5}{0x2}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{0x0}
\bitbox{5}{rs1}
\bitbox{3}{0x4}
\bitbox{5}{cd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt[RV64]{\rvcheriasminsnnoref{LR.C} cd, rs1}
\begin{bytefield}{32}
\bitbox{5}{0x3}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{cs2}
\bitbox{5}{rs1}
\bitbox{3}{0x4}
\bitbox{5}{rd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt[RV64]{\rvcheriasminsnnoref{SC.C} rd, cs2, rs1}
\begin{bytefield}{32}
\bitbox{5}{0x1}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{cs2}
\bitbox{5}{rs1}
\bitbox{3}{0x4}
\bitbox{5}{cd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt[RV64]{\rvcheriasminsnnoref{AMOSWAP.C} cd, cs2, rs1}
We do not provide any of the other AMOs at this point when operating on
capability values, as they generally make sense only when operating on integer
values.
Since capabilities have precise bounds, sub-word atomics cannot be implemented
using word-sized atomics. To avoid unnecessary complexity compared with a
non-CHERI RISC-V implementation, we define only \texttt{LR.B}, \texttt{SC.B},
\texttt{LR.H} and \texttt{SC.H}, without any of the corresponding AMOs. We also
require these to be present only in capability mode, but implementations may
choose to always provide them for simplicity.
\begin{bytefield}{32}
\bitheader[endianness=big]{0,6,7,11,12,14,15,19,20,24,25,26,27,31}\\
\bitbox{5}{0x2}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{0x0}
\bitbox{5}{rs1}
\bitbox{3}{0x0}
\bitbox{5}{rd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt{\rvcheriasminsnnoref{LR.B} rd, rs1}
\begin{bytefield}{32}
\bitbox{5}{0x3}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{rs2}
\bitbox{5}{rs1}
\bitbox{3}{0x0}
\bitbox{5}{rd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt{\rvcheriasminsnnoref{SC.B} rd, rs2, rs1}
\begin{bytefield}{32}
\bitbox{5}{0x2}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{0x0}
\bitbox{5}{rs1}
\bitbox{3}{0x1}
\bitbox{5}{rd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt{\rvcheriasminsnnoref{LR.H} rd, rs1}
\begin{bytefield}{32}
\bitbox{5}{0x3}
\bitbox{1}{\riscvbitboxaq}
\bitbox{1}{\riscvbitboxrl}
\bitbox{5}{rs2}
\bitbox{5}{rs1}
\bitbox{3}{0x1}
\bitbox{5}{rd}
\bitbox{7}{0x2f}
\end{bytefield}
\rvcheriasmfmt{\rvcheriasminsnnoref{SC.H} rd, rs2, rs1}
\section{Assembly Programming}
\subsection{Capability Register ABI Names}
Table~\ref{table:riscv-register-names} lists the ABI names of
the capability registers. The ABI names follow from the ABI
names of the RISC-V \textbf{x} registers. All capability registers are
Caller-Save in the hybrid ABI. Capability registers follow
the same save requirements as \textbf{x} registers in the purecap ABI.
\begin{table}[h]
\begin{center}
\begin{tabular}{lllll}
\toprule
Register & ABI Name & Description & Hybrid Saver & Purecap Saver \\
\midrule
c0 & cnull & NULL pointer & - & - \\
c1 & cra & Return address & Caller & Caller \\
c2 & csp & Stack pointer & Caller & Callee \\
c3 & cgp & Global pointer & - & - \\
c4 & ctp & Thread pointer & - & - \\
c5 & ct0 & Temporary/alternate link register & Caller & Caller \\
c6-7 & ct1-2 & Temporaries & Caller & Caller \\
c8 & cs0/cfp & Saved register/frame pointer & Caller & Callee \\
c9 & cs1 & Saved register & Caller & Callee \\
c10-11 & ca0-1 & Function arguments/return values & Caller & Caller \\
c12-17 & ca2-7 & Function arguments & Caller & Caller \\
c18-27 & cs2-11 & Saved registers & Caller & Callee \\
c28-31 & ct3-6 & Temporaries & Caller & Caller \\
\bottomrule
\end{tabular}
\end{center}
\caption{Assembler mnemonics for CHERI RISC-V capability registers}
\label{table:riscv-register-names}
\end{table}
\subsection{Capability Encoding Mode Instructions}
Table~\ref{table:riscv-capmode-instructions} lists uncompressed
instructions which change semantics under capability mode.
Table~\ref{table:riscv-capmode-instructions-rvc} lists compressed
instructions which change semantics under capability mode.
\begin{table}
\begin{center}
\begin{tabular}{ll}
\toprule
Integer Instruction & Capability Instruction \\
\midrule
\texttt{l\{b|h|w|d\}[u] rd, offset(rs1)} & \texttt{cl\{b|h|w|d\}[u] rd, offset(cs1)} \\
\texttt{lc cd, offset(rs1)} & \texttt{clc cd, offset(cs1)} \\
\texttt{s\{b|h|w|d\} rs2, offset(rs1)} & \texttt{cs\{b|h|w|d\} rs2, offset(cs1)} \\
\texttt{sc rs2, offset(rs1)} & \texttt{csc cs2, offset(cs1)} \\
\texttt{fl\{h|w|d|q\} fd, offset(rs1)} & \texttt{cfl\{h|w|d|q\} fd, offset(cs1)} \\
\texttt{fs\{h|w|d|q\} fs2, offset(rs1)} & \texttt{cfs\{h|w|d|q\} fs2, offset(cs1)} \\
\texttt{lr.\{b|h|w|d\} rd, (rs1)} & \texttt{clr.\{b|h|w|d\} rd, (cs1)} \\
\texttt{lr.c cd, (rs1)} & \texttt{clr.c cd, (cs1)} \\
\texttt{sc.\{b|h|w|d\} rd, rs2, (rs1)} & \texttt{csc.\{b|h|w|d\} rd, rs2, (cs1)} \\
\texttt{sc.c cd, cs2, (rs1)} & \texttt{csc.c cd, cs2, (cs1)} \\
\texttt{amo<op>.\{w|d\}[.order] rd, rs2, (rs1)} & \texttt{camo<op>.\{w|d\}[.order] rd, rs2, (cs1)} \\
\texttt{amo<op>.c[.order] cd, cs2, (rs1)} & \texttt{camo<op>.c[.order] cd, cs2, (cs1)} \\
\texttt{auipc rd, offset} & \texttt{auipcc cd, offset} \\
\bottomrule
\end{tabular}
\end{center}
\caption{Uncompressed Instructions Dependent on Encoding Mode}
\label{table:riscv-capmode-instructions}
\end{table}
\begin{table}
\begin{center}
\begin{tabular}{lll}
\toprule
Integer Instruction & Capability Instruction & ISA \\
\midrule
\texttt{c.addi16sp sp, offset} & \texttt{c.cincoffsetimm16csp csp, offset} & - \\
\texttt{c.addi4spn rd, sp, offset} & \texttt{c.cincoffsetimm4cspn cd, csp, offset} & - \\
\texttt{c.jal offset} & \texttt{c.cjal offset} & RV32 \\
\texttt{c.jr rs1} & \texttt{c.cjr cs1} & - \\
\texttt{c.jalr rs1} & \texttt{c.cjalr cs1} & - \\
\texttt{c.l\{w|d\} rd, offset(rs1)} & \texttt{c.cl\{w|d\} rd, offset(cs1)} & - \\
\texttt{c.l\{w|d\}sp rd, offset(sp)} & \texttt{c.cl\{w|d\}csp rd, offset(csp)} & - \\
\texttt{c.s\{w|d\} rs2, offset(rs1)} & \texttt{c.cs\{w|d\} rs2, offset(cs1)} & - \\
\texttt{c.s\{w|d\}sp rs2, offset(sp)} & \texttt{c.cs\{w|d\}csp rs2, offset(csp)} & - \\
\texttt{c.flw fd, offset(rs1)} & \texttt{c.clc cd, offset(cs1)} & RV32 \\
\texttt{c.flwsp fd, offset(sp)} & \texttt{c.clccsp cd, offset(csp)} & RV32 \\
\texttt{c.fsw fs2, offset(rs1)} & \texttt{c.csc cs2, offset(cs1)} & RV32 \\
\texttt{c.fswsp fs2, offset(sp)} & \texttt{c.csccsp cs2, offset(csp)} & RV32 \\
\texttt{c.fld fd, offset(rs1)} & \texttt{c.cfld fd, offset(cs1)} & RV32 \\
\texttt{c.fldsp fd, offset(sp)} & \texttt{c.cfldcsp fd, offset(csp)} & RV32 \\
\texttt{c.fsd fs2, offset(rs1)} & \texttt{c.cfsd fs, offset(cs1)} & RV32 \\
\texttt{c.fsdsp fs2, offset(sp)} & \texttt{c.cfsdcsp fs, offset(csp)} & RV32 \\
\texttt{c.fld fd, offset(rs1)} & \texttt{c.clc cd, offset(cs1)} & RV64 \\
\texttt{c.fldsp fd, offset(sp)} & \texttt{c.clccsp cd, offset(csp)} & RV64 \\
\texttt{c.fsd fs2, offset(rs1)} & \texttt{c.csc cs, offset(cs1)} & RV64 \\
\texttt{c.fsdsp fs2, offset(sp)} & \texttt{c.csccsp cs, offset(csp)} & RV64 \\
\bottomrule
\end{tabular}
\end{center}
\caption{Compressed Instructions Dependent on Encoding Mode}
\label{table:riscv-capmode-instructions-rvc}
\end{table}
Table~\ref{table:riscv-capmode-pseudo-remove} lists psuedoinstructions
removed in capability mode.
Table~\ref{table:riscv-capmode-pseudo-add} lists psuedoinstructions
added in capability mode.
\begin{table}
\begin{center}
\begin{tabular}{ll}
\toprule
Pseudoinstruction & Meaning \\
\midrule
\texttt{la rd, symbol} & Load address \\
\texttt{lla rd, symbol} & Load local address \\
\texttt{l\{b|h|w|d\} rd, symbol} & Load global \\
\texttt{s\{b|h|w|d\} rd, symbol, rt} & Store global \\
\texttt{fl\{w|d\} rd, symbol, rt} & Floating-point load global \\
\texttt{fs\{w|d\} rd, symbol, rt} & Floating-point store global \\
\midrule
\texttt{call symbol} & Call far-away subroutine \\
\texttt{tail symbol} & Tail call far-away subroutine \\
\bottomrule
\end{tabular}
\end{center}
\caption{Pseudoinstructions Removed in Capability Mode}
\label{table:riscv-capmode-pseudo-remove}
\end{table}
\begin{sidewaystable}
\begin{center}
\begin{tabular}{lll}
\toprule
Pseudoinstruction & Base Instruction(s) & Meaning \\
\midrule
\texttt{clgc cd, sym} &
\begin{tabular}{@{}l@{}}
\texttt{1: auipcc cd, \%captab\_pcrel\_hi(sym)} \\ \texttt{\ \ \ \ clc cd, \%pcrel\_lo(1b)(cd)}
\end{tabular}
& Load from capability table \\
\texttt{cllc cd, sym} &
\begin{tabular}{@{}l@{}}
\texttt{1: auipcc cd, \%pcrel\_hi(sym)} \\ \texttt{\ \ \ \ cincoffset cd, cd, \%pcrel\_lo(1b)}
\end{tabular}
& Load PCC-relative capability \\
\midrule
\texttt{cjr cs} & \texttt{cjalr cnull, cs} & Jump to capability \\
\texttt{cjalr cs} & \texttt{cjalr cra, cs} & Jump to capability and link \\
\texttt{cret} & \texttt{cjalr cnull, cra} & Return to capability \\
\midrule
\texttt{cspecialr cd, scr} & \texttt{cspecialrw cd, scr, cnull} & Read special capability register \\
\texttt{cspecialw scr, cs} & \texttt{cspecialrw cnull, scr, cs} & Write special capability register \\
\bottomrule
\end{tabular}
\end{center}
\caption{Pseudoinstructions Added in Capability Mode}
\label{table:riscv-capmode-pseudo-add}
% TODO: should the hyperrefs for these pseudos link to CJALR instead?
\insnriscvlabel{cjr}
\insnriscvlabel{cret}
\insnriscvlabel{cspecialr}
\insnriscvlabel{cspecialw}
\insnriscvlabel{cllc}
\insnriscvlabel{clgc}
\end{sidewaystable}
% Ensure that the mode-depedent tables are emitted before the encoding
% summary to avoid multiple lines
\FloatBarrier
\section{Encoding Summary}
CHERI-RISC-V general-purpose instructions use the 0x5b major opcode and use the RISC-V R-type or I-type encoding formats.
CHERI-RISC-V uses the funct3 field from bits 14-12 as a top-level opcode, and funct7 as a secondary
opcode for standard 3-register operand instructions.
Two-register operand instructions and single-register operand instructions are a subset
of the 3-register operand encodings.
\subsection*{Top-level encoding allocation (funct3 field)}
{\rvcherienctablefontsize
\rvcherienctabletop
}
\subsection*{Two Source \& Dest encoding allocation (funct7 field)}
All three-register-operand (two sources, one destination) CHERI-RISC-V instructions use the RISC-V R-type encoding format, with the same funct field stored in funct7 and a 0 value in funct3.
\vspace{1em}
\rvcheriheader
\rvcherirawbitbox{srcsrcdest}{func}{cd}{cs1}{rs2/cs2}
\vspace{1em}
{\rvcherienctablefontsize
\def\rvcheriremovedfootnotemark{$^\dagger$}
\def\rvcherideprecatedfootnotemark{$^\ddagger$}
\def\rvcherireservedfootnotemark{$^*$}
\rvcherienctablesrcsrcdest\\\\
\footnotesize
$^\dagger$Previously used by a removed instruction.\\
$^\ddagger$Deprecated (may be removed in a future version).\\
$^*$Reserved for future use.
}
\subsection*{Stores encoding allocation (rd field)}
Store instructions are of the following form:
\vspace{1em}
\rvcheriheader
\rvcherirawbitbox{expstore}{func}{rs2/cs2}{rs1/cs1}
\vspace{1em}
{\rvcherienctablefontsize
\def\rvcheriatomicfootnotemark{$^\dagger$}
\rvcherienctableexpstore\\\\
\footnotesize
$^\dagger$The SC.\{B, H, W, D, Q\}.\{DDC, CAP\} instructions are available only when the RISC-V A extension (atomic) is present.
}
\vspace{1em}
\subsection*{Loads encoding allocation (rs2 field)}
Load instructions are of the following form:
\vspace{1em}
\rvcheriheader
\rvcherirawbitbox{expload}{func}{rd/cd}{rs1/cs1}
\vspace{1em}
{\rvcherienctablefontsize
\def\rvcheriatomicfootnotemark{$^\dagger$}
\def\rvcherildufootnotemark{$^\ddagger$}
\rvcherienctableexpload\\\\
\footnotesize
$^\dagger$The LR.\{B, H, W, D, Q\}.\{DDC, CAP\} instructions are available only when the RISC-V A extension (atomic) is present.\\
$^\ddagger$LDU.\{DDC, CAP\} instructions are available only in RV128.
}
\vspace{1em}
\subsection*{Two Source encoding allocation (rd field)}
Two Source instructions are of the following form:
\vspace{1em}
\rvcheriheader
\rvcherirawbitbox{srcsrc}{func}{rs1/cs1}{rs2/cs2}
\vspace{1em}
{\rvcherienctablefontsize
\def\rvcherireservedfootnotemark{$^\dagger$}
\rvcherienctablesrcsrc\\\\
\footnotesize
$^\dagger$Reserved for future use.
}
\vspace{1em}
\subsection*{One Source encoding allocation (rs2 field)}
One Source instructions are of the following form:
\vspace{1em}
\rvcheriheader
\rvcherirawbitbox{src}{func}{rs1/cs1}
\vspace{1em}
{\rvcherienctablefontsize
\def\rvcherireservedfootnotemark{$^\dagger$}
\rvcherienctablesrc\\\\
\footnotesize
$^\dagger$Reserved for future use.
}
\vspace{1em}
\subsection*{Source \& Dest encoding allocation (rs2 field)}
Source \& Dest instructions are of the following form:
\vspace{1em}
\rvcheriheader
\rvcherirawbitbox{srcdest}{func}{rd/cd}{rs1/cs1}
\vspace{1em}
{\rvcherienctablefontsize
\def\rvcheriremovedfootnotemark{$^\dagger$}
\def\rvcherireservedfootnotemark{$^\ddagger$}
\rvcherienctablesrcdest\\\\
\footnotesize
$^\dagger$Previously used by a removed instruction.\\
$^\ddagger$Reserved for future use.
}
\vspace{1em}
\subsection*{Dest-Only encoding allocation (rs1 field)}
We do not currently have any one-register-operand instructions, but any
future dest-only instructions will be of the following form:
\vspace{1em}
\rvcheriheader
\rvcherirawbitbox{dest}{func}{rd}
\vspace{1em}
{\rvcherienctablefontsize
\rvcherienctabledest
}